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1. Introduction. Let f(¢) be a function integrable L over the interval
(0,27) and periodic with period 2. Let its Fourier series be

—;—' ay + Y (a,cosnt + b,sinnt) = (). (1.1

n=1 n=0

And let @.(¢) denote
5 [+ )+ fle =),
then

@.(t) ~ 3 c.(x) cos nt. (1.2)
n=0
If we denote by si(z) the nth (C, @) mean @ > — 1, of the sequence

n

si(8) = su(t) = 3_ ¢ (o).

v=0

Following T. M. Flett [5], the Fourier series (1.1) is called summable |C, a]x
at the point £ = x, where & > — 1 and k=1, if the series

3 | sia) — s57(a) |* w3

n=1

is convergent.
About this summability, T. Tsuchikura and the author [9] essentially
obtained the following theorem.

THEOREM A. If 1 < p=<2, f(t) is integrable L" throughout the interval
(0, 27) and for k=1

oo 72"

E <'£/2.A M dt>k!p <o (1.4)

then the Fourier series (1.1) is summable |C, a|, at the point t = x, where
a > sup (1/p, 1/F).
If the condition
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dP(F) = j‘; ‘ | p.(w)|?du = O {t/ (log -i—)mkﬂ} ,€>0, (1.5)

is satisfied, then the condition (1.4) holds.” But the condition f(t) € L*0, 2x)
is indispensable.

On the orther hand, if f(t) € L7(0,27), 1< p<2 and 1 <Ek=<2, we
have the following properties :

(i) Forp=Fkand a=1/p + & &> 0, since p<F,

3 o IR e@) |t = e e @)

< (il % 717 e(2) I”’)W(g nll )bwg A ( fo “ O] ’"dt)m,

where & = kp&/(p'— k) and A is a absolute constant.
(ii) For p<k p<Fk and a=1/p

oo

klp

S -L @t s e a@ir a([ IR0

n=l 0
by H.L. Pitt [10].
(Gii) For p<k, p=F and a=1/F,

3

> L ne () < T e

n=1 n=1

sa([ rwra)

kK’

<A ( fo e I”dt)klp-

Hence, it seems reasonable to conjecture that, if the condition (1.5) and

o

b —,12— =%, (2) |* < oo (1.6)

n=1

are satisfied, the result of theorem A h>lds.
In this note we prove this conjecture.

2. We first prove the following theorem which is an analogue of a the-
orem of Bosanque-Offord [1] and of H.C. Chow [4].

THEOREM 1. If (1.6) and

1) For the case k=1, see T. Tsuchikura [11].



ON THE ABSOLUTE SUMMABJLITY OF FOURIER SERIES 203

_ [ — = 1y
2.0 = [ o)~ s} du=0 {t/(1og -]}, 2.1)
where k> 1, 1/F<a <1 and p > 1/k, necessary and sufficient condition
that

i%ﬁf@—W<w (2.2)

n=1

should holds is that

=1
Zn

n=1

nl‘“f {@ut) — s} (1 —~ ;—) sin (2 ‘;,_ DA R (2.3)

where 8 is any positive number less than w and
1 a
, O & ={n+— a+1}t——~ 2
(n, a; 1) 5 ( ) 5 T
LEMMA 1. Let Gi(t) denote the (C,@) mean of the sequence
w1+ 277 D" cos vt where — 1 < a <0,

v=1

then, for 0 < t <, we have

Gu() = ga®) + hi(e), 2.4)

where
gi(6) = 2sin (n, a; 0)/mAL (2 sin %)M, (2.5)
1GX2)| = O(n), ‘2‘%’; Gz(z)] — O(n®), (2.6)
mw=owva-%mmkowvu @.7)

where the O holds uniformly in 0 <t <.
This is due to J.J. Gergen.

PROOF OF THEOREM 1. We may suppose without loss of generality that
co(x) =0 and s =0

2 (z) = fo " 2. (DGED) dt = fo " 2 (DD dt + fo " o (DR (Dde

= Li(n) + In), (2.8)
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say. Then

I(n) = [®.(Or (D] — f ()

N )dt = I(n) — I (n).

It is easy to see that
I(n) = O(n™).
Using (2.1) and (2.4) ——(2.7), we get

I (n) =f01m<I>

jt GEY()dt — f z(t)——gn‘l(t)dt + x(t)g?h:"(t)dt

z|n

= O{ﬁzln(%dt} + O{j;" n<—t—l)9(n—“+lt_w—l + ”_““t_'”)dt}
t

log — log —
og ~ log

+ol[° e dt} = O1{1/(log n}.

zn (].Og %)P

Thus we have, since p > 1/k,

1 I(m)|*
g < AE wt A nzﬂn(log o (2.9)
Hence, by (2.8) and (2.9), (2.2) holds if and only if
k
Z [I(”)’ oo, (2. 10)
Let
_ 1 1 —
kt) = ———p——, 0 <t=m), K0)=
(2 sin i) Z
2
Then

T A () = [ (psinna—10 4 f P (O sin (n, @ — 1; £)dr
2 t”

*0

= Jy(n) + Jy(n), say.

It was proved by Bosanque and Offord [1] that

7 = 0 [ [+ ogje ), (2.11)
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where > denotes summation over 1 <v<n—1, 2+ 1<» < o

We write

Kl(n) Z ] cv(x) ’ ,2(71) — i I [4 (x) | d

)2 ’ v=n+1 )2

Ki(n) = i le)]

v=2n+1 (V - n)z

Then, by Minkowski’s inequality, we get

oo o

> Lk = L (e T oLy

n=2 n=2 veml

oo £

={5(2 (@ l=20))Y

=1 "n=v+l n v

1k &

{Z (Z - J':’f;ﬂ:k,,k) b (2.12)

vel V n=1

Since (n + v)~@7VE® <L 5=@-UEDE for @ > 1/k, the right-hand expression of
(2.12) is not greater than

(E (@) as L el (219)

o v\ n

Moreover, by Minkowski’s inequality,

=1 1-o ko - 1 1-a = ICV(J—')I *
I L TOTLED e Cb i e

- =t v=n+l
S S ) T (214)

Since @ < 1, we have (n — v)™ @ * < =@V and n/(n ~ v) < 2 for n=2p:
Hence, it follows that the right side of (2.14) is not greater than

o

Al LS e@EVY <45 L @ (2.15)

v=1 v n=1 n n=1

and
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> g = 5L (e 5 L@y

n=1 n=1 v=2n+l v — n)z
oo o -1 1k &
1 - ’Cn+ (x) l < 'Cn+v(-r) ’
= g—n(nl ““%rl 1:2 ) {Z " <Z1 (@—1+1/)% }

o 1)k &k 2y-1 1k %

(5 ) | salZ 5 (X ) ]

oo

= yu-lHlE w-1 'Cn z)lk 1k & 1 i
<Al (2 L@ o s L@l @16)

v=2 n=v+l n n=1

1
since Z JEari < oo,

llnl

Accordingly, by (2.11), (2.13),(2.15) and (2. 16), we have

> AT < e, 2.17)

n=1
Next, we consider J,(n).

Let 0 <é <7 and
x® =

t® =zt=sm
8y (05t <)).

“Then

Ji(n) = f ' . (t)(l — %)—SI—M dt + f " . (Ox(Dsin(n, a—1; £)dt

td
= Ly(n) + Ly(n), (2.18)

.say. It was also proved by Bosanquet and Offord in [1] that

Ln) = 0{x 19D} + o(le,)D),
(n— vy
‘where 3~ has the same meaning as before.

If we write, as before,
Ly(n) = My(n) + My(n) + M(n) + O(|c,(2)]),
‘we get, by the same process as used in establishing (2.13) and (2.15),

SL Mt =AS L el (= 1,2) (219)

n=l n=1

Also
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> L s = 5L (e 3 JSBLY

n=1 1 n=1 7 v=2n+l (P - n)z-w
- lez)] :
= nZ-l nmm_m(mzw (V _ n)ljk’+e+1+l/lc—a,—c> ’ (0 <e<1l— a),
1 ( = lez)|® )( > 1 )k”“'
S - ’
= E n1+(w—1)k v-zzn“ (v — n)(1+1/k—a €)% v=‘§+l (V _ n)1+7c €

(by Holder’s inequality, where 1/& + 1/k = 1)

<AZ"% i lefx)]*

~ n a—1)k+ke Vo (ll —_ n)(1+l[k—¢-—e)lc
bt [?7(.,—1)] 1

<A Zs le(x)Ik Z P @Ry, n)(l+1/lc—-¢—e)k

v= n=1

“ Jefn)* Lrenl g
=A Z pH1k—a—ak Z @Ik

n=l

<AZ ’c”(x)' <AZ~—IV‘ a(2)]*. (2.20)

v=3 v =1

Thus, by (2. 19) and (2. 20),

> AL < .

n=1

Therefore, by (2.17) and (2. 18), (2.10) holds if and only if

> —71; | =L (n)|* < oo

n=1

The theorem is thus proved.

3. THEOREM 2. Let 1 << p<2, k> 1, 1/k+ 1/EF =1 and 1> a > sup
a/p1/k). If

oo

> - [n e (@)t < o (16)

n=1

and

200 = [ o |p.0) 7du = 01/ (1og %)"} (1.5)

as t— + 0, where p > p/k, then the Fourier series (1.1) is summable |C,a|,
at the point t = x.
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PROOF. By T.M.Flett [6, Theorem 5], it is sufficient to prove that’

oo

> 5@ < . (3.1)

n=1

Since, by Holder’s inequality,

2060 = [ .01 du = 0{¢/(1og 1) (32)

(3, 1) holds if and only if
W ¢t \ sin(n, @ —1;1) :
e - = 2 2
> f %(t)(l 3) e dt

n=1 n

where 0 < & < .

= | f 5.0 (1 - —é) sin(r, 0;— Lo o

<L oo, 3.3)

n=1 B
an+l1
sin(j,@—1; t)
= AZ n(a-1+1[k)k Z f ¢J;(t)( )__j—,,—
02 o t
gn+lo1 5i2n [k an+l_1 s (&
< A Z Zn {(®—- 1+1/k)k Z f + A Z 2n (- 1+1/lc)k Z f
j=2n j=on 82"
=N, + N,,

say. By the integration by part and (3. 2), we have

8)2n Y I 8/om
f gvz(t)(l _ ¢ ) sin(J, aw 1;2) dt’ éf _l_?rgt)] dt
0 ) 0 t

= [P +a | LW gy — o(arengem)

1+¢

Hence we get

gn+nk(a—1)

N, =4 Z 2—n('m—1+1nc)rc e =A Z pk/p < oo (3'4)

n=1 n=l

Next we consider N,. Let

N O (BTN
0 =</, 6=t <.

‘We have now to distinguish three cases.

Case . k= p, k' = p,
Case Il k= p k' < p,
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Case IIL. & < p.
Case 1. By Hoélder’s inequality, we have

o n+l_1 ﬂ . . /' k[p’ 2hti-1 1-k/lp’
1 2 sin(f, @ — 1;¢ r
N2 §A Z 2n(w—1+1/k)k< Z f ‘F(t) : tw ) dt > ( Z 1)
n=0 J=2n 0 j=2n
oo 1 gn+1.1 z sin( ., a _ 1; t p' k/p’
=AY e (X | [ Fo SRR ) )
n=0 2 Jj=2n 0 z

S 1 ([ 120l N
éAZ onla-1/p)k <‘l;/2" 1P dl)

n=0

(by the theorem of Hausdorff-Young)

= 1 ‘ () L\
=AY Tona-timk {[<I>£"’(t)t‘“"12,z» + ap f -7,,5—1) dt}

n=0 sjm L

oo 1 1 -8 & dt kip
SA2. naimi [z“"‘” (l *-*) J +a ——————'}
= E on(@=1/p)k { /| log ‘ - 4 2 t“"(log »L>9

t

< A Z _2;(“]_-—1“,)70_ QME-1IDIE 4 =pkID < og (3.5)

n=1

(since ap> 1 and p > p/k).
Case II. In this case, 1 < & < 2. Hence by Hausdorff-Young’s inequality,
we get

2n+1a1 k

A 1
N2 éA Z 2n (a=-1+1/k)Kk
n=0

f F(t) Sll’l(], atw- 1; t) dr

0

j=on

- 1 8 . dt
= A,;, gn@=-1/k")k <~£lz' |¢z(t)[’° g >
S 1 , , L2 (1 K
=4 Z onla=1/k"E {I:@;k Ot R + ak j; ——-—t“k’i) dt} (3.6)
n=0 2

Since, in this case, @ > 1/k and

20 = [ 1o ¥au=([ gcordu) ([ aw)

- o{ t/(log %)"k’m }

(8.6) is not greater than

= 1 A @—1lk e = 1
A Z gn(a-1/k")k o= )E(IOg 2") pEir <A z n—pk,p < oo, (3.7)

n=1 nal
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Case III. Since p < &/, the estimation is quite similar to that of case 1.
This shows together with (3.5) and (3.7) that the theorem is completed.
THEOREM 3. If 1 < p<k, (1.5) and (1.6) and

f“ l%it)l“ dt < oo, (3.8)

then the Fourier series (1.2) is summable |C,a|, at the point t = x, where
a = sup(1/p, 1/k"). (cf. H.C. Chow [2].)

LEMMA 1. (T. M. Flett [5, Lemma 14]). Let r=%k> 1, p = a + sup(1/p,
1/F), and let

B= [ xOrrede (n =12,
0

Then

1k

{i p@p-1 ]B,,]r}m < A{fﬂjx(t)lkt—l—kadt}

n=1

PROOF OF THEOREM 3. We write

[@(1-f)ed=Ltg = [+ [ = PG + P

@
t 8/n

say, where @ = sup (1/p, 1/k).
Then, it is easy to see that

P (n) = O{n*'(log n)™??}.

Hence, we obtain

=1 _ X - 1
— ® < - =
E n In Pl(n)l = Anzdn(logn)pkm < oo (3'9)
Using Lemma 1, we have
= S ko - k(1—a)-1 ? ( _ _L)Sin(n,d-— 1;¢) f
nz=1 " |7 =%Py(n)| En j; N Pl 1 5 p dt
] b4 K/
=([ —’f’z—fﬂ—dt) " < oo, by (3.8). (3.10)
0

Then, by (3.8),(3.9) and Theorem 1, we get the required result.

4. In this section we consider the theorems of the summability factor of
|C, |, at a point.

THEOREM 4. If k> 1, I/ <a <1,
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fo (puw) — s}du = O{t/(log %)”} 1)

and

- 1
E n{log(n+1)}"

i [n e (2)|F < oo, (4.2)

where p + v > 1/k, v = 0, then the necessary and sufficient condition that

o

1
nzcl nilog(n + 1)}

& Isz_](x) - Slk < oo (43)

should hold is that

t_) sin(n, @ — 1;¢)

n-® j;s (@.(t) — s)(l s o dt ' < oo,

- 1
2 nflog(n + 1)}

n=1

For v = 0, the theorem is identical to Theorem 1.
For the case ¥ > 0, we can prove by the same process as used in establishing
Theorem 1.

THEOREM 52 Jf1 < p=<2, a=sup(1/p, 1/k), (4.2)° and

000 = [lp.w)|"du = Ot/ (105 -, (4.9)

- colx)

2 Tlog(n + DI
p/p) and v = 1/p for p<k orp =1 — & for sufficiently small €=0, and
v > 1/k for p= k, respectively.

is summable |C,a|, at the point t = x, where p > sup(p/k,

We need two lemmas.

LEMMA 2. If 0 < B <1 and {\,} is a sequence of positive numbers such
that AN, = Ay — Ay = O(\,/n) and \./n is non-increasing, and if the series
SOAE|#8(z) |¥/n < oo, then the series D Muci(x) is summable |C,B|, where

n=1 n=1

k=1.

PROOF. If 2 =1 this lemma is due to C.H.Chow [2]. The proof runs
similar to that of Chow but for the sake of completeness we prove here. Let

2) It is obvious that the condition f(2) € L?(0, 2r) implies (4.2).
3) The theorems of summablity |C, a|x concerned with almost all point ¢ corresponding
to Theorems 1 and 5 are known (Flett [5], [7]).



212 K. KANNO

t%z), Ta(x) are the (C, &) means of {nc,(x)}, {nA.ci(x)}, respectively, where
a>-—1.

oo

We have to prove the series Y |75(x)|"/n is convergent.
n=1

Abrt = Z A\ e (x) = Z ARTON D ATETT AL ()
=1 p=l

= Z A8 Z ARTAZETN,

LS LAY ARRA Ny (N=n— )

p=l v=0
n-1 N
= AN, + 20 ALl > AVTAP N vk
p=1 v=0
Now, let
v
By, = > AVAP,
k=0
so that

By,y= Z AVRARRT =

k=0

{1 when N =0
0 when N = 1.

Writing By,—; = 0,

Z AN-vA - lxn~N+v - Z BN vAxn N+ve

v=0

Hence, for N=>1,

N N N
ZlBN,VI—;Z SﬂAB W AP =Z ZAN—k e
v=0 v=0 k‘-ﬂ v=0 k=v+!

N
=—ZZAN-kA Pl=— > A4 T (k+ 1) =8

v=0 k=v k=0

Thus we get, for N=1,

Z AN_VA—ﬂ —lxn—N+v

v=0

< Z ]va IAhn—Ni-vl

v=0

_3 |BMV|O<’%}-\I{i) = O(\/H),

v=0
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