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In our previous papers [7], [8],υ the notion of almost-analytic vector was

introduced in certain almost-Hermitian spaces. In this paper we shall deal

with tensors and obtain the notion of Φ-tensors which contains, as special

cases, the one of analytic tensors and decomposable tensors.

1. Let us consider an w-dimensional space2) which admits a tensor field

ψi5 of type (1,1). Let | ( i )

ϋ ) = £;„•••*! I«""Λ be a tensor of type (q,p). If it

commutes with φ^, then we shall say that f(ί)

ϋ) is pure with respect to the

corrresponding indices, namely it is pure with respect to ik and jh9 if

(1) ξίp-r-HU) φ,ζ = W«- r "VΛ

and pure with respect to ik and ih9 if

If IcoU) anti-commutes with φj then we shall say that it is hybrid with

respect to the corresponding indices. Thus if

for example, holds good, theα it is hybrid with respect to ίk and jh. ξ^ϋ) is

called pure (resp. hybrid) if it is pure (resp. hybrid) with respect to all its

indices.

φj itself and St

j are examples of the pure tensor. If ψi is a regular

tensor i.e. d e t ^ / ) =t= 0, then the tensor whose components are given by the

elements of the inverse matrix of iψi) is also pure.

LEMMA I. If £ ( ί )

U ) is pure {hybrid) with respect to some indices, then

so

We shall prove only the case when ξ{ί)

υ) is pure with respect to iΎ and

(Jz 4= 1). In fact, we have

1) The number in brackets refers to the bibliography at the end of the paper.

2) We shall mean by a space a differentiable manifold of class C°°, and denote by
its local coordinates. Indices run over 1, 2, n.
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= l v /2ί
ϋ ) ψii q. e. d.

LEMMA 2. If a skew-symmetric tensor ?(ί ) is pure, then £(l) = hp*-'Ur<Phr

is also a skew-symmetric pure tensor.
*

In fact, £Cί) is pure by virtue of Lemma 1. It is evident that it is skew-
symmetric with respect to ik and ih (k,h =f= 1). For k =+= 1, we have

*
) " 1 ^

= ( — I ) * " 1 ςίp...tk...ίvψίk

r= (—
* •

= - | l V . . i r . . / 2 V q. e. d.

If ξit)<™ = fd/V -Ί is a pure tensor of type (g + l,/>), then u£{i)

tU) is
also pure for a (covariant) vector z/s. Generalizing this fact, we have easily

LEMMA 3. Let | ω

ω and η(a)Φ) be pure tensors of type (q,p + 1) and
(q + l9p) respectively. Then h{i)U)Vta)Φ) is also a pure tensor of type (q +
q, p + p), provided that pΛ-p =4= 0 or q + q 4= 0.

A tensor φ/ is called an almost-product structure, if it satisfies φΐφj —
δiJ, and is called an almost-complex structure, if it satisfies φt

r φj = — S ,̂
[ U [2], [4], [12].

In these cases, we can verify the following lemmas.

LEMMA 4. Let φ/ be a tensor such that φf φr

5 ~ £δij.3) Then we have
ζr

r — 0 for a hybrid tensor ξt\

LEMMA 5. Let φ/ be a tensor such that φΐ <pr

j = €8t
j. If ξtj (ξij) is

pure and v/ivu) is hybrid, then we have

LEMMA 6. Let <pt

j be a regular tensor, i.e. rank (φj) = n. If ξkji (ζk/)
is hybrid, then it is a zero tensor.

In fact, we have

hri ψΐ = — £rji ψk = %Tcjr ψi = ~ Stsrt Ψi\

from which we find ξkji = 0. q. e. d.

Now consider an almost-complex structure φ^, then if we choose a suit-
able frame at a point, ψι has the following components at the point.

3) In this paper, by ε we shall always mean ± 1.
4) Indices α, β, run over 1,..., m(= n/2) and α = m + α.
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With respect to this frame, the equation (1) is equivalent to the equ-

ations

£; V * PΛ. • * Λ = 0 £ - V Pλ Λ = 0
» ' p * * ' α f c ' " * l u > b ι p «Λ ii ' v ,

and the equation (2) is equivalent to

fe,,. «* «.v '>v Λ = o, f v.. ϊ t..., Iv
 ?*-Λ = o.

In this sense we have used the terminologies "pure" and "hybrid" [ 6 ] , [11].

2. An almost-Hermitian space admits, by definition, a Riemannian metric

tensor gjt and an almost-complex structure φj such that grs<p[<Pi = da-

A Kahlerian space is an almost-Hermitian one such that the equation

(3) V&ΐ = 0

is valid, whsre v* denotes ths operator of the covariant derivative with

respect to the ChristoffeΓs symbol | ..[.

We shall devote this section to a Kahlerian space.

A pure tensor ζ(ί)

ω is called analytic [ 6 ], if its covariant derivative

yιζ(i)ϋ) is also pure, i.e. it satisfies

(4) W-Vrf(<>ϋ) = 9>,I'V,fv * ('),

or *» (

P Vr£</> < Λ = 0>

In fact, the equation (4) is equivalent to the following one with respect to

complex coordinates (z*, z*):

The definition (4) of the analytic tensor contains the Kahlerian metric

in appearence, but (5) is independent to the metric. Hence it is natural to

ask if the notion of the analytic tensor is defined in a complex manifold

with respect to real coordinates.

In this point of view, we shall attempt to eliminate the ChristoffeΓs

symbols in (4) by making use of (3).

If we write down (4) explicitly, we hvae

(6) = < [aA V +Σ

U)
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where we have put dr = d/dxr.
On the other hand, on taking account of (3), we have

If we substitute these equations into (β) and take account of the purity of
f(oω, then we find

Σ ^ ? ' • r - Λ = o,

where f(/)

(j) is defined by

ί 8 ) |(i)<» = φtl

r ξip ,,/« = φ* ξω

}« K

3. As we have known in the preceding section, the equation (7) which
defines the analytic tensor in a Kahlerian space does not contain the Kah-
lerian metric. Following to this fact, we shall introduce an operator in a
space which admits a tensor field of typs (l, 1). The operator will produce
from a pure tensor of type (q, p) a new tensor of type (q, p + 1 ) .

Let ψι be a tensor of type (1, 1) and |(o ( i ) a pure tensor of type (#,/>).
Now we define an operator Φ by

V"

*
where f(/)(/) is given by (8).

In the rest of the present section, we shall show that Φ ^ , / 0 is a tensor,
if ξV)

U) is pure.
Let T)ι be an affine connection, Sjt

h its torsion tensor, i.e. Sj/1 = (1/2)
(Tβ — Γ?;) and by v& w e shall denote the operator of covariant derivative with
respect to Γ%. Hence if v is a vector field, then its covariant derivative is
given by ykv = 3*. v + IYr v".

If we represent (9) by terms of covariant derivatives, Φ, | ( 0

( i ) is the sum
of the following five terms a19 , aδ:
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«i = φtzΛ,»Q) = φi [vtf(«)ϋ) - 2IV* fw

«2 = - 3tld)(Λ = - V« ?(0(Λ + SΓ^IioV '

*. = - Or ψh ξω'"-r-h = 2 [- Vr ψΐ* + Γ ίf φl - Γ n ?»/*] £<„,'«•• r ; Λ.

If we denote the λ-th term of ώ̂  by a^, the following relations hold.

Thus we find that

fc = l

Q

which shows that Φt | ( ί )

( / ) is a tensor.

4. In this section, we shall represent (9) in different forms. Using the
notation in § 3, we have

(12) α4 = q 3, fcl)°> - Σ ̂ ,> 3£ f(l/«."-- Λ

Now if we put

then, substituting (11) into (9), we find that

(13) Φ ; V
Λ = Ψl 3<rfci)>(Λ- 3« ?(«»ϋ)

Hence if f(ί) is a pure tensor of type (0,/>), it holds that
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In the next place, if we substitute (12) into (13), then we get

ΦLξυ)

(j) = ^, r 3< rf ( 0>
( J ) - 3<ίl(/)>ω -*- "'Z-t-W

* *
^ 3i f(i)

Hence if f( ° is a pure tensor of type (#,0), then we have

(f , .
from which, in the case when q = 1, we find

Φz I' = ~(f 9, ̂ / - <PΪ dr? + ̂  3£ n=-f ψl\

where £ denotes the operator of Lie derivative with respect to ζ\

If ξt

J is a pure tensor of type (1, 1), then we have from (9)

φ« *.' = Ψ: 3Γ f/ - φr' a, ftr + V a« 9»,r - f,r a, *Λ
1,2

which is nothing but ^Z ϋ j m Nijenhuis' paper [ 3 ].

In particular, we have Φz δ/ =• 0.

5. Let ξm

ω = ζtP'..iι
J) and ηia)

m = η,a)ίbq''"bl be pure tensors of type

(q,p + 1) and type (q + l,p) respectively. Then we shall verify the following
formula:

(14) Φ, (ft(()

ϋ)W(W) = (Φ« UΦ) WC4> + Uω Φ« W(δ),

if /> + />' =f= 0 or ^ + ̂ ' 4= 0.
In fact, the left hand side is the sum of the following six terms bΛ,

Λ

. r a, ?>Λ

V r -,'
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b* = S O , <p* ~ 3r φl"*)ϊmU) %;«'••"•••",

from which we can easily obtain (14).
If a pure tensor (or a vecter) I satisfies Φt ξ = 0, then we shall say that

it is a Φ-tensor (or Φ-vector). If the tensor φt

j is a complex structure, then
a Φ-tensor is an analytic tensor. If φt

j is a product structure i.e. an almost-
product structure such that its Nijenhuis' tensor vanishes, then a Φ-tensor is
decomposable.

From (14) we have

THEOREM 1. If ξm

ϋ) and η{a)
Φ) are Φ-tensors9 then so is ξm

υ) W ( δ )

provided that it is not a scalar.

6. Let us consider two Riemannian metrics gjt and φ^ which are not
necessarily positive definite. Putting <pt

j = φir grJ we shall introduce the
operator Φ which is associated to ψi.

Since it holds that griφj — φH = φi5 = gjr<Pi> we know that gH is pure.

Taking account of gjt = φH, we obtain

Φf&i = <Pιrdr 9'» - dι9ji + (dj<Pir)9n + OtφΠgjr = ~ 2 φιt [[}i10 - I/,}φl

where \ji}g and \jt\φ are the ChristoffeΓs symbols formed by gμ and φH

respectively. Thus we have

THEOREM 2. Let gJt and φόi be two Riemannian metrics. Then a
necessary and sufficient condition in order that the ChristoffeVs symbols
coincide with each other is that Φβμ = 0, where Φ is the operator associ-
ated to φS = <pirg

rj.

In the rest of the present section, wτe shall assume that gjt is a Φ-tensor,
and denote by Vi Λ e operator of the Riemannian covariant derivative with
respect to gH. From Theorem 2, we know that Φtfμ = 0 is equivalent to

Vkψji = 0.

Let Rk3i

h and Skji

h be the Riemannian curvature tensors formed by gH

and <p3i respectively, then we have Rkji

h = Skji

h by means of the assumption.
Applying the Ricci's identity to φ. \ we get RkJr

h φ? = Rkji

r φj\ which
shows that Rkji

/ι is pure with respect to i and h. Hence Rkjih — Rkji

r grh is
pure with respect to k and j and also pure with respect to i and h.

On the other hand, Skji

h being the Riemannian curvature tensor formed
by φH, if we put Tkjih = Skji

r <prh, then we have

(15) Tkjih = Tihkj.

Since it holds that Tkjίh = Rkjir<Ph and Tίhkj = Rkrih φ/', the equation (15)
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becomes Rkjir φh

r = Rkrihφ[, which shows that Rkjih is pure with respect to j
and h. Therefore Rkjih is pure.

Since we have

= — ψΐ (V* ^HΛ + Vj ^r*ίΛ) — 9°/Vi f̂cjfr

= ~ <Ph (V* ^iltr + Vi ^ίKr + Vί Rkjir) = 0,

Vi ^jίΛ is a ls° pure.

LEMMA 7. Let us assume that Φtg}i = 0. If a tensor, say T, and its
covariant derivative are pure, then we have

PROOF. Let T be a tensor of type (l, 1), for example. Then we have

VtΦ,7V - Φ,V(7V = ψ[(s/tVr -VrVt) Tt* - (v,v,
On the other hand, it holds that

(VtVi - ViVt)Ti5 = RJ Tΐ ~ Ruΐ Tr

j

= Rtlr

}

Ψ: Tt' - RtH

rφr

s 7 7

= Rtrs

5Ψι Tt

s - Rtri

s

Ψι

r TJ

From these equations, we find that the lemma is true. q. e. d.

If we apply Lemma 7 to our Rkji

h

9 then we have Φt v* Rkjth = 0, which
shows that ViVt Rwh is pure. Thus we get

THEOREM 3. Let gόi and φ5i be two Riemannian metrics and Φ be
the operator associated to ψι = <pir9

rj> If ΦiQji = 0 is valid, then Rkjih and
its successive covariant derivatives are pure.

Let cpi5 be an almost-product structure, then there exists a Riemannian
metric gH such that grsφ[ψiS = gjim Then we know that the tensor φH = φj
gri is also a Riemannian metric. Thus theorems in this section are applicable
to this case.

7. In this section we shall assume that φ φr

J = £δ/.
If we put ΦLφiJ = NH

j, then it holds that

Nu

j = φΐcϊrφj + faφΠφr' + Otφr

3 ~ dr<pL

J) <pϊ
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which is nothing but the Nijenhuis' tensor [ 1 ], [ 3 ] , [ 4 ] , [10], [11], [12].
It satisfies the equations

NH

j = - Nu3, Nιr

j

φ: - - Nu

rφr

J.

The last equation shows that Nιt

J is hybrid with respect to i and j , hence
taking account of the skew-symmetricity of Nti\ it is pure with respect to i
and /. Thus we get

ΛΓirVi' = JVrlVΛ Nlr

r = 0, N^φ? = 0,

by virtue of Lemma 4 and Lemma 5.
Now we introduce an aίfine connection TjΊ such that

ij = 0, Sji

h=~(ε/8)N,ι\

where v* denotes the operator of the covariant derivative with respect to Γj,
and Sji1 its torsion tensor.

It is known that there exists such a connection, which will be called the
canonical connection [12].

If we make use of the canonical connection, the equation (10) becomes

*
Z..0)

Making use of the form (16), we shall obtain some formulas on the
operator Φ.

The tensor ψi being pure, if we substitute it in the place of ζ or η in
(14), then we get the following formulas.

We can see also that

Λ - r - h + i V Λ )V •"•••*, if ςr > 1,

9 / v r . . ι I

υ ) + Nttk

rξ,,...r...1t
(Λ, iίp^l,

are valid.
In the next place, we shall prove the following formula:

(17) Φ, | ( i )<" = - W<ϊvWΛ + Σ Mr*f(*Λ-p-Λ.
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In fact, we have

*

SCO

= ~ ^ Φr fw(Λ + 2 ΛΓIr* f «>'* ' •- ' Λ q. e. d.

Especially, for a pure tensor | ( ί ) of type (0,/>), we have

(18) Φ t ί (θ=-9>i r Φrf<o,

from which it holds, taking account of (14),

(19) NJ fr(<) + φΐ Φ, fr(ί) = - φϊ Φr f*(*).

From (18) we have

THEOREM 4. Let φt

j satisfies φt

r φr

3 =±= £δ t

J. If f(/) w a Φ-tensor, then

so is ξ(ί).

In this case, we know by virtue of (19) that the relation

Njξίp...r...h = 0

holds good.

Next we shall generalize the fact that Φiψi3 = Nti

j is hybrid with respect
to / and j .

THEOREM 5. Let φj satisfies φt

rφr

j = S Sij. If ξw

j is a pure tensor of

type (1, p\ then Φz lα/ is hybrid with respect to I and j .

In fact, we have by virtue of (17)

On the other hand, taking account of (14), ws find that

From these equations we obtain the theorem. q. e. d.

If we define Aιkji

h = Nιk

aNjibNab\ then it is evidently a pure tensor of
type (1,4), hence ΦtAmi

h is a tensor which is hybrid with respect to t and
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h. It depends only on φt

j and contains its second derivatives. From Lemma
4, we have Φ r Aιkji

r = 0, which may be a new identity on <pt

j.
We denote by C the contraction's operator, i. e., if C means the contra-

ction with respect to i1 and j l 9 for example, then Cζ^ί)

ϋ)= ξip...hr

j(i'"3-r

m If ξ{i)

U)

is a pure tensor of type (q,p), then the tensor Cξ(i)

U)is also pure if it is not
a scalar. Making use of (16), we can verify the following relation, after some
calculations.

(20)

In (20), we assumed that Cξ{i)

a) is not a scalar and C operates on the same
indices of both sides.

From (20) we have

THEOREM 6. Let φj satisfies φϊφj = £ δij. If ξ{i)

U)is a Φ-ίensor, then
so is Cξ{i)

υ) provided that it is not a scalar.

Let | ( ί )

α ) and ηa)

(i) be pure tensors of type (q9 p) and type (p, q) respect-
ively. Then we have

W " Φ« f (,>(Λ = vJl) ΨΪ Vr U5) ~ Voϊ* V, La\

because we have from Lemma 4 and the hybridity of Nuj,

In the same manner, we get

f (0(Λ Φl Vin

W = UΛ ψΐ Vr W ° ~ f CO0' V, LW

Hence we obtain

8. Let us consider an almost-Hermitian space M whose positive definite
Riemannian metric is gH and the almost-complex structure is ψι . By defini-
tion these tensors satisfy grs φ[ψi = g^, from which φ5i = φf gri is skew-
symmetric. Now we assume that Vr ψι = 0, where Vr denotes the operator
of the Riemannian covariant derivative. The following lemma is known [ 7 ],
[8].

LEMMA 8. Let M be a compact almost-Hermitian space satisfying
Vr ΨΪ = 0. If scalar functions f and g satisfy dtf= φl drg, then they are
both constant over M.

From this lemma and (21) we have



ANALYTIC TENSOR AND ITS GENERALIZATION 219

THEOREM 7. Let M be a compact almost"Hermitian space satisfying

V*<Pir = 0. If ξw

U)and ηa)

{l) are Φ-tensors of type (q,p) and of type (p, q)

respectively, then the inner product ξ^U) Vuΐ0 is constant.

COROLLARY. Let M be a compact almost-Hermitian space satisfying

Vrψi = 0. IfξV)
U) is a Φ-tensor of type (q,p) and v% {a = 1, ,/>), u% {a = 1,

Λ

,q) are Φ-vectors, then the inner product | ( O

α ) vip vhujq uh is
P 1

constant.

9. Let us consider a Kahlerian space M with a positive definite metric.

We shall make use of the notation in § 2.

An analytic tensor f(<)(Λ is by definition a pure tensor such that y£ ξ{l)

a)

is also pure.

Now we define, for a pure tensor ζ(i)U\

«̂ (0(</) ( ί ) = 0 is equivalent to that the pure tensor £ ( o

α ) is analytic.

On taking account of that the Riemannian curvature tensor Rkji

k and Ricci

tensor R5i of a Kahlerian space satisfy

we can easily obtain

vp%»(" = vVrfo0' + 2**.£(.Λ"r-Λ - 2 i ? Λ - ,...,Λ
where \7r = PrίVί Hence if f(ί)

<Λ is analytic, then it satisfies

V rV,l.ωω + 2iV*£coV••'•••A - Σ Λ Λ ^ = 0.

Putting £ ( % = jfVi. ghhg.iφq Λi»if(o(ft) e ^ we have, after some calcul-

ations,

where

(22)

Thus, by Green's theorem, we have

THEOREM 8.5) 7w a compact Kahlerian space M, the integral formula

5) For a skew-symmetric contravariant pure tensor, see [6].
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r _ t U) t V 1 D Jkt JQ' .r. .h _ \^ ft r t (J)\ t() M

Vrb(i) -Γ ^ A f 9(0 Z^^ik bip r /i JC (i;I

ίί valid for a pure tensor | (o 0 ) , where d<r is the volume element of M
and a2 (ξ) is given by (22).

THEOREM 9. In a compact Kάhlerian space, a necessary and sufficient
condition for a pure tensor ζ^)U) to be analytic is that it satisfies

Σ
On the other hand, in a compact orientable Riemannian space, a nece-

ssary and sufficient condition for a skew-symmetic tensor !(,-) to be harmonic
is that [13]

Let ζ(i) be a skew-symmetric pure tensor, then

Rjcj ζtp "r "S' 'h :=z 0,

by vritue of Lemma 5 and the hybridity of Rkj

rs with respect to r and s.
Thus we have

COROLLARY [13]. In a compact Kάhlerian space, a necessary and sufficient
condition for a skew-symmetric pure tensor to be analytic is that it is har-
monic.

*
If ξ(<) is skew-symmetric pure tensor, then so is | ( 0 by virtue of Lemma

2. Hence taking account of Theorem 4, in a compact Kahlerian space, if a

pure tensor | ( ί ) is harmonic, then so is f(0.
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