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Introduction. G. Hochshild defined in [4] the relative cohomology group
of algebras as follows: let £ be a commutative ring with unit element 1.
We consider an algebra A over %k and its subalgebra B, which has the unit
element 1 and is unitary. For a bi-A-module M, a k-n-linear function f of A

to M is called to be a cochain relative to B with coefficient M if f satisfies
the conditions

(1) bf(a,-..... > an)=f(ba,...... » @)
(2) f(ah """ >aib’ Qi tryececes ) d,,)=f(d1, """ » @iy baiH’ """ ’an)
(3) Fla,,...... ,a.b)=f(ay,...... , a,)b, bEB, a, € A.

For n = 0, we set
C(A,B,M)={m & M|(b € B), bm = mb}.
We define the coboundary operator D:C"(A, B, M) — C"*'(A, B, M), such that

(4) (DfXay,------ , @) = af(ag,...... s @ns) + 2 (=1 flay, ... , @iy,

Thus we obtain the relative cohomology group H'(A, B; M).

In this paper, we shall show in §1 that the reduction theorem of cup-
products holds just in the same way as in the case of finite groups which
R.Lyndon gave in [7]. (cf.[3]. Systematic descriptions for the reduction
theorem of cap- and cup-products were given in [8]). Next, using this we shall
decide the relative cohomology groups of some modules considered in p-adic
number fields in connection with differents in § 2. (c£.[5]) In §3 we shall
decide the same groups as §2 considered now in p-adic division algebras.
Recently I have seen that H.Kuniyoshi has also decided the (co-)homology
groups of the same modules, more generally considered in p-adic normal simple
algebras (see his forthcoming paper).

1) This discussion was published in Japanese in Annual Report of the Gakugei Faculty of
the IWATE UNIV,, 14(1958), 1-13.
2) Formerly HISASI YAMASAKI.
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1. A cochain £ is called normal with respect to B or simply normal
if fla,...... ,a,) =0 whenever any one of a; belongs to B. All cochains
considered may be assumed to be normal almost in the same way as seen
in p.p.61-63 of [3].

Let J be a free ring over B, and F be a residue class ring modulo the
ideal R, which is generated by a a—a a, a € k, a € F, therefore an element of
F commutes with an element of k. We shall call F a free ring over B com-
mutative with k2 Moreover we assume that (F/R)~ A with P: F— A.

A cochain f over F is called to be right-invariant if f(a,, a,, as,...... =

fla,,asas...... ), whenever a, =a';, a; = a’s,...... mod. R, and is called to be
Sfully invariant if f(a,, a,,...... )= f(a'y, @s,--.... ), whenever a,=a’j,a,=a,...... ,
mod. R.

LEMMA 1. If fis an n-cocycle over F, n > 1, then f = Du;, with (n—1)-
cochain uy. Accordingly H"(F, B) = 0 for any bi-F-module. Moreover, if f
is right-invariant, then we see that u; is also right-invariant.

PROOF. We shall show, at first, that the (#—1)-cochain =, for f can be
obtained by the conditions (5), (6):
(5) u(d, a,,...... ,8p41) =0, b € B, a, € F.

By x we denote a free generator of F or an element of B, then it holds

that

(6) w(za,, as,...... ) = aula,, as--..-. ) — flx, ay, as,-- .- )-

In fact, by the induction on the length of the first variable together with
(5), (6) and the normality of f, we see easily that (1), (2),(3) and the nor-
mality hold for «. It follows from this that «(x, a,,...... )=20, if weset a; =1
in (6). We have, therefore, that

Consequently, also the induction on the length of the first variable yields that
f = Du. Indeed if we assume inductively that

Du(a,, a,,...... ) = f(a,, as,. ... )
then, since f is a cocycle we have that
DX(Du — f)(x, a,, ayy----.. ) = 0.

By the inductive assumption the left hand side reduces to

x(Du — f)(ay, as,--.-.. ) — (Du — f)(zay, as,--. .- Y+ (Du — ) («,...... )
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= —(Du — f)(za,, as--- ... ).
Thus, we obtain

Du(xa,, as,.-.... ) = flza,, a,...... ),
i.e. Du = f.

If f is right-invariant, we see easily by induction that z is also right-
invariant. From these facts, in view of the linearity of u, our assertion
follows immediately. g.e.d.

We shall consider an A-module M as an F-module induced by P:(F/R)
=~ A. For a right-invariant (n—1)-cochain =, in R, it follows, from the
facts that ra, € R and the right-invariantness of x, that

(7) Dua,,r, a,,...... ) = a,ulr, a,,...... Y—ula.r, as,- .- Y+ ula,, r as,...... )

(8) a,u(r, as,.-. ... ) = ula,r, asy---.-. ).
The function #  with (n—2) variables on F given by
(9) [w(ag..... N () = ulr, as,-..... )

takes, therefore, its valuss in Hom(R, M), which is the group of all F-left-
homomorphisms of R into M.
Hom(R, M) is a right-A-module with A-operators such that

(10) - [hea] () = K(P)a h€ Hom(R,M), a € F,ac A, rnr€ R.
Whenever P(a) = a, we put
(11) [ack] (r) = h(ra),

then it holds that [#oh](r) = h(+7) = r h(r'),  because h is an F-left-homo-
morphism. Thus Hom(R, M) is a left-A-module with A-operators(11), because
rh(r) = P(Ph(r) = 0-h(r') = 0.

Now if & in B, it holds that

[« asy-..-.. N = wul(r, b a,,...... Y= u(rb,as,-..... Y=[u'(a,,...... YX7b)

and this yields (1) of #’. (2) and the normality of « follows from those of u.
(3) is derived from the fact that
(4 (-, a, 0)](7) = ulr,...... ,a,b) = ulr,...... san b=1[u(... , a,)ob] (7).



158 H.OGAWA

And then since w is right-invariant, # is also fully invariant, therefore, we
may regard # as a cochain over A4, that is,

u € C**(A, B;Hom(R, M)).
Now that Du is right-invariant and DDu = 0, we may apply this for Du=f.

Thus we conclude that f* € C*"¥(A, B, Hom(R, M)).
We have then, since ra, € R,

[f,(a27 ------ ’ an] (r) = f(f', UZTTEEREE H an) = Du(r, Agyevvv-s > an)

n-1

= P(r)u(a,,...... ) — [u'(as,...... N(ras)+ > (— 1T (age----- (@)

i=2

Consequently, we have

LEMMA 2. If u is a right-invariant (n — 1)-cochain over F, and if f
= Du is also right-invariant, then

(12) f = —Du.
If u is a right-invariant and f is fully invariant, then Du' = f = 0, whence
u in Z" %A, B, Hom(R, M)).

PROOF. We may show only the latter, but it is clear from

[F(as,...... Y () = £(r, as,--. - ).

COROLLARY 2.1. If f is a righ-invariant n-cocycle over F, where n>1,
then

f = — Du'y, a coboundary; if f is fully invariant, then Du'=—f =0,
and u is in Z"*(A, B.Hom(R, M)).

PROOF. From LEMMA 1, a right-invariant f is Du, with a right-invariant
us, and then, we can apply LEMMA 2. qg.e.d.

For a cochain f over A, we shall now define a fully invariant cochain

fr such that

fl’(ab [Z2 TR ) = f(Pal’ Pa2: """ )’
where P is the homomorphism F— A= (F/R). The correspondence
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f— fr is univalent, and that, preserves (1)~ (4), therefore, henceforth we
shall not distinguish f and f».

Thus every (n-+2)-cocycle f over A may be regarded as a fully invariant
cocycle over F, and as such determines, in accordance with corollary 2.1, a
cocycle u; in Z"[A, B, Hom(R, M)], therefore the map Wf=u',, for all f in
Z"*(A, B; M) establishes an A-homomorphism

(13) W Z"*(A, B, M)— ZA, B, Hom(R, M)].

LEMMA 3. We assume that A has a linearly independent basis over B
containing 1. For every cochain w in C"[A, B Hom(R, M)] there exists an
(n + 1)-cochain u over F such that u and f = Du are right-invariant, and
that v = w.

PROOF. We shall take & in B as a representative of the class modulo
R containing b, then 0 represents 0-class. Further we shall assume that the
representative of the class containing P(a’) is also &', then it holds that

P(ba’) = P() P(a) = bP(a)
P(a'b) = P(a)P(b) = P(a)b.
Thus A has a linearly independent basis over B containing 1, and we

may therefore preassign da’, a'b as the representative of the class containing
bP(a’), P(a’)b respectively.
Let u be a function with (n+1)-variables on F such that for  in R

(14) u(a' + 7 QAgyeene-e ) = [w<P(d2), """ )](r)’
then « is right-invariant, for w is fully invariant. Set @' = 0 in (14), then

w(r,ag,...... ) = [u'(ay,...... Y ) = [wP(ay),--.... Y7,

and this means that « = w.

This « is an element of C**%F, B; M). Indeed, since u(b, a,,...--- ) =[w
(...... )1(0) = 0, u is normal with respect to the first variable, and the nor-
malities relative to the remaining variables follow from those of w. Next we
shall show (1),(2),(3) for u. Since ba’ is the preassigned representative and
br is in R, it holds that

ubla + 7),...... 1= wba’ + br,......) = [w(...... )] (67)
= blw(...... )(7) (because w is an F-left-homomorphism.)
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It holds further that
ula + r, ba,,...... 1 = w[P(ba,),...... 1 () = wlbPa,),...... 1 3]
= [bow[Pay),-...-. T ) = wlPay),... .- 1(rb) = u(rb, a,...... )
= u(a'b + b, ay,...... = ul(a’ + )b, as,......)],

because a'b is the preassigned representative, this is (2) for the first variable.
Finally the fact that

is the direct consequence of (2). Thus « is really in C**(F, B, M).
As was seen above, « is right-invariant and #" = w. Then it holds that

au(r, asy---.-. ) = aw[Pa,),...... 1 (r) = w[P(ay),-...-. 1(ar)

= u(ar, as,....-. ) (because ar is in R),
therefore, we obtain that for f = Du,
(15) flay, 7, agy. - ) =
Thus f is invariant with respect to the second variable, and the invariant-
ness for a,,...... follows from those of u, therefore, we see that f is right-
invariant by means of its linearity. q.e.d.

Now the proof of the reduction theorem will be carried out just in the
same way as in [8]. That is,

LEMMA 4. FEvery cocycle w in Z" (A, B,Hom (R, M)) for n >0 is
cohomologous to Wf for some cocycle f in Z"*(A, B; M), that is, W induces
an epimorphism W of H"*(A, B; M) onto H'(A, B; Hom(R, M)).

LEMMA 5. If f is an (n+2)-coboundary in B"“*(A, B,M), and n > 0,
then WFf is a coboundary in B"(A, B, Hom(R, M)).

LEMMA 6. If f is in Z"**(A, B, M), and Wf is in B"(A, B, Hom(R,M)),
then f is in B"'*(A, B, M), thus, W is an isomorphism.
(For the proofs of these lemmas, see [8].)

This completes the proof of the CUP PRODUCT REDUCTION THEOREM-"

Let k be a commutative ring containing the unit element 1, B be a k-
algebra containing 1, and A be a k-algebra containing B and having a linear-
ly independent basis over B. Suppose that F be a free ring over B com-
mutative with k-element, and P be the canonical homomorphism F onto

3) A generalisation and the dual for cap p-oduct have been obtained in [8].
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(F/R), which is isomorphic onto A. Then the map W in (13) induces an
isomorphism

H**(A, B, M)~ H'(A, B, Hom(R, M)), for n>0,

where a bi-A-module M is considered as an F-module induced by P,Hom(R, M)
is the group of all F-left-homomorphisms, and A operates on Hom(R ,M) as
Sollows : for h € Hom(R, M), r € R, a € A, Pla) = a we define [hoalr) =
h(r)a and [ah](r) = h(ra).

2. Let k be a p-adic number field, K be its extension of a finite degree,
L be the maximal unramified field between 2 and K, and D be the different
of (K/k); B, A, B, be the principal order of k, K, L respectively, P be the
prime ideal of A, and M be the group (A/P"), r =1,2,....... Then Y.Kawada
showed the following theorem and characterized the different.

THEOREM 1. (Y.Kawada)” For i =1, 2,

(16) Hi(A, B’ M) %H{(A, Bl: M)
and

; 1= (A/P") if PPD D,
an H{(A, B, M) 1 ~(A/D) if P"c D.

We shall show further

COROLLARY. (16) and (17) remain valid for every positive integer

PROOF. In the application of the reduction theorem, we may take the
polynomial ring B[x] of one variable £ over B as a free ring F over B (the
basic ring % there is now the rational integer ring z.), since all rings con-
sidered are commutative. Then A has a minimal basis over B consisting of
one element #, because the residue class ring (A/P) is a separable extension
of that of B(Theorem 11 of IV, 6 in [1]). Then the ideal R in the reduction
theorem is the principal ideal generated by the monic irreducible polynomial
f(x) over B, of which root is 6. Since A,(A/P") is commutative, it holds
that for a, 8 in F, ¢ in Hom(R, (A/P")),

Haf(x)B) = aBy(f(x)) (mod. P),
therefore, ¢ is decided uniquely if ¢(f(x)) (mod.P") is given. From this we

4) In [5], this was proved for the commutative cohomology groups, i.e., f(a, &) = f(b, a)
------ But even if we except this commutativity and so take our relative group, this theorem
remains valid with the proof slightly modified. Therefore we shall omit the proof.
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see that
Hom(R, (A/P")=~(A/P").
Therefore our reduction theorem reduces to
H"*(A,B,M)~ H"(A,B, M), n>0.

Together with (17) in THEOREM 1, we obtain (17) in our corollary.

Similarly we obtain (17) in the case of (A/B;). Now that L is the maximal
unramified extension between %k and K, the relative different of (K/L) is
nothing but that of (K/k).

Combining both (17), we have (16) in our corollary. q.e.d.

3. Let k be also a p-adic number field, 0 be its principal order, © be
a central division algebra over %, % be its principal order, 8 be the extension
in A of the prime ideal P of 0, = be a prime elment of P. If [S:k] = n?
there exists an unramified extension of 2 such that @ DL Dk, [L:k] = n.
And if o/p = GF(q),
L = k(w), 0" =1,

Let B be the principal order of L, and B, be the extension in B of p.
As a generator of the Galois group of (L/k), which is the cyclic group of the
order n, we may take o with @” = w’. Then & is represented as a cyclic
crossed product such that

awa = a'm, a in L, where T is ¢ with (f,n) = 1, and 7" is a prime element
of p, which we shall again denote by p, and may be considered as in 0.

Regarding 0, %, B as algebras over z; Y.Kawada showed in [6]
THEOREM 2. (Kawada) For r =1, we have
H'(¥, o, (A/F7)) = H'(Y, B, (U/P")).
H, B, (Q[/S,‘B’)){ =~ ?},Le additive group of GF(q) Z : B :ll 22232’
For the 2-dimensional case we shall show
THEOREM 3. If r =1, then
18) H*(¥, 0, U/P) =~ HXY, B, (U/F").
= the additive group of GF(q"), if » =1 (mod. n)

H(U, B, AW
( /% ){ = the additive group of GF(q), if r £ 1 (mod.n).
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PROOF. For f< Z*®,0,A/T)), a € ¥, it holds that
o'f(e', a) — fl@’*, a) + f(@’, 0'a) — flo’,0')a = 0 (mod. "),

we have therefore

19) flo', @) = " f(0", @) — o If(), 0'a) + " If (0, @')a,
where ¢" — 1=R. By adding up (19) from j =0 to j = R — 1, we have
R-1

Rf(@, @) = 2_ 0" fl0™', a) — Rg(o'a) + Ry(®")a,
j=0

where
R-1

2@ flo’, a) = Rya).
7=0

The first term on the right reduces to Ro‘g(a) by taking the sum with
respect t0 j + i = k. On account of R =0 (mod. ®"), we obtain that f(®’, a)
= Dg(o’, &), therefore, we may consider from the beginning that f(«’, a)
= (. Consequently (1) for f follows from the D-relation

o' fla, B) — flo'a, B) + f(o', aB) — f(o',a) B=0.
Similarly by setting <if(a, wj)ﬁ)R'j>/R = ¢(a), we may consider
j=0

that f(a, @) = 0, and (3) follows also from the D-relation.
Thus (18) is proved.
Now we shall take a system of representatives A; in L of (B/%.), then

every element of 2 has the unique representationzxiwi. For a cocycle f in
Z3 (Y, B,(R/A), the B-linearity (1),(3) yields that
(20) A n', N ) = SN )

Accordingly, to decide f, we have only to assign

f@',m) 0=i j=n-—1
Now in the formula
(21 ' flal, 7%) — fa' i, m) + f'mt) — fl, wr =0
we have if i==0, k=<0,
[, 7% = f', m**) (mod. ).
We can therefore set

(22) f('"'l: ) = sy (mod. %)
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independently of the division ¢ + j into the sum of 7 and j.
If we define a B-linear ¢ such that, g(7') = p;. 0 =<7 <n — 1, then ¢ is
decided over U, because 7" — p =0. In the formula
(f — D) (@', 7') = fla', m’) — o' g(m’) + g(x"*?) — glx'yr’  (mod. P),
if 9= 0, j=3=0, then we have writing (f — Dg) simply f
(23) f('”'{; ) = Py =0 (mod. ).
In the similar way as from (22) to (23), we have inductively that u;.; =0
(mod. ¥), i = 0, j==0). We have further that (1, 7') = f(=', 1) = 0(mod. F"),
therefore, it holds that
(24) Bo = By = = pr,., =0 (mod. ¥).
Let Z be the group of all cocycles as (24), then we may consider that
H* =(Z/B)=~Z'/(Z N B)
For Dg in (Z N B)=B, 0=<i + j=mn— 1, it holds that, from (24),
Dy(r', w’) = m'g(n’) — g(x"*7) + g(m'yr’ = 0,
we see therefore that
(25) Dg in B operates as a differentiation on 7' with 0 <i <n — 1.

When 0 <i+ j=n—1,0=<j+ k=n— 1, since it follows from (21),
(24) that f(=**, 7*) = f(#',7*"), we may set independently of the division
of i and j into the sum z + j
(26) S’y m)y = piyy, 0=d, j=<n— L

If weset j=n—1—14, k=n—jin (21), then i, j, k£ are smaller than
n, therefore it holds that

Tl — Pnss + f(, 7" + f', m)ym" = 0.
The third term on the left vanishes, because 7" = p and f is B-normal, and
the fourth term also vanishes by (24). We have thus 7', = f,.s, and similar-
Iy Mpix = p,7° by setting i =n — j, i =n — 1 — k in (21). Consequently we
obtain
(27) T(F'n = My = /"n"rt-

Conversely we shall show that whenever w, is given so as to satisfy (20),
(24), (26), (27), then f becomes a cocycle relative to B, and that, its u, is
nothing but the given u,.

(@ i+ j<mn, j+ k<mn, the first and fourth terms on the left of
(21) vanish from (24) and the second and third vanish from (26).
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Mb) Yi+j=n j+k<mn or i+j<mn, j+ k=n, we shall show
-only the former. The latter is proved similarly. Now we set i + j=n + a,
then a < n. The first of (21) vanishes from (24). The second is

— fla', 7)) = — f#@"r, 7)) = — pf (7", 7") = — Plasss
then a + k& < n since j + k& < n, therefore, this vanishes also from (24). Finally
the third and the fourth cancels each other:
Aw', w7y — flr', )" = poojin — o = pm""" — pmn® = 0.
() Hi+j=n, j+k=n put i+j=n+a j+k=n+b, then
a+k=i7+ b and
7 f(a), m) — ', 7 + fl, w0 — fla, ) 7w
= 77'{/";'+k - f(P'”'a, Wk) + f(77't, '"'bP) - F’HJ""'k
= w'rlp, — pf(w’, 7°) + f(', m)p — p,min”
b — '”'aw)/"n — pgin — Misp)
=0 (from (27)).

= (o

Thus f is well determined whenever u, is given as (27). We shall examine
this condition: 7mu, = p,7m in detail. Suppose that

(28) By =No N + Ayt (mod. R,
M\, are representatives of (B/%:), then from the condition we have

0=ap, — p,m = A" — No) + " — A)m+..
+ N = M) 7T+ (L = A7 (mod. ).

n-1

Since an element of B A = >_ a;®', a; in 0, having the property A’ — A
i=0

=> a,((0'" — (0')) =0 (mod. B,) is with ;=0 (mod. P,) i = 1,...... ,(n—1)
i.e., A is an element of 0. Therefore,
(29) In (28) \,_, is a representative of B/Br, Aoy Miy----.- , Mr_y are representa-

tives of 0/p.
Since f is further normal relative to B, it holds that

o = ) © = flr"!, w@) = flm?, o)
= " o, m) = flo™n" ™, ) = f(wn™,m)
= of ("', m) = op,,
and
o, — p,0 = Ao — ©) + A (0" — @) +......
+ A (@ — @) =0 (mod. T").
Accordingly, let 0 be also the representative of the 0-class of (B/By),
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then we see that

30) { if = 0(mod. n), then every A, is an arbitrary representative of (B/%;),
if Z5F 0(mod. 7), then A\, = 0.

From (29) and (30) we obtain the condition of f to be a cocycle by means
of w,:

(a) if r=1, then we may take an arbitrary representative of (B/Pr)
| as Ny in p, = N, (mod. RB).

((b) if r=1 (mod.n) say r =tn + 1, then
| o = No F RNy + Aoy + Nprr'™  (mod. B

| (/1) (0/b) (0/¥) (B/%2).
‘(c) if r&=1 (mod.n), say r=tn+s, s==1, 0 < s < n, then
| Pn = No F Nty e + 7\.(z_-1)n'7r“‘”" + 7\;,,71'”' (mod. PI"*°).

\ (0/9) (0/p) (©/v) (0/v)
Next we shall consider the condition of x, to be a coboundary Dg.
Since ¢ is B-normal, we have

o’g(mr) = glor) = g(rw) = g(m)o.
Thus, for
gm) =Ny + N . + A7 (mod. B7),
it holds that
o"g(m) — g(m)e
= A(@0" — @) + M (0" — 0 + Ay(0" — ™) +...... A, (@ — @™ N1

(mod. F).

From this we may take arbitrary A; if 7 = 1 (mod. n), and N;=0 if ¢ == 1(mod. n).

Consequently, g(w) reduces to the form:
32) g(m) =N + A"t L + MeonymETO N, 7™ (mod. B).

By means of (25), we shall compute u, of Dg in B, taking the fact
g(@") = g(p) =0 in account:
Dy(rr, w"~1) = mwg(w"™) — g(@") + glmw)m"~?
=a""19m) + 7" glwmymr + 7" glaw)m® + ... + g(m)ym" !
— ™D _n =1 _an =1 __yn
=X1 T + Xg T T+l + X(;_l) ™
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AT T e T Ay T

+ A+ AT A + M-y 7" (mod. B")
= (Spirmy M) 7"+ (Spem X)) 7"+ + (Spzphe-n)r"(mod. F).
Evidently,
m(SpumN) 7" = (Spup) m'"
and then (27) holds also for m, of Dg. (L/k) is unramified and (B/%®;) is a

finite field, therefore, (0/b) is filled up with (Sp.zx, A) (mod. B;),[2]. Con-
sequently we see for Dg,

(33) Pn =0+ N7 4 Ny, "+ + A 7" (mod. B7)

(o/v)  (0/p) (0/p)

Whenever u, is given, f is uniquely decided by (20), (24), (26), (27) and
its linearity. Therefore, in comparision with (31), (33), we have our assertion.
That is, H? is isomorphic with (B/%;) as a module if » =1, and if =1
(mod. n) only the first (0/b) remains. At last, if =1 (mod.7n), the first
term (0/p) and the last term (B/%,)/(0/p) remain. Therefore, combining
these, H? is isomorphic with (B/%.) as a module. q.e. d.

THEOREM 4. If n=1, there exist the following isomorphisms :
H" (U, B, (A/P) ~ H*
H" (U, B, (A/¥)) ~ H*.

PROOF. We shall give the proof by applying the reduction theorem.
Now, 9 is generated by the single element = over B and the basic ring is
the ring of all rational integers, and then F is a usual free ring of one
variable over B. The kernel R of the natural homomorphism from F onto
U, which maps X to 7, is an ideal generated by

A=X"—p, A = Xo — 0" X,
where (¢, n) = 1.

For the simplicity from now on we shall denote f(a, as, as,--...- , Qpis)
of H"*2, u( ,as,...... .@n+3) constructed by f; in (5), (6), and the corresponding
u of H" defined by (9);u(r, as,...... s Anas) = [ (as,...... ,ane2)] (7)) 7 € R, by
Has, ap), u(r) and u'(r) respectively.

Then, if 4 is in B, it holds, as will be seen below, that

(34) wW(AX) = u(XA) = Xu(A) (mod. ")
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(35) u(Ab) = u(bA) = bu(A) (mod. ")
(36) wWA'X)=uXA)=0 (mod. ")
€7)) w(A'D) = uwbA)=0 (mod. ")

Even if we put #' in place of u, the above four equalities remain valid.
Thus for a, a’, B, B of F it follows from the linearity of # that

u(aAa + BA'B) = aa'u'(A) (mod. "),

which means that " is decided if we assign #'(A)(mod. B"). Since W:f— "
is an epimorphism, therefore, we have an isomorphism

H'2, B, Hom(R, M)] =~ H"¥, B, M),

which maps [«(a,,...... , Ani2)] (A) to u'(as,...... s Qniz)-

Consequently, our reduction theorem means that H""[¥, B, (A/P)]=
H'[Y, B,(A/B)], from which, together with theorems 2,3, our assertion
follows immediately.

Now, we shall show (34),...... , (87), (writing = in stead of =).

It holds that #(6) =0, & in B, and that, if we put a, = 1 in (6),

(38) w(X)=0.
From this, and (6) with a, = X, we see
(39) wX?) = — f(X, X).
Similarly it follows inductively from f( ,1) = 0 that
i
(40) w(X) = — Z X7 A(X, X,
Jj=1
In the same way we have
i
(41) n(X'b) = — > X7 f(X, X").
j=1
Thus we obtain that
w(XA) = Xu(A) (from (8))
= X[uw(X") — u(p)] (by the linearity)
= X[u(X™)] (from (5)).

Accordingly (40) yields that

(42) wW(XA) = — 3 X" (X, X))

i=1

On the other hand
wWAX) = w(X™ — pX) = w(X™) — u(pX)
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= (X" — pu(X) (by the B-normality)
= 2(X"") (from (38))
= u(X"") — w(X)p = wW(X™*") — u(Xp)
=u(X"! — Xp) = u(XA),
thus (34) is obtained. In the similar way as (42) we have

(43) u(bA) = bu(A)= — b i X" (X, XY,

Meanwhile it holds that
u(Ab) = w(X"b — pb) = u(X"b) — u(pb)
= w(X"b) (by the B-normality)
= — > X" f(X, X)),

where f is fully invariant, and then modulo R that

= - X X AX 6T X
i=1

I

-3 X' AX b,T(H)X =1y (by the B-normality)
i=1

= — > X" f(b" X, X'"7). (since f is fully invariant)

i=1
= — > X" f(X,X'"") (by the B-normality),
i=l
where ©” = ©”. Since M is an F-module induced by the natural homomor-
phism of F onto A, we see by computing modulo R that

- - XA XY

i=ml

= — i b X' AX, X"V
i=1
From this together with (43) follows (35).
As for (36),
W(XA) = Xu(A") (from (8)),
further from (6) and the B-normality of ,
= X(Xu(w) — f(X, ®) — 0"u(X)),
=0,
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because of the B-normalities and the third by (38). Similarly we have

wWA'X) = (XX — 0"X?)
= Xu(wX) — f(X, 0X) — o"u(X?)
= Xou(X) — f(Xo, X) + o’f(X, X)
— f(Xo, X) + flo"X, X)
— f(A, X)
=0 ,

I

since f is fully invariant.
Thus (36) is proved. Finally as for (37),

wbA') = bu(A") = bu(Xw) — bu(w"X)
= b Xu(w) — bf(X,0) — bo"u(X)
=0,

because # and f are B-normal. By the same reason we see that

w(A'D) = u(Xwb) — u(w"Xd)
= Xu(wb) — f(X, 0b) — o"u(Xb)
—  o"Xu(b) + o £(X,)
= 0,

so that (37) is also shown and we have proved all our assertions.

f11

[2]
[31

[4]
[5]
[61]
[71]

(8]

q.e.d.
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