ON THE ABSOLUTE SUMMABILITY OF FOURIER SERIES (II)

Kôsi Kanno

(Received September 10, 1960)

1. Introduction. Let $f(t)$ be a function integrable L over the interval $(0,2 \pi)$ and periodic with period 2π. Let its Fourier series be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=0}^{\infty} c_{n}(t) . \tag{1.1}
\end{equation*}
$$

And let $\boldsymbol{\varphi}_{x}(t)$ denote

$$
\frac{1}{2}\{f(x+t)+f(x-t)\},
$$

then

$$
\begin{equation*}
\varphi_{x}(t) \sim \sum_{n=0}^{\infty} c_{n}(x) \cos n t . \tag{1.2}
\end{equation*}
$$

If we denote by $s_{n}^{\alpha}(t)$ the nth (C, α) mean $\alpha>-1$, of the sequence

$$
s_{n}(t)=s_{n}^{n}(t)=\sum_{\nu=0}^{n} c_{\nu}(t)
$$

Following T. M. Flett [5], the Fourier series (1.1) is called summable $|C, \boldsymbol{\alpha}|_{k}$ at the point $t=x$, where $\alpha>-1$ and $k \geqq 1$, if the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1}\left|s_{n}^{\alpha}(x)-s_{n}^{\alpha-1}(x)\right|^{k} \tag{1.3}
\end{equation*}
$$

is convergent.
About this summability, T. Tsuchikura and the author [9] essentially obtained the following theorem.

THEOREM A. If $1<p \leqq 2, f(t)$ is integrable L^{p} throughout the interval $(0,2 \pi)$ and for $k \geqq 1$

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\int_{\pi / 2^{n+1}}^{\pi / 2^{n}} \frac{\left|\boldsymbol{\varphi}_{x}(t)\right|^{p}}{t} d t\right)^{k / p}<\infty \tag{1.4}
\end{equation*}
$$

then the Fourier series (1.1) is summable $|C, \alpha|_{k}$ at the point $t=x$, where $\boldsymbol{\alpha}>\sup \left(1 / p, 1 / k^{\prime}\right)$.
If the condition

$$
\begin{equation*}
\Phi_{x}^{(p)}(t)=\int_{0}^{t}\left|\boldsymbol{\varphi}_{x}(u)\right|^{p} d u=O\left\{t /\left(\log \frac{1}{t}\right)^{p / k+\epsilon}\right\}, \varepsilon>0 \tag{1.5}
\end{equation*}
$$

is satisfied, then the condition (1.4) holds. ${ }^{1)}$ But the condition $f(t) \in L^{p}(0,2 \pi)$ is indispensable.

On the orther hand, if $f(t) \in L^{p}(0,2 \pi), 1<p \leqq 2$ and $1<k \leqq 2$, we have the following properties:
(i) For $p \geqq k$ and $\alpha=1 / p+\varepsilon, \varepsilon>0$, since $p \leqq k^{\prime}$,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n^{1+k e}}\left|n^{1-1 / p} c_{n}(x)\right|^{k} \\
& \leqq\left(\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1 / p^{\prime}} c_{n}(x)\right|^{p^{\prime}}\right)^{k / p^{\prime}}\left(\sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon^{\prime}}}\right)^{1-k / p^{\prime}} \leqq A\left(\int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{k / p},
\end{aligned}
$$

where $\varepsilon^{\prime}=k p^{\prime} \varepsilon /\left(p^{\prime}-k\right)$ and A is a absolute constant.
(ii) For $p \leqq k, p \leqq k^{\prime}$ and $\alpha \geqq 1 / p$

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k} \leqq \sum_{n=1}^{\infty} n^{-k(1 / k+1 / p-1)}\left|c_{n}(x)\right|^{k} \leqq A\left(\int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{k / p}
$$

by H. L. Pitt [10].
(iii) For $p \leqq k, p \geqq k^{\prime}$ and $\alpha \geqq 1 / k^{\prime}$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k} & \leqq \sum_{n=1}^{\infty}\left|c_{n}(x)\right|^{k} \\
& \leqq A\left(\int_{0}^{2 \pi}|f(t)|^{k^{\prime}} d t\right)^{k / k^{\prime}} \leqq A\left(\int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{k / p}
\end{aligned}
$$

Hence, it seems reasonable to conjecture that, if the condition (1.5) and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

are satisfied, the result of theorem A holds.
In this note we prove this conjecture.
2. We first prove the following theorem which is an analogue of a theorem of Bosanque-Offord [1] and of H. C. Chow [4].

THEOREM 1. If (1.6) and

1) For the case $k=1$, see T. Tsuchikura [11].

$$
\begin{equation*}
\Phi_{x}(t)=\int_{0}^{t}\left\{\varphi_{x}(u)-s\right\} d u=O\left\{t /\left(\log \frac{1}{t}\right)^{\rho}\right\} \tag{2.1}
\end{equation*}
$$

where $k>1,1 / k^{\prime} \leqq \alpha<1$ and $\rho>1 / k$, necessary and sufficient condition that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|s_{n}^{\alpha-1}(x)-s\right|^{k}<\infty \tag{2.2}
\end{equation*}
$$

should holds is that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} \int_{0}^{\delta}\left\{\varphi_{x}(t)-s\right\}\left(1-\frac{t}{\delta}\right) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{k}<\infty, \tag{2.3}
\end{equation*}
$$

where δ is any positive number less than π and

$$
(n, \alpha ; t)=\left\{n+\frac{1}{2}(\alpha+1)\right\} t-\frac{\alpha}{2} \pi
$$

LEMMA 1. Let $G_{n}^{\alpha}(t)$ denote the (C, α) mean of the sequence

$$
\pi^{-1}+2 \pi^{-1} \sum_{\nu=1}^{n} \cos \nu t \quad \text { where }-1<\alpha<0
$$

then, for $0<t<\pi$, we have

$$
\begin{equation*}
G_{n}^{\alpha}(t)=g_{n}^{\alpha}(t)+h_{n}^{\alpha}(t), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{n}^{\alpha}(t)=2 \sin (n, \alpha ; t) / \pi A_{n}^{\alpha}\left(2 \sin \frac{t}{2}\right)^{\alpha+1} \tag{2.5}\\
& \left|G_{n}^{\alpha}(t)\right|=O(n), \tag{2.6}\\
& \left|\frac{d}{d t} G_{n}^{\alpha}(t)\right|=O\left(n^{2}\right) \tag{2.7}\\
& \left|h_{n}^{\alpha}(t)\right|=O\left(n^{-1} t^{-2}\right),
\end{align*}\left|\frac{d}{d t} h_{n}^{\alpha}(t)\right|=O\left(n^{-1} t^{-3}\right), ~ l
$$

where the O holds uniformly in $0<t<\pi$.
This is due to J. J. Gergen.
Proof of Theorem 1. We may suppose without loss of generality that $c_{0}(x)=0$ and $s=0$

$$
\begin{align*}
s_{n}^{\alpha-1}(x) & =\int_{0}^{\pi} \boldsymbol{\varphi}_{x}(t) G_{n}^{\alpha-1}(t) d t=\int_{0}^{\pi} \boldsymbol{\varphi}_{x}(t) g_{n}^{\alpha-1}(t) d t+\int_{0}^{\pi} \boldsymbol{\varphi}_{x}(t) h_{n}^{\alpha-1}(t) d t \\
& =I_{1}(n)+I_{2}(n) \tag{2.8}
\end{align*}
$$

say. Then

$$
I_{2}(n)=\left[\Phi_{x}(t) h_{n}^{\alpha-1}(t)\right]_{0}^{\pi}-\int_{0}^{\pi} \Phi_{x}(t) \frac{d}{d t} h_{n}^{\alpha-1}(t) d t=I_{2}^{\prime}(n)-I_{2}^{\prime \prime}(n) .
$$

It is easy to see that

$$
I_{2}^{\prime}(n)=O\left(n^{-1}\right)
$$

Using (2.1) and (2.4)-- (2.7), we get

$$
\begin{aligned}
I_{2}^{\prime \prime}(n) & =\int_{0}^{\pi / n} \Phi_{x}(t) \frac{d}{d t} G_{n}^{\alpha-1}(t) d t-\int_{0}^{\pi / n} \Phi_{x}(t) \frac{d}{d t} g_{n}^{\alpha-1}(t) d t+\int_{\pi / n}^{\pi} \Phi_{x}(t) \frac{d}{d t} h_{n}^{\alpha-1}(t) d t \\
& =O\left\{\int_{0}^{\pi / n} \frac{n^{2} t}{\left(\log \frac{1}{t}\right)^{\rho}} d t\right\}+O\left\{\int_{0}^{\pi / n} \frac{t}{\left(\log \frac{1}{t}\right)^{\rho}}\left(n^{-\alpha+1} t^{\alpha-1}+n^{-\alpha+2} t^{-\alpha}\right) d t\right\} \\
& +O\left\{\int_{\pi / n}^{\pi} \frac{t n^{-1} t^{-s}}{\left(\log \frac{1}{t}\right)^{\rho}} d t\right\}=O\left\{1 /(\log n)^{\rho}\right\}
\end{aligned}
$$

Thus we have, since $\rho>1 / k$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|I_{2}(n)\right|^{k}}{n} \leqq A \sum_{n=1}^{\infty} \frac{1}{n^{1+k}}+A \sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\rho_{k}}}<\infty . \tag{2.9}
\end{equation*}
$$

Hence, by (2.8) and (2.9), (2.2) holds if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|I_{1}(n)\right|^{k}}{n}<\infty . \tag{2.10}
\end{equation*}
$$

Let

$$
k(t)=\frac{1}{\left(2 \sin \frac{t}{2}\right)^{\alpha}}-\frac{1}{t^{\alpha}} \quad(0<t \leqq \pi), k(0)=0 .
$$

Then

$$
\begin{aligned}
\frac{\pi}{2} A_{n}^{\alpha-1} I_{1}(n) & =\int_{0}^{\pi} \boldsymbol{\varphi}_{x}(t) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t+\int_{0}^{\pi} \boldsymbol{\varphi}_{x}(t) k(t) \sin (n, \alpha-1 ; t) d t \\
& =J_{1}(n)+J_{2}(n), \text { say. }
\end{aligned}
$$

It was proved by Bosanque and Offord [1] that

$$
\begin{equation*}
J_{2}(n)=O\left\{\sum^{\prime} \frac{\left|c_{v}(x)\right|}{(n-\nu)^{2}}\right\}+O\left(\left|c_{n}(x)\right|\right) \tag{2.11}
\end{equation*}
$$

where \sum^{\prime} denotes summation over $1 \leqq \nu \leqq n-1, n+1 \leqq \nu<\infty$
We write

$$
\begin{aligned}
& K_{1}(n)=\sum_{\nu=1}^{n-1} \frac{\left|c_{\nu}(x)\right|}{(n-\nu)^{2},}, K_{2}(n)=\sum_{\nu=n+1}^{2_{n}} \frac{\left|c_{\nu}(x)\right|}{(\nu-n)^{2}} \text { and } \\
& K_{3}(n)=\sum_{\nu=2 n+1}^{\infty} \frac{\left|c_{\nu}(x)\right|}{(\nu-n)^{2}} .
\end{aligned}
$$

Then, by Minkowski's inequality, we get

$$
\begin{align*}
\sum_{n=2}^{\infty} & \frac{1}{n}\left|n^{1-a} K_{1}(n)\right|^{k}=\sum_{n=2}^{\infty} \frac{1}{n}\left(n^{1-\alpha} \sum_{\nu=1}^{n-1} \frac{\left|c_{n-\nu}(x)\right|}{\nu^{2}}\right)^{k} \\
& \leqq\left\{\left.\sum_{\nu=1}^{\infty}\left(\sum_{n=\nu+1}^{\infty}\left(\frac{1}{n^{\alpha-1+1 / k}} \frac{\left|c_{n-2}(x)\right|}{\nu^{2}}\right)^{k}\right)^{1 / k}\right|^{k}\right. \\
& =\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=1}^{\infty} \frac{\left|c_{n}(x)\right|^{k}}{(n+\nu)^{\left(\alpha-1 / k^{\prime}\right) k}}\right)^{1 / k}\right\}^{k} . \tag{2.12}
\end{align*}
$$

Since $(n+\nu)^{-\left(\alpha-1 / k^{\prime}\right) k} \leqq n^{-\left(\alpha-1 / k^{\prime}\right) k}$ for $\alpha \geqq 1 / k^{\prime}$, the right-hand expression of (2.12) is not greater than

$$
\begin{equation*}
\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=1}^{\infty} \frac{\left|c_{n}(x)\right|^{k}}{n^{1+(\alpha-1) k}}\right)^{1 / k}\right\}^{k} \leqq A \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k} \tag{2.13}
\end{equation*}
$$

Moreover, by Minkowski's inequality,

$$
\begin{align*}
\sum_{n=1}^{\infty} & \frac{1}{n}\left|n^{1-\alpha} K_{2}(n)\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left(n^{1-\alpha} \sum_{\nu=n+1}^{2 n} \frac{\left|c_{\nu}(x)\right|}{(\nu-n)^{2}}\right)^{k} \\
& =\sum_{n=1}^{\infty} \frac{1}{n}\left(n^{1-\alpha} \sum_{\nu=1}^{n} \frac{\left|c_{n+\nu}(x)\right|}{\nu^{2}}\right)^{k} \leqq\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=\nu}^{\infty} \frac{\left|c_{n+\nu}(x)\right|^{k}}{n^{\left(\alpha-1 / k^{\prime}\right) k}}\right)^{1 / k}\right\}^{k} \\
& =\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=2 \nu}^{\infty} \frac{\left|c_{n}(x)\right|^{k}}{(n-\nu)^{\left(\alpha-1 / k^{\prime}\right) k}}\right)^{1 / k}\right\}^{k} \\
& =\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=2 \nu}^{\infty} \frac{\left|c_{n}(x)\right|^{k}}{n(n-\nu)^{(\alpha-1) k}} \frac{n}{n-\nu}\right)^{1 / k}\right\}^{k} \tag{2.14}
\end{align*}
$$

Since $\alpha<1$, we have $(n-\nu)^{-(\alpha-1) k}<n^{-(\alpha-1) b}$ and $n /(n-\nu)<2$ for $n \geqq 2 \nu$. Hence, it follows that the right side of (2.14) is not greater than

$$
\begin{equation*}
A\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=1}^{\infty} \frac{\left|c_{n}(x)\right|^{k}}{n^{1+(\alpha-1) k}}\right)^{1 / k}\right\}^{k} \leqq A \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} K_{3}(n)\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left(n^{1-\alpha} \sum_{\nu=2 n+1}^{\infty} \frac{\left|c_{\nu}(x)\right|}{(\nu-n)^{2}}\right)^{k} \\
& \quad=\sum_{n=1}^{\infty} \frac{1}{n}\left(n^{1-\alpha} \sum_{\nu=n+1}^{\infty} \frac{\left|c_{n+\nu}(x)\right|}{\nu^{2}}\right)^{k} \leqq\left\{\sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=1}^{\nu-1} \frac{\left|c_{n+\nu}(x)\right|^{k}}{n^{(\alpha-1+1 / k) k}}\right)^{1 / k}\right\}^{k} \\
& \quad=\left\{\sum_{\nu=2}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=\nu+1}^{2 \nu-1} \frac{\left|c_{n}(x)\right|^{k}}{(n--\nu)^{(\alpha-1+1 / k) k}}\right)^{1 / k}\right\}^{k} \leqq A\left\{\sum_{\nu=2}^{\infty} \frac{1}{\nu^{2}}\left(\sum_{n=\nu+1}^{2 \nu-1}\left|c_{n}(x)\right|^{k}\right)^{1 / k}\right\}^{k} \\
& \quad \leqq A\left\{\sum_{\nu=2}^{\infty} \frac{\nu^{\alpha-1+1 / k}}{\nu^{2}}\left(\sum_{n=\nu+1}^{2 \nu-1} \frac{\left|c_{n}(x)\right|^{k}}{n^{(\alpha-1+1 / k) k}}\right)^{1 / k}\right\}^{k} \leqq \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k}, \tag{2.16}
\end{align*}
$$

since $\sum_{\nu=2}^{\infty} \frac{1}{\nu^{2-\alpha+1 / k^{\prime}}}<\infty$.
Accordingly, by (2.11), (2.13), (2.15) and (2.16), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} J_{2}(n)\right|^{k}<\infty . \tag{2.17}
\end{equation*}
$$

Next, we consider $J_{1}(n)$.
Let $0<\delta<\pi$ and

$$
\chi(t)= \begin{cases}t^{-\alpha} & (\delta \leqq t \leqq \pi) \\ \delta^{-1} t^{1-\alpha} & (0 \leqq t \leqq \delta)\end{cases}
$$

Then

$$
\begin{align*}
J_{1}(n) & =\int_{0}^{\delta} \varphi_{x}(t)\left(1-\frac{t}{\delta}\right) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t+\int_{0}^{\pi} \varphi_{x}(t) \chi(t) \sin (n, \alpha-1 ; t) d t \\
& =L_{1}(n)+L_{2}(n) \tag{2.18}
\end{align*}
$$

say. It was also proved by Bosanquet and Offord in [1] that

$$
L_{2}(n)=O\left\{\sum^{\prime} \frac{\left|c_{\nu}(x)\right|}{(n-\nu)^{2-\alpha}}\right\}+O\left(\left|c_{n}(x)\right|\right)
$$

where \sum^{\prime} has the same meaning as before.
If we write, as before,

$$
L_{2}(n)=M_{1}(n)+M_{2}(n)+M_{3}(n)+O\left(\left|c_{n}(x)\right|\right)
$$

we get, by the same process as used in establishing (2.13) and (2.15),

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} M_{i}(n)\right|^{k} \leqq A \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k},(i=1,2) . \tag{2.19}
\end{equation*}
$$

Also

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} M_{3}(n)\right|=\sum_{n=1}^{\infty} \frac{1}{n}\left(n^{1-\alpha} \sum_{\nu=2 n+1}^{\infty} \frac{\left|c_{\nu}(x)\right|}{(\nu-n)^{2-\alpha}}\right)^{k} \\
& \quad=\sum_{n=1}^{\infty} \frac{1}{n^{1+(\alpha-1) k}}\left(\sum_{\nu=2 n+1}^{\infty} \frac{\left|c_{\nu}(x)\right|}{(\nu-n)^{1 / k^{\prime}+e+1+1 / k-\alpha-\epsilon}}\right)^{k},(0<\varepsilon<1-\alpha), \\
& \quad \leqq \sum_{n=1}^{\infty} \frac{1}{n^{1+(\alpha-1) k}}\left(\sum_{\nu=2 n+1}^{\infty} \frac{\left|c_{\nu}(x)\right|^{k}}{(\nu-n)^{(1+1 / k-\alpha-\epsilon) k}}\right)\left(\sum_{\nu=2 n+1}^{\infty} \frac{1}{(\nu-n)^{1+k^{\prime} \epsilon}}\right)^{k / k^{\prime}}
\end{aligned}
$$

(by Hölder's inequality, where $1 / k+1 / k^{\prime}=1$)

$$
\begin{align*}
& \leqq A \sum_{n=1}^{\infty} \frac{1}{1} \frac{1}{n^{1+(\alpha-1) k+k e c}} \sum_{\nu=2 n+1}^{\infty} \frac{\left|c_{v}(x)\right|^{k}}{(\nu-n)^{(1+1 / k-\alpha-e) k}} \\
& \leqq A \sum_{\nu=3}^{\infty}\left|c_{\nu}(x)\right|^{k c} \sum_{n=1}^{\left[\frac{1}{2}(\nu-1)\right]} \frac{1}{n^{1+(\alpha-1+e) k}(\nu-n)^{(\alpha+1 / k-\alpha-e) k}} \\
& \leqq A \sum_{\nu=3}^{\infty} \frac{\left|c_{1}(x)\right|^{k}}{\nu^{(1+1 / k-\alpha-e) k}}\left[\frac{1}{2}(\nu-1)\right] \\
& \leqq A \sum_{\nu=3}^{\infty} \frac{\left|c_{v}(x)\right|^{k}}{\nu} \leqq A \sum_{\nu=1}^{1+(\alpha-1+e) k} \frac{1}{\nu}\left|\nu^{1-\alpha} c_{\nu}(x)\right|^{k} . \tag{2.20}
\end{align*}
$$

Thus, by (2.19) and (2.20),

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} L_{2}(n)\right|^{k}<\infty .
$$

Therefore, by (2.17) and (2.18), (2.10) holds if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\infty} L_{1}(n)\right|^{k}<\infty .
$$

The theorem is thus proved.
3. THEOREM 2. Let $1<p \leqq 2, k>1,1 / k+1 / k^{\prime}=1$ and $1>\alpha>\sup$. ($1 / p, 1 / k^{\prime}$). If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} c_{n}(x)\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{x}^{(p)}(t)=\int_{0}^{t}\left|\boldsymbol{\varphi}_{x}(t)\right|^{p} d u=O\left\{t /\left(\log \frac{1}{t}\right)^{p}\right\} \tag{1.5}
\end{equation*}
$$

as $t \rightarrow+0$, where $\rho>p / k$, then the Fourier series (1.1) is summable $|C, \alpha|_{k}$ at the point $t=x$.

Proof. By T. M. Flett [6, Theorem 5], it is sufficient to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|s_{n}^{\alpha-1}(x)\right|^{p}<\infty . \tag{3.1}
\end{equation*}
$$

Since, by Hölder's inequality,

$$
\begin{equation*}
\Phi_{x}^{(1)}(t)=\int_{1}^{t}\left|\boldsymbol{\varphi}_{x}(u)\right| d u=O\left\{t /\left(\log \frac{1}{t}\right)^{\rho / p}\right\} \tag{3.2}
\end{equation*}
$$

$(3,1)$ holds if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} \int^{\delta} \boldsymbol{\varphi}_{x}(t)\left(1-\frac{t}{\delta}\right) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{k}<\infty, \tag{3.3}
\end{equation*}
$$

where $0<\delta<\pi$.

$$
\begin{aligned}
\sum_{n=1}^{\infty} & \frac{1}{n}\left|n^{1-\alpha} \int_{0}^{\delta} \varphi_{x}(t)\left(1-\frac{t}{\delta}\right) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{6} \\
& \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1+1 / k) k}} \sum_{j=2^{n}}^{2^{n+1}-1}\left|\int_{0}^{\delta} \varphi_{x}(t)\left(1-\frac{t}{\delta}\right) \frac{\sin (j, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{k} \\
& \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1+1 / k) k}} \sum_{j=2^{n}}^{2^{n+1-1}}\left|\int_{1}^{\delta / 2^{n}}\right|^{k}+A \sum_{n=0}^{\infty} \frac{1}{2^{n}(\alpha-1+1 / k) k} \sum_{j=2^{n}}^{2 n+1-1}\left|\int_{\delta / 2^{n}}^{\delta}\right|^{k} \\
& =N_{1}+N_{2},
\end{aligned}
$$

say. By the integration by part and (3.2), we have

$$
\begin{aligned}
& \left|\int_{0}^{\delta / 2^{n}} \boldsymbol{\varphi}_{x}(t)\left(1-\frac{t}{\delta}\right) \frac{\sin (j, \alpha-1 ; t)}{t^{\alpha}} d t\right| \leqq \int_{0}^{\delta / 2^{n^{n}}} \frac{\left|\boldsymbol{\varphi}_{x}(t)\right|}{t^{\alpha}} d t \\
& \quad=\left[\Phi_{x}^{(1)}(t) t^{-\alpha}\right]_{0}^{\delta / 2^{n}}+\alpha \int_{1}^{\delta / 2^{n}} \frac{\Phi_{x}^{(1)}(t)}{t^{1+\alpha}} d t=O\left(2^{n(\alpha-1)} n^{-\rho / p}\right)
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
N_{\mathbf{1}} \leqq A \sum_{n=1}^{\infty} \frac{2^{n+n k(\alpha-1)}}{2^{n(\alpha-1+1 / k) k}} n^{\rho^{p / / p}}=A \sum_{n=1}^{\infty} \frac{1}{n^{p k / p}}<\infty . \tag{3.4}
\end{equation*}
$$

Next we consider N_{2}. Let

$$
F(t)=\left\{\begin{array}{cl}
\boldsymbol{\varphi}_{x}(t)(1-t / \delta) & \left(\delta / 2^{n} \leqq t \leqq \delta\right) \\
0 & \left(0 \leqq t<\delta / 2^{n}, \delta \leqq t \leqq \pi\right)
\end{array}\right.
$$

We have now to distinguish three cases.
Case I. $k \geqq p, k^{\prime} \geqq p$,
Case II. $k \geqq p, k^{\prime} \leqq p$,

Case III. $k<p$.
Case I. By Hölder's inequality, we have

$$
\begin{aligned}
N_{2} & \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1+1 / k) k}}\left(\sum_{j=2^{n}}^{2 n+1-1}\left|\int_{0}^{\pi} F(t) \frac{\sin (j, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{p^{\prime}}\right)^{k / p^{\prime}}\left(\sum_{j=2^{n}}^{2 n^{n+1-1}} 1\right)^{1-k / p^{\prime}} \\
& =A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1 / p) k}}\left(\sum_{j=2^{n}}^{2^{n+1-1}}\left|\int_{0}^{\pi} F(t) \frac{\sin (j, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{p^{\prime}}\right)^{k / p^{\prime}} \\
& \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1 / p) k}}\left(\int_{\delta / 2^{n}}^{\delta} \frac{\left|\boldsymbol{\varphi}_{x}(t)\right|^{p}}{t^{\alpha}} d t\right)^{k / p}
\end{aligned}
$$

(by the theorem of Hausdorff-Young)

$$
\begin{align*}
& \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1 / p) k}}\left\{\left[\Phi_{x}^{(p)}(t) t^{-\alpha p}\right]_{\delta / 2^{n}}^{\delta}+\alpha p \int_{\delta / 2^{n}}^{\delta} \frac{\Phi_{x}^{(p)}(t)}{t^{\alpha p+1}} d t\right\}^{k / p} \\
& \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1 / p) k}}\left\{\left[t^{1-\alpha_{p}} /\left(\log \frac{1}{t}\right)\right]_{\delta / 2^{n}}^{\delta}+\alpha p \int_{\delta / 2^{n}}^{\delta} \frac{d t}{t^{\alpha p}\left(\log \frac{1}{t}\right)^{\rho}}\right\}^{k / p} \\
& \leqq A \sum_{n=1}^{\infty} \frac{1}{2^{n(\alpha-1 / p) k}} 2^{n(\alpha-1 / p) k} n^{-\rho k / p}<\infty \tag{3.5}
\end{align*}
$$

(since $\alpha p>1$ and $\rho>p / k$).
Case II. In this case, $1<k^{\prime} \leqq 2$. Hence by Hausdorff-Young's inequality, we get

$$
\begin{align*}
N_{2} & \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1+1 / k) k}} \sum_{j=2^{n}}^{2 n+1-1}\left|\int_{0}^{\pi} F(t) \frac{\sin (j, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{k} \\
& \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n\left(\alpha-1 / k^{\prime}\right) k}}\left(\int_{\delta / 2^{n}}^{\delta}\left|\varphi_{x}(t)\right|^{\left[k^{\prime}\right.} \frac{d t}{t^{\alpha k^{\prime}}}\right)^{k / k^{\prime}} \\
& \leqq A \sum_{n=0}^{\infty} \frac{1}{2^{n\left(\alpha-1 / k^{\prime}\right) k}}\left\{\left[\Phi_{x}^{\left(k^{\prime}\right)}(t) t^{-\alpha k^{\prime}}\right]_{\delta / 2^{n}}^{\delta}+\alpha k^{\prime} \int_{\delta / 2^{n}}^{\delta} \frac{\left.\Phi_{x^{\left(k^{\prime}\right)}(t)}^{t^{\alpha k^{\prime}+1}} d t\right\}^{k / k^{\prime}}}{}\right. \tag{3.6}
\end{align*}
$$

Since, in this case, $\alpha>1 / k^{\prime}$ and

$$
\begin{aligned}
\Phi_{x}^{\left(k^{\prime}\right)}(t) & =\int_{0}^{t}\left|\boldsymbol{\varphi}_{x}(u)\right|^{k^{\prime}} d u \leqq\left(\int_{0}^{t}\left|\boldsymbol{\varphi}_{x}(u)\right|^{p} d u\right)^{k^{\prime} / p}\left(\int_{0}^{t} d u\right)^{1-k^{\prime} \mid p} \\
& =O\left\{t /\left(\log \frac{1}{t}\right)^{\rho k^{\prime} / p}\right\}
\end{aligned}
$$

(3.6) is not greater than

$$
\begin{equation*}
A \sum_{n=1}^{\infty} \frac{1}{2^{n\left(\alpha-1 / k^{\prime}\right) k}} 2^{n\left(\alpha-1 / k^{\prime}\right) k}\left(\log 2^{n}\right)^{-\rho k / p} \leqq A \sum_{n=1}^{\infty} \frac{1}{n^{\rho / \beta / p}}<\infty . \tag{3.7}
\end{equation*}
$$

Case III. Since $p<k^{\prime}$, the estimation is quite similar to that of case 1. This shows together with (3.5) and (3.7) that the theorem is completed.

THEOREM 3. If $1<p \leqq k$, (1.5) and (1.6) and

$$
\begin{equation*}
\int^{\delta} \frac{\left|\varphi_{x}(t)\right|^{p}}{t} d t<\infty \tag{3.8}
\end{equation*}
$$

then the Fourier series (1.2) is summable $|C, \alpha|_{k}$ at the point $t=x$, where $\boldsymbol{\alpha}=\sup \left(1 / p, 1 / k^{\prime}\right)$. (cf. H.C. Chow [2].)

Lemma 1. (T. M. Flett [5, Lemma 14]). Let $r \geqq k>1, \mu=\alpha+\sup (1 / p$, $\left.1 / k^{\prime}\right)$, and let

$$
B_{n}=\int_{0}^{\pi} \chi(t) t^{-\mu} e^{n i t} d t(n=1,2, \cdots \cdots)
$$

Then

$$
\left\{\sum_{n=1}^{\infty} n^{r(\alpha-\mu+1)-1}\left|B_{n}\right|^{r}\right\}^{1 / r} \leqq A\left\{\int^{\pi}|\chi(t)|^{k} t^{-1-k a} d t\right\}^{1 / k}
$$

PROOF OF THEOREM 3. We write

$$
\int_{0}^{\delta} \boldsymbol{\varphi}_{x}(t)\left(1-\frac{t}{\delta}\right) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t=\int^{\delta / n}+\int_{\delta / n}^{\delta}=P_{1}(n)+P_{2}(n),
$$

say, where $\alpha=\sup \left(1 / p, 1 / k^{\prime}\right)$.
Then, it is easy to see that

$$
P_{1}(n)=O\left\{n^{\alpha-1}(\log n)^{-\rho / p}\right\}
$$

Hence, we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} P_{1}(n)\right|^{k} \leqq A \sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\rho k / p}}<\infty . \tag{3.9}
\end{equation*}
$$

Using Lemma 1, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{n}\left|n^{1-\alpha} P_{2}(n)\right|^{k}=\sum_{n=1}^{\infty} n^{k(1-\alpha)-1}\left|\int_{\delta / n}^{\delta} \phi(t)\left(1-\frac{t}{\delta}\right) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{k} \\
& \quad \leqq\left(\int_{0}^{\delta} \frac{\left|\varphi_{x}(t)\right|^{p}}{t} d t\right)^{k / p}<\infty, \text { by (3.8). } \tag{3.10}
\end{align*}
$$

Then, by (3.8), (3.9) and Theorem 1, we get the required result.
4. In this section we consider the theorems of the summability factor of $|C, \alpha|_{k}$ at a point.

THEOREM 4. If $k>1,1 / k^{\prime} \leqq \alpha<1$,

$$
\begin{equation*}
\int_{0}\left\{\boldsymbol{\varphi}_{x}(u)-s\right\} d u=O\left\{t /\left(\log \frac{1}{t}\right)^{\rho}\right\} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n\{\log (n+1)\}^{\gamma_{k}}}\left|n^{1-\alpha} c_{n}(x)\right|^{k}<\infty \tag{4.2}
\end{equation*}
$$

where $\rho+\gamma>1 / k, \gamma \geqq 0$, then the necessary and sufficient condition that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n\{\log (n+1)\}^{\gamma k}}\left|s_{n}^{\alpha-1}(x)-s\right|^{k}<\infty \tag{4.3}
\end{equation*}
$$

should hold is that

$$
\sum_{n=1}^{\infty} \frac{1}{n\{\log (n+1)\}^{\gamma k}}\left|n^{1-\alpha} \int_{0}^{\delta}\left(\phi_{x}(t)-s\right)\left(1-\frac{t}{\delta}\right) \frac{\sin (n, \alpha-1 ; t)}{t^{\alpha}} d t\right|^{k}<\infty .
$$

For $\gamma=0$, the theorem is identical to Theorem 1.
For the case $\gamma>0$, we can prove by the same process as used in establishing Theorem 1.

THEOREM 5. ${ }^{2)}$ If $1<p \leqq 2, \alpha=\sup \left(1 / p, 1 / k^{\prime}\right),(4.2)^{3)}$ and

$$
\begin{equation*}
\Phi_{x}^{(p)}(t)=\int_{0}^{t}\left|\varphi_{x}(u)\right|^{p} d u=O\left\{t /\left(\log \frac{1}{t}\right)^{\rho}\right\} \tag{4.4}
\end{equation*}
$$

$\sum_{n=1}^{\infty} \frac{c_{n}(x)}{\{\log (n+1)\}^{\gamma}}$ is summable $|C, \alpha|_{k}$ at the point $t=x$, where $\rho>\sup (p / k$, $\left.p / p^{\prime}\right)$ and $\gamma=1 / p$ for $p<k$ or $\rho=1-\varepsilon$ for sufficiently small $\varepsilon \geqq 0$, and $\gamma>1 / k$ for $p \geqq k$, respectively.

We need two lemmas.
LEMMA 2. If $0<\beta<1$ and $\left\{\lambda_{n}\right\}$ is a sequence of positive numbers such that $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}=O\left(\lambda_{n} / n\right)$ and λ_{n} / n is non-increasing, and if the series $\sum_{n=1}^{\infty} \lambda_{n}^{k}\left|t_{n}^{\beta}(x)\right|^{k} / n<\infty$, then the series $\sum_{n=1}^{\infty} \lambda_{n} c_{n}(x)$ is summable $|C, \beta|_{k}$ where $k \geqq 1$.

Proof. If $k=1$ this lemma is due to C.H. Chow [2]. The proof runs similar to that of Chow but for the sake of completeness we prove here. Let

[^0]$\boldsymbol{t}_{n}^{\alpha}(x), \boldsymbol{\tau}_{n}^{\alpha}(x)$ are the (C, α) means of $\left\{n c_{n}(x)\right\},\left\{n \lambda_{n} c_{n}(x)\right\}$, respectively, where $\alpha>-1$.
We have to prove the series $\sum_{n=1}^{\infty}\left|\tau_{n}^{\beta}(x)\right|^{k} / n$ is convergent.
\[

$$
\begin{aligned}
A_{n}^{\beta} \tau_{n}^{\beta} & =\sum_{\nu=1}^{n} A_{n-\nu}^{\beta-1} \lambda_{\nu} \nu c_{\nu}(x)=\sum_{\nu=1}^{n} A_{n-\nu}^{\beta-1} \lambda_{\nu} \sum_{\mu=1}^{\nu} A_{\nu-\mu}^{-\beta-1} A_{\mu} t_{\mu}^{\beta}(x) \\
& =\sum_{\mu=1}^{n} A_{\mu}^{\beta} t_{\mu}^{\beta} \sum_{\nu=\mu}^{n} A_{n-\nu}^{\beta-1} A_{\nu-\mu}^{-\beta-1} \lambda_{\nu} \\
& =\sum_{\mu=1}^{n} A_{\mu}^{\beta} t_{\mu}^{\beta} \sum_{\nu=0}^{N} A_{N-\nu}^{\beta-1} A_{\nu}^{-\beta-1} \lambda_{n-N+\nu} \quad(N \equiv n-\mu) \\
& =A_{n}^{\beta} t_{n}^{\beta} \lambda_{n}+\sum_{\mu=1}^{n-1} A_{\mu}^{\beta} t_{\mu}^{\beta} \sum_{\nu=0}^{N} A_{\nu}^{\beta-1} A_{\nu}^{-\beta-1} \lambda_{n-N+\nu .}
\end{aligned}
$$
\]

Now, let

$$
B_{N, \nu}=\sum_{k=0}^{\nu} A_{N-k}^{\beta-1} A_{k}^{-\beta-1},
$$

so that

$$
B_{N, N}=\sum_{k=0}^{N} A_{N-k}^{\beta-1} A_{k}^{-\beta-1}= \begin{cases}1 & \text { when } N=0 \\ 0 & \text { when } N \geqq 1\end{cases}
$$

Writing $B_{N,-1}=0$,

$$
\sum_{\nu=0}^{N} A_{N-\nu}^{\beta-1} A_{\nu}^{-\beta-1} \boldsymbol{\lambda}_{n-N+\nu}=\sum_{\nu=0}^{N} B_{N, \nu} \Delta \boldsymbol{\lambda}_{n-N+\nu .} .
$$

Hence, for $N \geqq 1$,

$$
\begin{aligned}
\sum_{\nu=0}^{N}\left|B_{N, \nu}\right| & =\sum_{\nu=0}^{N}\left|\sum_{k=0}^{\nu} A_{N-k}^{\beta-1} A_{k}^{-\beta-1}\right|=\sum_{v=0}^{N}\left|-\sum_{k=v+1}^{N} A_{N-k}^{-1} A_{k}^{-\beta-1}\right| \\
& =-\sum_{\nu=0}^{N} \sum_{k=\nu}^{N} A_{N-k}^{\beta-1} A_{k}^{-\beta-1}=-\sum_{k=0}^{N} A_{V-k}^{\beta-1} A_{k}^{-\beta-1}(k+1)=\beta .
\end{aligned}
$$

Thus we get, for $N \geqq 1$,

$$
\begin{gathered}
\left|\sum_{\nu=0}^{N} A_{N-\nu}^{\beta-1} A_{\nu}^{-\beta-1} \lambda_{n-N+\nu}\right| \leqq \sum_{\nu=0}^{N}\left|B_{N, \nu}\right|\left|\Delta \lambda_{n-N+\nu}\right| \\
=\sum_{\nu=0}^{N}\left|B_{N, \nu}\right| O\left(\frac{\lambda_{n-N+\nu}}{n-N+\nu}\right)=O\left(\lambda_{\mu} / \mu\right),
\end{gathered}
$$

[4] H.C. Chow, An additional note on the strong summability of Fourier series, Jour. London Math. Soc., 33 (1958), 425-435.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., (3) 7 (1957), 113-141.
[6] T.M. Flett, Some theorems on power series, Proc. London Math. Soc., 7 (1957), 211-218.
[7] T.M. Flett, On the summability of a power series on its circle of convergence, Quat. Jour. Math., 10 (1959), 179-201.
[8] G. H. Hardy, J.E. Littlewood, G. Pólya, Inequality, 1934 (Cambridge).
[9] K. KANNO AND T. TsUChikura, On the absolute summability of Fourier series, Tôhoku Math. Jour., 11 (1959), 459-479.
[10] H.R. PITT, Theorems on Fourier series and power series, Duke Math. Jour., 4 (1937), 747-755.
[11] T. Tsuchikura, Absolute Cesàro summability of orthogonal series, Tôhoku Math. Jour., 5 (1953), 52-66.

Yamagata University.

[^0]: 2) It is obvious that the condition $f(t) \in L^{p}(0,2 \pi)$ implies (4.2).
 3) The theorems of summablity $|C, a|_{k}$ concerned with almost all point t corresponding to Theorems 1 and 5 are known (Flett [5], [7]).
