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1. Introduction. Let f(t) be a function integrable L over the interval
(O,2 7r) and periodic with period 2τr. Let its Fourier series be

~cΓ ao + Σ (an cos nt 4- &w sin nt) = ]Γ] ̂ (O (l l)

And let φx(f) denote

then
CO

ψxit) ~ Σ cn(x) cos wί. (1. 2)
n = 0

If we denote by Sn(f) the wth (C, α) mean a > — 1, of the sequence

Following T. M. Flett [5], the Fourier series ( l . l ) is called summable \C9 a\k

at the point t = x, where a > — 1 and k > 1, if the series
oo

ΣtΓ1\φ:)-&-χx)\* (1.3)

is convergent.
About this summability, T. Tsuchikura and the author [ 9 ] essentially

obtained the following theorem.

THEOREM A. If 1 < /> <; 2, f(t) is integrable Lp throughout the interval
(0, 2τr) and for k > 1

Λ̂  Fourier series (l. l) z*5 summable \C9 cέ\k at the point t = x, where
a > sup ( l/A I/A').
If the condition
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= jΓ IφJίμ)\'du = O |ί/(log ~γ)Plk+*\ , S > 0, (l. 5)

is satisfied, then the condition (l. 4) holds.10 But the condition f(t) € Z/(0, 2τr)
is indispensable.

On the orther hand, if f(i) € 2/(0, 2τr), 1 < ^ 2 and 1 < k ^ 2, we
have the following properties:

( i) For P^k and a = l//> + 8, S > 0, ίz

\ § n l«"'tf-^l*.

where £ '= kpS/(j> — k) and A is a absolute constant.

( i i) For ρ<Lk, ρ<,k' and a > \/p

Σ
n-l

by H. L. Pitt [10].

(iii) For ^<; jfe, ρ>k' and a > l/k\

Σι^wι^Σiωr

α2- */* '

fc/p

Hence, it seems reasonable to conjecture that, if the condition (l. 5) and

Σ
1

(1.6)

are satisfied, the result of theorem A h^lds.
In this note we prove this conjecture.

2. We first prove the following theorem which is an analogue of a the-
orem of Bosanque-Offord [l] and of H. C. Chow [4].

THEOREM 1. If (1.6) and

1) For the case jfe = l, see T. Tsuchikura [11].
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Φ,(ί) = f WJiu) -s\du = O jf/(log -i-Jj , (2. 1)

> l/&, necessary and sufficient condition-where k > 1, l/k'^L a < 1
that

n

should holds is that

^ 1 t\ sm(n9a- 1; t) ^ k

<

(2.2)

(2.3)

where S is any positive number less than ir and

(n, a;t)={n + -±-(a+

LEMMA 1. Let Gt{i) denote the (C,ct) mean of the sequence

n

TΓ"1 -f 27Γ*1 2^ cos vt where -̂  1 < cc < 0,

'., for 0 < t < 7r, we have

jfS(ί) = 2 sin («, α; ί)/τr.4S ̂ 2 sin - M + ,

=O(»-

(2.4)

(2.5)

(2.6)

(2.7)

where the O holds uniformly in 0 < £ < TΓ.

This is due to J. J. Gergen.

PROOF OF THEOREM I. We may suppose without loss of generality that

^o(^) = 0 and 5 = 0

-\χ)= f' <P»(t)G«n-\t) dt = f' φx(t)gt\t)dt + Γ φx(t)K-\t)dt
Jo JQ JO

(2.8)
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say. Then

Γ ^ = I'£n) -Γφx{t)^~K
Jo at

It is easy to see that

tin) = CKn'1).

Using (2.1) and (2. 4) (2. 7), we get

J-Λin

Mlogi)
θ )

Thus we have, since /> > l/k,

Hence, by (2. 8) and (2. 9), (2. 2) holds if and only if

έ^Mϋ. < 0 0 . (2.10)

Let

^ 7

(2 sin I
Then

-^ A«n-%{n) = f * ̂ ( ί ) s i n ( « , g - l ; 0 Λ + Γ ψχ{t)k{t) s i n (M> a _ 1 ;

= ^(w) 4- J2(n), say.

It was proved by Bosanque and Offord [l] that

/ r £ ^ Γ + o(k.WI), (2.1D
(n — v)2'
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where Σ denotes summation over 1 <: v <^ n — 1, n -{- 1 ̂  v < oo

We write

(») = 2- / _ y

Then, by Minkowski's inequality, we get

Since (» + v)-<—^"^ ^ ^-t*-1/*')* f o r α ^ 2 / ^ t h e right-hand expression oί

(2.12) is not greater than

( 2.i 3>

Moreover, by Minkowski's inequality,

— \n K2{n)\ - Σ,~-\n 2^ / \

1 Cn+V(x) 1

-
( 2 1 4 )

Since a < 1, we have (n — v)-{oύ^l)Ίc < n~
{*~1)1c and n/(n - v) < 2 for w ̂

Hence, it follows that the right side of (2.14) is not greater than

Ά\

and

Στr(Σ^Sr) ^Σjl^) ! 1 , (2.15>
v=i v xw=l n ' ' n=\ n
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= £^r Σ faJgSL.) s ψ ^ Σ l aWI )

v=2 ^ x n = v + l w

• ^ 1
Since 2^ .-.ti y < °°

Accordingly, by (2.11), (2.13), (2.15) and (2.16), we have

Next, we consider JiCfl).

Let 0 < S < 7r and

(2.17)

xω- Γ" ^ ^ ^ ^
Then

^i(»)= f89>χ(Oil - 4 - ) S ί n ( n > a "^ U ) dt + f Ψ
Jo \ o / t Jo

= Lx(n) + Z,(n), (2.18)

say. It was also proved by Bosanquet and Offord in [l] that

Lin) = O f Σ ' J ^ L } + O(\cn(x)\),

where 2^ has the same meaning as before.

If we write, as before,

L2(n) = MM + M,(») + M3(n) + O( !<?„(*) I),

we get, by the same process as used in establishing (2.13) and (2.15),

Σ — I tΐ-*Mt(n) I * ̂  A Σ — I tt-Ux) I *, (ί = 1, 2). (2.19)
» «n-l

Also
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/. \ri!'~*Mf(jί)\ — Σ (nι~* 22 ? ~Z_ ψ^cύ)

1 / °° I (x)\ \fc

(by Holder's inequality, where l/k 4- l/^' = l)

888 έ ί 1 + c α - υ f c + f c %ir( y i + i '*—έί

+ Cαt- l

\r(Ά\Ίc °° Λ

^ A Σ — | vλ-*cJίx) Ifc. (2.20>

Thus, by (2. 19) and (2. 20),

Σ—k-£.0*)l*<~.

Therefore, by (2.17) and (2.18), (2.10) holds if and only if

Σ —ι»ι-A(»)r<~.

The theorem is thus proved.

3. THEOREM 2. Let 1 < pS 2, iδ > 1, l/* 4- l/*' = 1 and 1 > a > sup-

Λ5 t -> 4- 0, ze Λer^ p > />/)έ, ίΛew ίAe Fourier series ( l . l ) z's summable | C5Λ |

at the point t = x.
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PROOF. By T. M. Flett [6, Theorem 5], it is sufficient to prove that

^ 1
£-\x)\p < <*>•

n - l

Since, by Holder's inequality,

Φ£\t) = I \φx(u)\du =

(3,1) holds if and only if

tf J-
w h e r e 0 < δ < 7r.

< Λ

L-lJJ-dt

sin(τz, QL — l t)

<

(3.1)

(3.2)

(3.3)

dt

/ :

say. By the integration by part and (3. 2), we have

αl12" + α fβ" φ*l dt =

Hence we get

pfc/p (3.4)

Next we consider JV2. Let

9>.(tXl-t/8)

0 (0 ̂  ί < δ/2", δ ̂  t S w).

We have now to distinguish three cases.

Case I. k > />, β' ̂  />,

Case II. k^>p, k' <? p,
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Case III. k < p.

Case I. By Holder's inequality, we have
,2"-+-!-!

sin(j, a— l t)
p\ Jcjp'

- Λ

9n(«-i/i0*

) (
J f ( t )sin0,α-l ; t)A'VP\ KIP'

(by the theorem of Hausdorff-Young)

1 i

2n + apj ^ - dt

ί / Jδ/2«

TclP

(3.5)

(since Λ̂ > > 1 and p > ρ/k).
Case II. In this case, 1 < k ^ 2. Hence by Hausdorff-Young's inequality,

we get

/
sinQ',Qg - l Q

^

i ί

+ Jδ/2?1 Γ
(3.6)

Since, in this case, ct > 1/k' and

{3.6) is not greater than
CO

4 Y^ ± o n ( « - H f c
4 J ^ (3.7)
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Case III. Since p < k\ the estimation is quite similar to that of case 1.
This shows together with (3. 5) and (3. 7) that the theorem is completed.

THEOREM 3. / / 1 < p<, K (1. 5) and (1. 6) and

M)rdt<00> (3.8)

then the Fourier series (1.2) is summable \C,cc\k at the point I = x, where
a = sup(l/A I/A'), (cf. H.C.Chow [2].)

LEMMA 1. (T.M.Flett [5, Lemma 14]). Let r^ k> 1, μ = cέ + sup(l//>,

B»= Γτάt)Γ*enitdt (n=l,2, ).

Then

PROOF OF THEOREM 3. We write

%.ω(i - - f ) s i n f a V 1 ; 0 ^ = fδ/κ + Γ = ΛW
say, where a = sup (1/$, 1/k').

Then, it is easy to see that

Hence, we obtain

Σ|l»- Λ«rSA|s^<». (3.9)

Using Lemma 1, we have

Then, by (3.8), (3. 9) and Theorem 1, we get the required result.

4. In this section we consider the theorems of the summability factor of
IC, CL I k at a point.

THEOREM 4. If k> 1, \/U <; tf < 1,
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f \φx(u) - s\ du = O it/(log ^-Y] (4.1)

Jo i \ t ' '

and

1

Σ — I nι~"r (x) I* <T co (A 2)

where p + 7 > l/£, 7 ^ 0 , ίΛew ίA^ necessary and sufficient condition that

should hold is that

f I dt < 00.

For y = 0, the theorem is identical to Theorem 1.
For the case γ > 0, we can prove by the same process as used in establishing
Theorem 1.

THEOREM 5.2) Ifl<ρ^2, a = εup(l/>, l/k'\ (4. 2)3) and

= [ V(«)Γώ« = θ)t/(log -i-Yf, (4.4)

/ 5 summable \C,a\k at the point t = x, where p > sup(p/k,
Γns=L \\og(

κn 4- l

p/p) and 7 = 1/p for p<korp=l—8 for sufficiently small S>0, and
7 > l/k for p^k, respectively.

We need two lemmas.

LEMMA 2. If 0 < β < 1 tfftd {λj w ^ sequence of positive numbers such
that Δ λ n = λn — λn+1 = O(Xn/n) and \n/n is non-increasing, and if the series

^2\n\tί(x)\k/n < 00, then the series Σ λncn(x) is summable \C,β\h where

PROOF. If k = 1 this lemma is due to C. H. Chow [2]. The proof runs
similar to that of Chow but for the sake of completeness we prove here. Let

2) It is obvious that the condition/(ί) € Lp(0, 2τr) implies (4.2).
3) The theorems of summablity |C, a\jc concerned with almost all point t corresponding

to Theorems 1 and 5 are known (Flett [5], [7]).
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t%x), Tn(x) are the (C,ά) means of [ncn(x)\, \ήλncn(x)}, respectively, where

We have to prove the series

nTn = / . ' = z / .

Now, let

*/w is convergent.

v

μ = l V=μ.

= Σ
n-l JV

so that

Writing B^_i = 0,

iV

/ , <A.jsr-vAv An-
v=0

Hence, for N > 1,

= Σ

when N = 0

when iV> 1.

*,,| =Σ Σ^-V

= -ΣΣ/

Thus we get, for N^l,

y^ Aβ~iA~β~iA

= A
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