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f Introduction. It has been long discussed whether,the sets {of pure states
of C*-algebras are compact or not and some negative examples are found in
the literature (cf. [5], [6], [13], [18]). However the question that which C^-algebras
have this property is remained; unknown and it is the first motivation of Lour
present paper to remove this obscurity. The result is the following one; Let A
be a C*-algebra. If the set of pure states of A is compact and that of
primitive ideals -which are the kernels of one-dimensional irreducible repre-
sentations forms an open set in the structure space of A, then A is isomor-
phic to the C^-sum of a finite number of homogemeous C*-algebras.

A C*-algebra is called n-dimensionally homogeneous if each irreducible
representation of the algebra is z-dimensional. Such C^-algebras were partly
studied (without assuming a unit) in Kaplansky [10], [11] and Fell [4]. However,
only a few results are known about the structure of these algebras. On the
other hand, these algebras play an essential role in the construction of the com-
position series of GCR algebras. Thus the main part of the present paper is
devoted to develop the structure theory of homogeneous C*-algebras. Our
method is somewhat different trom the one usually employed in the literature.
We use the theory of fibre bundles and illustrate the structure of homogeneous
C'f-algebras in terms of fibre bundles.

Let A bs an n-dimensionally homogeneous C*-algebra and denote by ίl(^4)
the structure space of A. Let Mn and G be the n X n full matrix algebra and
the group of all ^-automorphisms of Mn. Then A defines a fibre bundle ^5(̂ 4.),
called the structure bundle of A, over ίl(^4) with fibre Mn and group G and
A is represented as the C"*-algebra constructed by all cross-sections in %$(A). It
is shown that the *-isomorphic relation between two w-dimensionally homogene-
ous C^-algebras are equivalent to the equivalence relation between their structure
bundles. Moreover, using the theory of bundles we can show that two algebraically
isomorphic homogeneous C* -algebras are necessarily *-isomorphic. Next we
shall prove that the bundle SS over an arbitrary compact Hausdorff space with
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fibre Mn and group G yields necessarily an w-dimensionally homogeneous
C*-algebra A and 35(^4) is equivalent to 35. Thus there exist non>isomorphie
w-dimensionally homogeneous C*-algebras as much as non-equivalent fibre
bundles over the compact Hausdorff spaces with fibre Mn and group G.

A typical example of a homogeneous C^-algebra is the C*- tensor product
of a commutative C*-algebra and Mn9 but an arbitrary rt-dimensionally homogene-
ous C*-algebra does not necessarily belong to this type, contrary to the case of
TF^-algebras. Our result says that an w-dimensionally homogeneous C^-algebra
belongs to this type if and only if its structure bundle equivalent to a product
bundle.

Finally, we study the ^--automorphisms of homogeneous C^-algebras leaving
the center elementwise fixed and give the necessary and sufficient condition
that the automorphism is inner.

We are indebted to Mr. J. Glimm, Mr. K. Iwata, Mr. S. Maruyama and
Mr. K. Shiga for their valuable criticisms and suggestions*

1. The structure of C*-algebras whose sets of pure states are com-
pact.

Let A be a C*-algebra. We always assume a unit. We call a C^-algebra A
n-dimensionally homogeneous (sometimes abbreviated as n-homogeneous C*-
algebrά) if any irreducible representation of A is w-dimensional. We assume;

that A is acting on a fixed Hubert space H0, and we shall denote by A the
weak closure of A on H0. We always denote by Q(A\ P(A\ S(A) and fl(A)
the set of pure states, the pure state space (weak closure of Q(A)\ the state
space and the structure space of A9 respectively. B(H) and CH mean the ring
of all bounded linear operators and that of all completely continuous operators
on a Hubert space H.

The following theorem almost clarifies the structure of C^-algebras having
compact set of pure states.

THEOREM I. Let A be a C*-algebra. If the set of pure states of\ A is
compact and that of primitive ideals which are the kernels of one-dimen-
sional irreducible re present atίous forms an open set in the structure space of
A, then A is isomorphic to the C*-sum of a finite number of homogeneous
C*-algebras. The converse is also true.

We divide the proof into several steps and at first assume that A has no
one-dimensional representations.

LEMMA l.l. Let π be an arbitrary irreducible representation of A on a
Hilbert space H, then H is finite dimensional and ττ(A) = CH = B(H).

PROOF. Since Q(A) is compact, one easily verifies that the homomorphic
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image of A also has this property. Therefore, by [6: Theorem 2], we see that

7r(A)Γ\CH =4= |0|, so that ττ(A) D CH by the same theorem. Suppose τr(A)^CH9

then there exists a state φ with the property φ(Cπ) = 0. Using the same
theorem quoted above one can see that αωέ + (1 — a)φ€. P(ιr(A)) for 0<<z<l
and a vector state ωέ. Therefore Q(ττ(A)) is not compact, which is a con-

tradiction. We have ττ(A) = CH. Hence CH contains a unit, and H must be
finite dimensional. Thus, ττ(A) = CH = B(H).

LEMMA 1. 2. Let π be an irreducible representation of A on a Hilbert

space H, then IT \ A, the restriction of π to A, is also irreducible and ττ( A) =

PROOF. Take a vector state β>£ of H, then <*>ξ\τr(A) is a pure state. Hence

V(ωf I ττ(-A)) is a pure state of A. As A is σ-weakly dense in A, by [6: Theorem

51 P(A)\A = P(A) = Q(A\ hence '*<»« | «<!)) I ̂  - W«ίl *<A)) € Q(A). It
follows that <*>ξ I π(A) € Q(ττ(A)). Since ω^ is an arbitrary vector state of H and
-4. has no one-dimensional representations, this means that τr\A is an irredu-
cible representation of A. Therefore, by the above lemma, ττ(A) — CH — B(H}

whence ττ(A) = π(A).

LEMMA 1. 3. A is a W*- algebra of finite type 1 whose homogeneous

components are finite.

PROOF. This follows immediately from Lemma 1. 2. and [11 : Theorem

9.1.].
m

By Lemma 1, 3 we see that A — ]Γ) Azt where zt are orthogonal central
~~ ί-l

projections and each Azt is an Wj-dimensionally homogeneous W^ algebra. We

assume that nτ <tt2 < nm.

LEMMA 1. 4. Azt is an ni-dimensionally homogeneous C*- algebra.

PROOF. Let 7r be an irreducible representation of Azi on Hilbert space

H. Since every pure state of Azt can be extended to a pure state of Azt, it

follows from the correspondence between states and representations of Azi

that 7r can be extended to an irreducible repreentation π of Azt on a Hilbert

space H' ^2 H. On the other hand, as Azt is the homomorphic image of A,

Q(Azt) is compact and Azt is weakly dense in Azt. Hence, applying Lemma
1. 2 to this couple of algebras, one can see that π Azt is an /^-dimensional

irreducible representation of Azt on H' . Therefore we get H — H' and TT is
an ^-dimensional irreducible representation. This completes the proof.

Now, consider a primitive ideal P of a GCR algebra. Since P is the
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kernel of some irreducible representation of the algebra, by Dixmier [3: Theorem
5], the dimension of the irreducible representation whose kernel is P is unique
(the hypothesis that the algebra is separable is unnecessary in this part of the
theorem). Thus, without the ambiguity, we can say that a primitive ideal P is
the kernel of a ( )-dimensional irreducible representation.

LEMMA I. 5. There is a one-to-one correspondence between the family of
all primitive ideals in A which are kernels of nk-dimensional irreducible
representations and that of all primitive ideals in Azk.

PROOF. Let P be a primitive ideal of A which is the kernel of an nk-
dimensional irreducible representation. Take a pure state φ associated with P

and consider the pure state extension φ of φ to A. Denote by ττφ and
m

iΓj the canonical representations of φ and φ. As φ€ P(A) = \^J P(Azt) (where
i-l

we identify P(Az^) with its natural embedding in P(A) (cf. [6]), there exists a

number j for φ€P(AzJ). Therefore the representation iΓφ is the compos-

ition of the mapping A-*Azj and an irreducible representation TT' of Azj.
By Lemma 1.2, ττφ\A is an irreducible representation of A, and we can
identify ιrφ and 7771 A. Hence ττφ is the composition of the map A->Azj
and TT' I Azj. The latter is an irreducible representation of Azjt We have Pzj =
the kernel of π'\Az# which is a primitive ideal of Az3. Since P is a kernel
of an ΛΛ-dimensional irreducible representation, we have, by Lemma 1.4,

ΠA; = ft? i. e. k = j. Thus Pz} = Pzk is a primitive ideal of Azk. Next, if P is
a primitive ideal of Azk it is clear that P= [a € A\azk € P'( is a primitive
ideal of A which is the kernel of ^-dimensional irreducible representation.
Moreover, the fact that Ω(A) coincides with the space of all maximal ideals in
A(cί. Lemma 1.1.) implies that the above correspondence is one-to-one.

LEMMA 1.6. Let P be a primitive ideal of A which is the kernel of an
nk dimensional irreducible representation, then we have P(l — zk) = ^4(1— zfc).

PROOF. At first, we assert that Pzt = Azt for all i*$*k. Suppose Pzt is a
proper closed ideal of Azi for i 4s k. There exists a maximal ideal P of Azt

containing Pzt. Set P0 = {a € A\aZi € P'}, then P0 is an ideal of A and con-
tains P. We have P0 — P for P is a maximal ideal of A by Lemma 1.1. Thus
Pzi = P0Zi = P , that is, Pzt is a primitive ideal of Azi. Therefore P is the
kernel of an ^-dimensional irreducible representation which contradicts to
i Φ k. We have Pzt = Azt for all i 4= k.

To prove the conclusion of the lemma, it is sufficient to show that P(l — zk)
separates the set of pure states of A(l — zk} by Kaplansky [11: Theorem 7.2.].

So let φ and ψ1 be distinct pure states of ^4(1 — zk) and φ and ψ pure state
r*h* -̂  I I

extensions of φ and ψ to A(l— zk) respectively. Since P(A(l — zkJ)= \J
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we have two cases in question.

1. £> € P(Azi) and ^ € P(Azt) for i=^j. Consider the canonical represen-
tations TΓφ and π ψ, then as in the argument of the proof of Lemma 1.5
TΓφ and 7ΓΦ induce the irreducible representations ττz and ττ2 of Azt and
Azj. Put Λ = {a € P(l - zk)\azi € the kernel of TTΊ), F2 = ' j α € P(l - **)!
azj^the kernel of ττ 2 | , then Fx and P2 are primitive ideals of P(Γ — 2:̂ ) and,
by Lemma 1. 4, they are the kernels of nt and ^-dimensional irreclucible repj

resentations of P(l — zk) respectively. Since nt =j= n$, PI is different from P2.
On the other hand one easily verifies that P is equal to the kernel of πφ\:P(l.—z^)

and P2 to the kernel of τr^|F(l — zk\ It follows φ\P(l — zk) 4= 'ψ\P(l — z$

2. φ, ty ^ P(A^). From the assumption there exists an element a(l — z^)
€ A(l - zk} (a € A) such that φ(a(l - ^^^(a(l

We have

Since Pzi'— Aziy we can find an element of P such as bzi = &Zj and we get

This completes the proof.

LEMMA 1. 7. L#£ 1 <?»*,«} ^ the family of all primitive ideals in A
which are the kernels of nk dimensional irreducible representations. Then for

every k, {Pnk,a\ is closed in OC4).

PROOF, we shall show, that / I PUk,a = A(l — zk)Γ\A. Take an element a
oi - . ' - ' - " . • „ ,

€ / \Pnkίa then azk€ I \Pnk,Λzk. By Lemma 1.5, \PnhaZk\ is, the family of all
a. , a

primitive ideals in Azk. Hence azk = 0 i.e. a € ^4(1 — zk) Π A. Conversely, if

a € ^4(1 — zk) Π A we have azk = 0 €• / \ Pnfc,« ^fe and, by Lemma 1. 5, tf

Next, suppose that a primitive ideal P contains the intersection of \Pnk,ά\
By the argument at the first part of the proof of Lemma 1.6, Pzt = Azt except
a number j =%= i and PZJ is a primitive ideal of ..Azj. We assume j =j= k. _ By
^emm^ 1. 6, we have P(l — Zj) = A(l — z^ so that there exists an element
:b € P such as b(lι — z$) = 1 — zό, which implies (l — b")Zj = l— b. As Zj^l~zk,

we get 1 — b € ^4(1 — zk) Π A = f \ PΛt>α. Hence P contains I — b and thus
α

P contains 1, a contradiction. Therefore we have /= &, i.e. P. is the kernel of
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an ^-dimensional irreducible representation. This completes the proof.

THE CONCLUDING PROOF OF THE THEOREM. Let jPi,*} be the family of

all primitive ideals which are the kernels of one-dimensional repressntations. Put
R = the kernel of (Pι,«Γ, complement of l-Pi,*} in ίX-A), then the C*-algebra
A/R has no one-dimensional representations and Q(A/R) is compact. Hence,
by the above discussions, we can see that all irreducible representations of A are
finite and there is a fixed upper bound for all these degrees. Denote by {Pnk,α}
(n0 = Knl<n2< ...... <nm} the family of all primitive ideals in A which are
the kernels of n^-dimensional irreducible representations. We assert that this
family is closed in Ω(A). Since {-P3|«l is clearly closed in Ω(A) (cf. [11]), we
assume kl>2. Then, by Lemma 1.7, the canonical image of |Pn*,«} is closed
in Ω(A/R) and since Ω(A/R) is homeomorphic to { P ι , α } ° 9 {Pnkα,} is closed in

m-l

{Pι,αΓ whence in Ω(A). Put /= Γ\Pnm,« and J = Γ\Γ\P»»* ' From the

α ί-l α

definition of I and J it is clear that I Γ\ J = (0). Suppose that 7 4- J is not

dense in A9 then we can find a maximal ideal P such that P 3 ^+ J Since P
is primitive, P is the kernel of an ^-dimensional irreducible representation by

Lemma 1.7. On the other hand, it is known that the family \Pnί^} (i = 1,2
...,/72-l) is closed in ίl(A) (cf. [11]), hence P is the kernel of an irreducible
representation whose dimension does not exceed nm-\. This is a contradiction.
Therefore I 4- J is dense in A. Hence I + J = A* so that one can see that A
is isomorphic to the C*-sum of A/I and A/J. Continuing the same argument

for A/J9 we get desired conclusion: that is, putting /* = / 1 />n i)«(i = l,2,.

we have
A ̂  A/ 1, φ A/ 1, φ ...... φ A/Im (C*-sum)

and it is clear, by Lemma 1.7, that each A/Ik is an Tifc-dimensionally homo-
geneous C^-algebra.

To prove the converse of the theorem, we need the following

LEMMA 1. 8. If A is an n-dimensionally homogeneous C^-algebra, then
Q(A) is compact.

PROOF. Since A is weakly dense in A9 A satisfies the polynomial identity

of the same order as the one which A satisfies (cf. [11]). Hence the dimension

of any irreducible representation of A does not exceed n. Therefore A i§ι/a

W^-algebra of finite type 1. Let x be a maximal ideal of the center of Ά: Wfe

denote by Px the minimal closed ideal in A containing x. Since Ω(A) is 'a
Hausdorίf space by [11: Theorem 4.2]. the first part of the proof of: Lemma
12 of [6] shows that A(x) has a faithful irreducible representation where A(x)
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means the homomorphic image of A by the canonical map A-*A/PX. Moreover

Theorem 4 in [6] shows that A(x) has a faithful irreducible representation.
Now, by the hypothesis A(x) is isomorphic to an n X n full matrix algebra

and the first part of this proof shows that A(x) is isomorphic to a k X k matrix

algebra with k^n. Hence k = n and we have A(x) — A(x).
Take an element φ € P( A), then by [6 : Theorem 5] φ can be extended to

an element £>€JP(A). By Theorem 4 in [11] there exists a maximal ideal x of
the center of A and an element ^p ζP(A(x)} such as φ = ̂  (φ') where YX

means the canonical mapping A-+ A/PX. We have φ = l^x (φ \ A(x)}. As it is
easily seen that Q(A(x)) is compact the above argument shows that φ € Q(A)
i. e. Q(A) is compact.

Using the above lemma, we can prove easily the converse of the theorem.
In fact, suppose A = Aτ φAjΘ ΘΛn where [A*] are all homogeneous C*-

algebras, then P(A) = \^J P(At) where we identify P(Aΐ) with its natural
ί = l

embedding in P(A). By Lemma 1. 8 we have P(Λ) = Q(Λ), hence P(A)
m

= Q(A) considering with Q(A) = \J Q(At).
i=l

Thus the whole proof is completed.

Now, Let us consider the situation of our theorem. One might suppose
that the size of the pure state space plays an important role in the structure
theory of a C^-algebra and, at this point of view, the case treated above is an
extreme one and it is the first step to make out this case when the pure state
space of a C^-algebra comes into our consideration. The another extreme case
is the one where the pure state space becomes the largest one, that is. it co-
incides with the state space. The next theorem gives the answer for the question
which C^-algebras are endowed with this property.

THEOREM 2. Let A be a C*-algebra, then the necessary and sufficient
condition for P(A) = S(A) is that A is a prime C* -algebra without non-zero
GCR ideal.

PROOF. The proof of the sufficiency is essentially included in the proof of
Theorem 1 in [6]. In fact, the proof of Theorem 1 in [6] is divided into
three steps and the last step is devoted to prove the result associated to the
sufficiency of our theorem. Hence it is sufficient to show the necessity of the
theorem.

Suppose that P(A) — S(A). We shall show that A is a prime C^-algebra.
Let / and «/ be closed ideals in A sush as /Π </ = {0} then one easily verifies
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Λ- **> «-fc* -̂ . **•«

that 7Π J = |0(, where I and J mean the weak closures of / and J in A.

Since I (resp. J) is a weakly closed ideal of A we can find a central projection

£z(resp. Zz) such as 7 = Azτ (resp. J — ̂ £2). We have ZjZ2 = 0. Hence for an

arbitrary element ψ € T^A)^^) .̂,) = 0.

By [6: Theorem 5], P(A)\A = P(A) = S(A). If we suppose that 7Φ{0|

and J=j= {0|, there exists a state φ of A such that £>(/) =4= 0 and 9>(J)=SHO.

Putting φ as an extension of φ to an element of P(A\ we get £>(7)=j=0 and

φ(J) H= 0, which contradicts to φ(z1)φ(z2) = 0. Thus, if 7 Π « / = {0} we have

7 = j O } o r t / = ί O } ; J, is a prime C*-algebra.

Next, suppose that A has a non-zero GCR ideal, then A has a non-zero

CCR ideal 7. Since A becomes a prime C*-algebra, 7 is isomorphic to

the algebra of all completely continuous operators on some Hubert space

(cf. [11 : Lemma 7. 14]). Take an arbitrary state φ of I and denote by φ the

state extension of φ to A. As φ € S(A) = P(A) there exists a net of pure
states {φa\ of A with £> — lim φa. We have lim φa\I = φ. Therefore we may

α α

assume that φa \ I =4= 0 for all Λ. We assert that all φΆ \ I are pure states of 7.

In fact, by Glimm [6 : Lemma 3], { φa \ I\ are all states of 7 and suppose that

φa \ I = - (φΊ + φ'z) for some states φl, φΊ of 7. Denoting by φτ and φz the
Zl

state extensions of φΊ and φΊ to A we get an extension of φa \ I to A, -
£l

). However, as shown in the proof of Theorem 2 of Glimm [6] the

state extension from a closed ideal to the whole algebra is unique, and we get

φa = - (φ! + 9>2) which implies φΛ = φ x = φz. Hence φa \ I = φ'\ = φΊ. Thus
Δι

\φa\I\ are pure states of 7 and φ is the limit of the net J9?α |7}. This con-

tradicts the structure of 7 noted above. Therefore A has no non-zero GCR

ideal. This completes the proof.

2. The structure of homogeneous C*-algebras.

Let A be an w-dimensionally homogeneous C^-algebra with unit. Throu-

ghout this section, Mn means an n X n full matrix algebra and G the group

of all "^-automorphisms of Mn. If R is a subset of the structure space ίl(A)

of A9 we denote by A(R) the quotient algebra by the kernel of R and by a(R)

the canonical image of a € A in A(R). A matrix of Mn is always denoted
with indices ij (or k, /) such as (λ^), (α£j). Most of the notations and termi-

nologies in the theory of fibre bundles are referred to Steenrod [14]. We use

the notations GL(n,C\ U(n), SU(n) etc. as usual.

Let GO be the group of all automorphisms of Mn. Before going into
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discussions, we need some considerations on the topologies of G0 and G.
Consider the simple convergence topology on G0 and G. Since an arbitrary
element of G0 is considered to be a bounded linear operator on the vector space
Mn, GO is embedded into the full operator algebra B(Mn\ which is isomorphic
to Mn2, n2 X n2 full matrix algebra. Hence G0 can be embedded into GL(w2,C)
and one verifies easily that this embedding is topologically isomorphic, so that
the image of G0 in GL(nz, C) is a closed subgroup of GL(/z2, C). Therefore G0

becomes a topological group (furthermore a Lie group) by the simple convergence
topology over Mn. On the other hand, let T0 be the center of GL(n,C) then
it is well known that GL(ra,C) is homomorphic to G0 and the kernel of this
homomorphism is T0. By the straight-forward calculation, we see that this
homomorphism is a continuous, hence open homomorphism. Thus G0 is
topologically isomorphic to GL(n,C)/T0 and a similar treatment shows that the
group G with the simple convergence topology is topologically isomorphic to
the factor group U(n)/T, where T denotes the center of U(n). We notice that
both GO and G are topological transformation groups of Mn.

The following lemma plays the key point of our discussions.

LEMMA. For any point P of Ω(A), there exists a neighborhood U of P such

as A(U) ~ C(f7) ® Afn, the C*- tensor product of C(U) and Λfn, where U
a

means the closure of U.

PROOF. Take a point P0 € ίl(A). Define a continuous function <y(x) over
( — oo? oo) as follows;

and y(x) is linear on Γ-— , o], [o, — J, ĵ -ί-, l], ^1, — j. Let a be an ele-

ment of A such as a(P0) is a non-zero projection, then we have rγ(a(Poy)

=y(*XPo) = 0. Denote by U the set of

— [. Since ίl(^4) is a Hausdorff space, ||<2(P)|| is a continuous function on
4 ^

and hence [7 is a neighborhood of P0 (cf. [11; Theorem 4. 2 and 4. l]).

Next, choose .the function S(x) defined by; s((- °°,— lj= 0, δ([~>+00))

= 1, δ(x) is linear on Γ— , — 1. If P € C7, then the spectrum σ(α(P)) of
L 4 4 J ί
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a(P) is contained in Γ- — ,— 1 U ["— ,— 1 but not in Γ-_L,-!_1 Hence
. L 4 4 -J L 4 4 - 1 L 4 4 J

δ(α)(P) is a non-zero projection in A(P) and δ(<2)(P0)
 = &(Po)

" i By the assumptions, ^4(P) = Mn for all P€ Ω,(A). Therefore there exist n

elements αl5 α2, ...,αn in A "such that. aI(P0))a2(P0\.^9an(P0) are orthogonal

minimal projections in A(P0). Applying the above arguments to ατ we get a

neighborhood Uτ of P0 such that, putting eτ = B(ατ\ eτ(P} is always a non-zero

projection for P € Uτ arid - ^l(P0)= ^(Po). Suppose inductively that we have

chosen Ul9...,Um9 m < n, to be neighborhoods of P0 and ely...,em in 4̂. such
I. '• "" •' W

that |tfi(P); z — 1. 2, ..,w} are non-zero orthogonal projections for P€ (\Ui
iml

and ^i(Po) = tfiCPo). Applying the first argument to ί 1 — X
^ i- l

we can find again a neighborhood t/w+ι of P0 such that if we define em+ι =

if m \ / m \\
δί ( 1 — XX ) OOT+J ί 1 — X) tfi ) J, ^»»+ι (-P) is a non-zero projection for any
Ϊ Λ \ ( <^=ι / \ ί^i / ^
P€ ί7m+ι and it is clear that the system {Ul9U29--9Um9 Um+ι', eτ,e2,..., em,

βm+i } also satisfies the inductive assumption. Therefore, we can get a neigh-

borhood ' .U".oi PQ and n-elements el9e29...±en in A such as {ei(P)\i = 1, 25...,7z}

are non-zero orthogonal minimal projections in A(P) for any P € U.
;:_ Since ^ ̂ ^(Po) H= 0, there exists an element bt € eίA^I such as b^Po^^Q.

We have bϊbt(P0)^0. Hence, by the continuity of ||W*i(P) || (cf. [11]), we get

a neighborhood Ui of PQ such as bfb^P) > 0 for any P € Ut. In this case it
is no loss pf generality that we may identify this Ui with the above preceding

ί/i, so that %(P) > 0 for all P € U and i = 1, 25...,π. Notice that the kernel

of U coincides with the kernel of U. Now, {e^U); z = 1,2,... ,n\ are orth-

Όgonal abelian projections and X^ £$([/) =• 1 in A(U\ Since the structure space
<-l

of A(U) is homeomorphic to C7, one easily verifies that eτAeτ(U} may be

identified with C(U\ the. ring of all continuous functions on L^Ccf. [11; Lemma

4.1]). Therefore M (̂P) > 0 (P € U) imply that there exists 'ct € A such that

Ci(U) > 0 and c&b^U^bfb^U) = eΛ(U\ Take an element ut€A with u{(U)

. We have

Besides, as u^ufJJ} is a non-zero projection, utu*(U) is a non-zero projection.

It follows that HitttCP) ̂  ^(P) for each P € U. Thus ^(ί/) = e,(U\

Put wί; = Wi^*. By ' the above discussions, \Uij(U}', i, j — 1, 2, ..}τz} are the
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matrix units o£ A(U\ hence A(U) is isomorphic to the C*-tensor product of

and Mn. After all, A(U) ~ C(t/)®Mw. This completes the proof.

Now, let {Ua\ be the family of open sets corresponding to each point
of Ω(A) in the preceding lemma. Denoting by [ufj] those elements of A which
induce the matrix units of A(Ua\ we have

n

a(Ua) = Σ βδ(E7«XKE/«) for any a € A
U=ι

where \a?fJJ}} may be considered to be continuous functions on Ua. Put

B = \J A(P) and define the map pr from B to ΩCA) as pr(a(Pj) = JP. Let
PεΩ(4)

<£« be the map from Ua X Mn to pr'I(Ua\ defined by

It is clear that φ« is a one-to-one mapping from U« x Mn onto pr~l(Ua). If
P € J7« Π C/β, we have, for any a € A

*([/« n i//,) = Σ <fi*(Ua n uβ)u5(uΛ π w = Σ ββ(t/α n uά&(uΛ n ι/β).ί,^ v
Put 0Ba(P)[(e&CP))] = (^fi(P)), then it is not difficult to conclude that gβa(P)€G.
Moreover,

= Σ αδCF^sCP) = Σ βS

Suppose Pσ converges to P in C7α Π C/js Let (X4j) be an arbitrary element of Mn

and α = Σ ^iflfij € A, then

Λ n c/β) = Σ ^nsct/α n t/,) = Σ «5(t/« n t/>δ(^ n t/β).ί,j tj
Since {αf/(P)j are continuous functions on Uβ, af}(Pσ) converges to

for each i,j = 1,2,..., w. Therefore

Hence ^«(Pσ) converges to gβ*(P) in G i. e. ̂  is a continuous mapping from

C7α Π i73 into G.
Let us consider the topology on pr~Ί(Ua) induced by φx from ί/α x Mn,
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then one easily verifies that this induces the unique topology on pr~l(UΛΓ\Uβ).
Therefore \φa] defines a topology on B. In the following we consider the
space B endowed with this topology. Then, we have

THEOREM 3. Let A be an n-dimensionally homogeneous C*-algebra, then
A defines a fibre bundle $5 (A) = \B, pr, Ω(A), Mn) G}.

PROOF. By the definitions of the topology of B and the above arguments
the following results are obvious;

(i) pr is a continuous map from B to Ω(A),
(ii) φa is a homeomorphism from UΆ x Mn to pr~l(U*),
(iiΐ) φβ?pφa,p; Mn - *Mn (P€ Ua Π Uβ) coincides with the operation

of an element gβ<*(P) of G and the map g^. UaΠUβ - *G is continuous
on UaΠUβ.

Moreover it is clear that pr φΛ(P, (λij)) = P and pr~l(P) is homeomorphic
to Mn for each P € Ω(A). Therefore 55= \B9pr9O(A)9 Mn, Ua, φ«} is a
coordinate bundle.

On the other hand, the above discussion shows that if U and If are

open sets in O(A) such as A(U)^C(U)®Mn and
_ _

where U and U' mean the closures of U and U', we get, for corresponding
functions φ and φ' to U and U'9

Φ(P, OO) = φ'(P, g(P}l(^)Ί) for each P € U Π U'9

where g(P) denotes an element of G corresponding to the couple of (φ, φ') and
P € U Π U\ Besides, g(P) is a continuous function on U Π U'. This means
that the coordinate bundle 25 = [B, pr, Ώ(^l), Mn9 G, Ua, φΛ\ defines uniquely
the fibre bundle S(JL) = {B, pr, O(A), Mn, G} independent from the covering
\Ua] provided that each element of the covering has the above mentioned
property.

DEFINITION. We call this fibre bundle 55(4) the structure bundle of A.

Denote by Y(A) the set of all onto *-homomorphisms from A to Mn and

consider the pointwise convergence topology on (̂̂ 4.). Define the map pr;

Y(A) - >Ω(A) as fr(ti) = θ~l(ϋ) for θ € Y(A) and the map φ« : Ua x G - >

pr~l(Ua) such as

φXP,#)(α) = g-ll(afl(P)y] for P € UΛ9Jt € G and a € A Then it is easily
checked that /r is a continuous map and φ« a one-to-one map from Ua x G

onto pr~\Ua\

THEOREM 4. » = {F(4),/f,β(^),G,G,Z7«,φα} £5 /A^ associated principal
bundle of 55 = {B, />r, ίl(A), Mn, G, C7β, φαj
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PROOF": ".By the definition of Y(A) and pr, it is clear that the fibre over
the point P € Ω(A) is homeomorphio to G. Suppose that (Pσ, gσ} converges to

(P, g) in Ua x G. Since a^(P) is a continuous function on Ua for each a € A
and zVjv== 1,2,.,. ,7z, the matrix (au(Pσ)) converges to <X/(P)). On the other
hand g^ 1 converges to g~l. Hence, we get

φa&r/ffM = #σ '[(*δ(Pσ))] ~t ̂ M (P))] .=* φl(P, #)(*)

because G is a topological transformation group of Mn. Thus φa(P, g) is a

continuous map. Conversely if φ«(Pσ, gσ) converges to φΆ(P, g) in pr"\(Ua\

tliφα pr(φq(Pfτ,gσ}ι = Per converges to ρHφa(P} gj) = P. On the other hand, for an

arbitrary matrix (%) € $fn, put a — X) X^wg- then φa(Pσ,gσ)(a) = #σT<Xj)] and

., Hence ^T^)] converges to ̂ [̂(λ )̂], that is, ̂  con-

verges :;to gr'1 in G. Therefore gσ converges to g and φά1 is continuous.
At last, for P e Ua Γl Uβ we have

Therefore the coordinate transformation gβa(P) of Sδ coincides with the one of

Sδ and so ^6 =i~\Y(A),fr, Ω(A), Mn, G, G,Ua,φa\ is the associated principal
bundle of » = ίB

w } °' - ' :v - --•Consider agaiα the coordinate bundle S =^{β, prvίl(A), ,MW? G, U^φal and
let 4o be the' space of all cross-sections of S5. Then ^40 "."becomes an algeϊbra
under the pointwise addition and multiplication and natural scalar multi-
plication. Besides, one easily verifies that A0 is complete under the norm | |/Ί|=f
sup ί|/(>)i|. Define the ^-operation on A0 as ''/*(P) = (/(P))* f or / € ^ό,
JteΩ(Λ) . .

then it is almost clear that AQ becomes a C^-algebra with this ^--operation. The
relatron between two C^-algebras A and AQ is given in the following

THEOREM 5. An n-dimensionlly homogeneous C*- algebra A is *-isomorphίc
to the C*- algebra AQ defined by all cross- sections in the structure bundle

. PROOF. By the definition of the topology of B, it is clear that the map:
P € ίl(A) -> Λ(P) € 'JB defines a cross-section fa in S5 for each a € A. Then
the'rrίap: a^A-^fa €z AQ is an isomorphism from A into ^40 In tne following
we shall show that this mapping is onto. Take an arbitary element / € AQ and
define the Mw-valued function a(θ) on Y(Λ) as follows;

if θ = φ«(P, g\
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where

The value of α(0) is independent of the representation of θ, in fact, if

θ = φ i(P, g'\ we have

The same argument as in the proof of the continuity of φa in Theorem 4

shows that a(θ) is a continuous function. Moreover, for θ == φa(P,.g')

a(g θ) = a(~

where g θ means the *-hornomorphism g[β(a)~\ (a € ^4). Therefore, by [10;
Theorem 9.2], there exists a corresponding element a £Ξ -A §uch as #(<z) === 5(0)
and one can easily verify the rest of the proof i.e. f = fa Thus A is isoπior-

phic to'^Ίo

With the aid of this theorem, we can prove the following natural cor-
respondence between two *-isomorphic w-dimensionally homogeneous C^-algebras
and their structure bundles.

THEOREM 6. Let Aτ and A2 be n-dimensionally homogeneous C^-algebpas,
then Aτ is *-homomorphic to A2 if and only if there exists a bundle tnap h

from S(A2) to ^{A^) such as its induced map h from ίl( 2̂) to '..ίϊCΛ^) is
one-to-one.

COROLLARY. Let Aτ and A2 be n-dmensionall homogeneous C*-algebras,

then Aτ is *-isomorphic to A2 if and only if SK^) is equivalent to S5(A2)*

We take the slightly different definition from that of Steenirod [14] for
the equivalence of coordinate bundles, that is, two coordinate bundles with the
same fibre and group are said to be equivalent if there exists a bundle map
which induces the homeomorphism between their base spaces. The equivalence
of two fibre bundles are understood in the analogous way. We notice that alt
reults in [14] are not essentially changed under this definition of the equi-
valence relation.

PROOF OF THEOREM Let TT be a *-homomorphism 'from A τ onto A2 'and

»ι = {Si,M,«UiX Mn9G9U'y9&\ and »a = [B2, pr29 tl(A2\ $n,G,#β,φβ}
the coordinate bundles belonging to S(^4j) and S(^42) respectively. Then,

for any P € ίl(A2) we have ττ~l(P} € Ω(Aτ). Hence ΊΓ induces the map h:

defined by %(?);,= π-\P) and,the map h: B2-*Bl defined by
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h(b(Py) = ir^C&XδCjft)) for b€A2. Clearly h is continuous and one-to-one. A

simple computation shows that prjτ = hpr2, hence h carries fibres into fibres

and induces the map Ji. Take an arbitrary element P€ Ua Π Tι~l(U'y) and con-

sider the map

Λ«(^)[<X)] = Φ;:̂ p) A φα,p[(λί;.)] for (X,,) € Mn.

One may easily verify that this mapping is a ^-automorphism of Mn, i. e.

G. Suppose Pσ converges to P in C7α Π h"Ί(Uy\ Put £ =

and *•-'(*) (EG?)) = £ al(h(P})vl(h(P}\ then the matrix (al(h(Pσ)}} converges to

the matrix (<2tf(/ί(P))), for /*(Pσ) converges to λ(P) and alj(P) is a continuous

function on C7γ for each i j. Therefore <7γ«(Pσ)[(λy)] = (<2?j(/ϊ(Pσ))) converges
to #γ«(P)[(λί<;)] = (aytffι(P))\ which implies that the map #y«(P) is a continuous

map from UaΓ[h~\U'y) into G. Hence, by [14: Lemma 2.6] h is a bundle map.

Next, suppose that there exists a bundle map h from the bundle 5SX = {J32<

/>r,,ilU,), Mn,G,Lr

α,<M to the bundle », = {B^r^ίXΛ), Mn,G,U^φyl

which induces the one-to-one continuous mapping h from O(42) to ίX^).
Since Ω(-42) is a compact space and ίX-Ό a Hausdorff space, h'1 is continuous
and a slight modification of Lemma 2.7 in [14] shows that h'1 is continuous,
too.

For a € Al9 put ττ(α)CP) = h~l(a(Tι(Py>) (P € OU2)), then ττ(a)(P) is a
cross-section of S52. Hence, by Theorem 5, we can say that ττ(a) belongs to

A* For F€ UΛ Π S-^C/ X put Λl(P) = ΣλίK/F) and
«,^

then

Similarly

Λ(αz(P)α2(P)) = h(aτ(P))h(az(P)\ and

Hence TT is a ^-homomorphism from Aτ into -A2.
We shall show that TT is an onto map. Let φ and ψ* be pure states of ^42

and TΓφyiΓψ their canonical representations. Denote by PZ,P2 their kernels. Then
there exists a pure state £>'(resp. 'ΨO of rJτφ(A^) (resp. Tr^C^la)) and a *• isomor-
phism 6>z(resp. 6 2̂) between A2(Pj) and ττ^(^2) (resp. Aτ(P^) and 7rψ(-A2)) such
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that

ψ(a) = φ(θτ(a(Pιϊ)} (resp. ^(a) = V(θ2(a(PM

for all a 6 A2. Suppose φ =4= ψ*, then we can find an element a €ί A2 such as

. Moreover there exists an element b € Al such as b(7i(Pιy)=:h(a(Pl))

and b(h(P2)) = h(a(P2)) even if α(Λ) = α(P2) or not. Then we get

= rfβ) Φ ψ(α) = m«Λ))) = m« W.))) = *«*))
That is, TrC^) separates the set of pure states of u42. Hence, by [11: Theorem
7. 2], we have 7r(A^ = ^42.

In the case that Aτ is *-isomorphic to A2, the induced map A is a con-

tinuous one-to-one map from Ω^A2) onto Ω(A ,), hence A is a homeomorphism
between the base spaces of the structure bundles. Thus Aτ is * -isomorphic to
A2 if and only if 58(̂ 4-!) is equivalent to ^5(̂ 2).

THEOREM 7. Let Aτ and A2 be n-dimensionally homogeneous C*~algebras.
If they are algebraically isomorphic each other, then there exists a ^-isomor-
phism between them, that is, Aτ and A2 are ^-isomorphic each other.

PROOF. Let 7r be an isomorphism from Aτ onto A2, then TT is bicontinuous
and we can see that P € ίl(^4x) if and only if ττ(P) € Ω(A2). Hence, by the
analogous argument as in the proof of the above theorem, one easily verifies
that the bundle S(^4ι) is Go-equivalent to the bundle S(^42).

Since G0 is topologically isomorphic to the quotient group of GL(n,C) by
its center and G the quotient group of U(n) by its center, a straight-foward
calculation using the structure of GL(n, C) and U(n) shows that the homo-
geneous space GO/G is a solid space. Therefore, by [14 : Theorem 12.7], ^(Aj)

is G-equivalent to S5(-42X which completes the proof.

COROLLARY. If Aτ is homomorphic to A2, then Al is also *-homomorphic

to A2.

PROOF. Let TT be a homomorphism from Aτ onto A2. As TT is continuous,

the kernel / of TT is a closed two-sided ideal of Aτ. Hence I is self -adjoint. Put
AI = Aτ/I, then clearly AΊ is an n- homogeneous C*-algebra and TT induces an
isomorphism from AΊ onto A2. By the above theorem AΊ is ^-isomorphic to
A2, hence Aτ is ^-homomorphic to A2.

Next, we shall prove the construction theorem for n- homogeneous C*- algeb-
ras from the bundles {B. pr, Ω, Mnί G\ where Ω is an arbitrary compact

Hausdorff space.
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THEOREM 8. Let the fibre bundle S5 = [B, pr, Ω, Mn, G} fo gwera where
ίl denotes an arbitrary compact Hausdorff space, then there exists, except
the relation by ^-isomorphism, uniquely an n-dimensionally homogeneous
& -algebra A such that the structure bundle ^Q(A) is equivalent to S.

v j ^ooirβ Let Λfn(ώ) be the fibre over the point ω € ίl and ~ft/«}, ίφ«l the

coordinate neighborhoods and coordinate functions of $5. Without loss of gene-
rality, we may .; assuple that Mn(β>) is an algebra and, Λfw(ω) ?is *-isomorphic to

ΛfΛ by the , map :φ^L = ^>*. L-t A be the set of all cross-sections in §5. We
consider the gointwise addition, multiplication, -^-operation and natural scalar
multiplication4 in A, tfon Ά becomes a ^-algebra. For a € A, define the norm
||<z|| = sup ||tf(β>)||, then it is almost clear that A badomes ύ C*-algebra undaί

ωeΩ

this norm structure. We shall show that A is an ^-homogeneous C^algebra. Take
an arbitrary point ω € ίl and put -Pώ(j = {a € Ajα(ω0) = 0} ; then Pωo is a closed

ideal of A. We assert that A/Pωo = Mn(ω0). Suppose ω0 e ί7α and consider the
map: a € A-+a(&^ € Mn(ω0), ..\then clearly this mapping is a *-homomorphism

from A into Mn(ω0) Let έ be an arbitrary element of Mn(β>0\ There exists a

neighborhood U of ω0 such as U d [/« and we can find a continuous function
/ on ίl such as /(ω0) = l and f(Uc)=0 (Uc means the complement of U).
We define the function <z(ω) as

for , ω € 't/β

= 0 for ω € C7J

One easily verifies that tf (ω) is a cross-section of S, i.e. a €L A and Λ(G)O) = έ.
We have A/Pωo ^ MΛ(ω0).

Next, let Z be the center of A. The above result implies that if a € Z,
then α(ω) =/"(ω) l for some /* € C(ίl) where 1 means the identity of Mw(ω).

Conversely, for any function f € C(ίl) the cross-section af defined by tf/ω)

= /(ω) * 1 belongs to Z. Therefore Z = C(ίl) and the spectrum of Z is homeo-
morphic with O.

Now consider an arbitrary irreducible representation IT of A, then TT induces

an irreducible representation of Z having the kernel ττ~l(0) Π Z, which defines
a point ω0 € O. Take the primitive ideal Pωo constructed above and let a be
an arbitrary element of JPωo If ωσ converges to ω0 in Ua, pa(a(a>a)) converges
to pa(a(<t>o)\ Hence for any £ > 0 there exists an index σ0 such that

— />«(<z(®o))ll <f f°r σ ̂  σ0. We have,

that is, /(ω) = ||α(ω)|| € C(ίl) and af € Tr'KO) Π Z. Moreover α*α(



APPLICATIONS OF FIBRE BUNDLEβ

implies a*'a :f£ α/. Hence, a6 ττ~1(0) that is PωQ d ττ~ 1(0). As P^ is a maximal

ideal of A, we get Pωo = w'^O). Thus any irreducible representation of A is
^-dimensional.

Let {'5', pr,Ω(A\ Mn, G, Uy, φ y j be the structure bundle of A For a
point b €: By there exists a cross-section α(ω) such that α(ω) = έ where pr(b)^=ω*
We define the map h : B-> B' as h(b) = έ2(Fω). This is clearly well-defined arid
we notice that the restriction of A to MJ&) is a ^-is0rπforphism from M^>)

to A(Pώ). Let Λ be the map defined by Λ(ω) — Pωi By ^ the preceeding Sisέus-

siσns, Λ is a homeomorphism from Ω to ίl(̂ 4). Moreover we have pr'h = hpr.

Thus h carries fibres'into fibres and induces the map Ji. Put #yα(^)~φy>(ω)λφΛlft?

for ω € Ua Π Tr\Uy\ One verifies easily that ^γα(ω) € G 'and they satisfy;^

= ^(«), ω € Γ7α π ί/fl Π r^L^),

g,y(h(^Ydya(ω) - ^«(ω), ω € C/« Π X'K^; Π C/ί)

where ^αj3 and gly denote the coordinate transformations of §5 and
respectively. Take an arbitrary matrix (X^) and suppose ωσ converges to ω0 in

Ua Π h-\Uy\ Let .Λ(φ«(ω,(λy)) = X) bl(h(ω)}ul(h(ω)\ We see that ^(ωσ) cpn-
ί,.;

verges to Λ(ω0) and as W/P) is a continuous function on Uy for each /,Λ

Therefore the map; ω € ί/α Π Tι~\U'y) — ̂  ^y«(ω) € G is continuous. It follθws
from [14: Lemma 2. 6] that A is a bundle map from S5 to

The above theorem offers a new method for the construction of the H-
homogeneous C^-algebras, in fact there exist a large -number of non-isomorphic
n- homogeneous C^-algebras according to the number of non-equivalent fibre
bundles over the compact HausdorfF spaces with fibre. Mn and group G.

Now, it is λvell known that an rc-dimensionally homogeneous W^^-algebra
is isomorphic to the W* tensor product of a commutative W^-algebra and M^
One might suspect that the analogous result holds for an arbitrary 72-homό-
geneous C^-algebra. However this is not the' case as we shall show in the follow-
ing discussions. At first, we have

THEOREM 9. An n-dimensionally homogeneous C* -algebra A is isomorphic

to the C* -tensor product of a commutative C" '-algebra and Mn if and only
if the structure bundle *&(A) of A is equivalent to the product bundle*

PROOF. Combining [14: Corollary 8.4] with Theorem 4 ai}4, thfe cross-
section theorem (cf. [14: p. 36]) one verifies easily that it is sufficient to prove
the following result; an n-dimensionally homogeneous C*- algebra is isomor-
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phic to the C*~tensor product of a commutative C*-algebra and Mn if and

only if the principal bundle {Y(A), fr, Ω(A\ G,G} admits a cross- section.

Suppose that the bundle \Y(A), pr, Ω(A\ G, G} admits a cross-section f.

For any element a € A, put a(P) = /(P)(α) (P € Ω(A)). Then, clearly α(P) is

a Mn- valued continuous function on Ω(A) and the map : a -> a is a *-homomor-

phism from A to C(ίl(-4), Mn), the ring of all Mw-valued continuous functions
on Ω(A). If 5(P) = 0 for all P € Ω(A), then a belongs to every kernel of /(F)

(P € Ω(-4)) which coincide with Ω,(A) because f is a cross- section. Hence a = 0,

and A is isomorphically embedded into C(Ω(̂ l),Mn). Then, by Kaplansky [11:

Theorem 3. 4], we see that A is isomorphic to C(Ω(A\ Mn\ On the other hand,

by Grothendieck [8] and Takesaki [15], C(Ω(A), Mn) is isomorphic to C(Ω(A))

MΛ, the C*-tensor product of C(Ω(A)) and Mn. Thus we have A ̂

Next we assume that -4 = C 0 MM for some commutative C*-algebra C.
α

We may assume that C = C(Ω) for a compact space Ω. As we mentioned above,

C(Ω) <g) Mn ̂  C(β, Mn\ so that, by Corollary of Theorem 6, we can set A =
a.

C(Ω, Mn). It follows that the center Z of A is isomorphic to C(Ω). Take a

primitive ideal P of -4, then P Π 2 is a primitive ideal of Z. Hence P Π Z

defines a point ωp€Ω. By Kaplansky [10: Theorem 9.1] the mapping P-*P(ΊZ

is a homeomorphism between Ω(A) and Ω(Z). Therefore the above mapping

P -> ωp gives a homeomorphism between Ω(A) and Ω. Moreover, since P =

\a € ^4|α(<») = Oj is a primitive ideal of A and A is central (cf. [10], [11])

we have

P= \a € A|α(«P) = 0}.

Now each ω € Ω defines an element θω of (̂̂ 4.) by θω(a) = a(ω) for

Λ € A Put /(P) = 6>ωp for each P € Ω(4), then / is a cross-section of \Y(A\

pr,Ω(A)9 G, G}. In fact, it is clear that /(P) is a continuous function on

to Y(A) and

fr(f(Py> = the kernel of /(P) = {<z € A θωP(a) = 0} = [a 6 ̂  | α(ωP) = 0}

This completes the proof.

Theorem 8 shows that the theory of fibre bundles of ^-homogeneous

C^-algebras becomes a trivial one if all ^-homogeneous C*-algebras are isomorphic

to the C*- tensor products of some commutative C^-algebras and Mn. But as we

mentioned above, this is not true. We can show the following
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THEOREM 10. For every n > 1, there exists an n-dimensionally homo-

geneous C*-algebra which is not isomorphic to the C*-tensor product of a
commutative C*-algebra and Mn.

PROOF. Considering Theorem 7 and Theorem 8, it sufficies to prove
that there exists a principal bundle over a compact space with group G which
is not equivalent to a product bundle. For the convenience of discussions, we
take the notation Gn for G. Then the group Gn may be considered to be a
closed subgroup of Gw f l by the suitable identification. Since Gn+l is a Lie
group, by the bundle struccture theorem (cf. [14 : §7. 4 and 7. 5]), Gn becomes
a fibre bundle over Gn±JGn with fibre Gn and group Gn. Thus we get a prin-
cipal bundle over the compact space Gn+1/Gn with group Gn. We assert that
this bundle is not equivalent to the product bundle for n I> 2. In fact, if this

bundle is equivalent to the product bundle we have

Gn+l ̂  Gn+l/Gn x Gn.

Hence, by [14 : §17. 7], we get

But this relation does not hold for n > 2 as shown in the following discus-

sions.
At first, it is known that U(n) = TSU(n). Hence a well-known isomor-

phism theorem for topological groups shows that U(n)/T = SU(n)/SU(n) Π T
(topologically isomorphic) by the canonical correspondence. Therefore we may
identify Gn with SU(n)/SU(n) Π T. Let / bs the canonical map from SU(n)
to Gn, then [SU(n\f\ is a simply connected convering group of Gn by [2: p. 59].
Hence, by [2 : p. 54, Proposition 7], the Poincare group of Gn is isomorphic to
SU(n) Π T, which is a cyclic group of order n. Therefore one easily see that
the above cited relation does not hold for n ̂  2.

REMARK. Using the homotopy groups of SU(n) we can show another ex-
amples of bundles which are not equivalent to the product bundles. However,
in this case, the discussions are somewhat complicated so we give here only the
brief sketch of these examples.

By the bundle structure theorem used above, SU(n -f 1) becomes a principal
fibre bundle over SU(n + l)/SU(n) with group SU(n). On the other hand we
see that Gn is topologically isomorphic to the factor group SU(n)/SU(n) Π T.
Hence the above bundle induces a Gw-bundle over the compact space SU(n +1)
/SU(ιi). We can prove that this bundle is not equivalent to the product bundle for
n > 2. In fact, suppose this bundle is equivalent to the product bundle, then
we can show that the original bundle SU(n 4- 1) is *SC7(;z)-equivalent to the
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SU(n) Π T-bundle and since SU(tί)(]T is a discrete group, the bundle {Sί/(/ι + l),
p, SU(n + l}/SU(n\ SU(n\ SU(n) Π T} is equivalent to the product bundle by

[14: Corollary of the classification theorem]. We have

SU(n + l)^SU(n + l)/SU(n) x

Therefore we get

ττ2n(SU(n + 1)) ̂  τr2w(St7(;2 + l)/SϋO

Now; by the theorem of Bott, we have ττ2n(SU(n + 1)) = 0 and by the
theorem of Borel-Hirzebruch τr2n(SU(n)) is a cyclic group of order n\, which

implies a contradiction (cf. [1], [16]).

This completes the proof,

COROLLARY. Let Aτ and A2 be n-dimensionally homogeneous C*-algebras,

then the isomorphic relation between their centers does not necessarily imply
the isomorphic relation between Aτ and A2

x N

The proof is trivial once we consider the C* tensor product C(Ώ(^1))®MWa

for the structure space Ω(A) of a C"*-algebra A which is not itomorphic to the

C*-tensor product of a commutative C*-algebra and Mn.

At last, we shall study the relation between the unitary group UA of A
and the group of ^--automorphisms GA of A leaving the center elernentwise fixed.
Since U(n)/T ~ SU(n)/SU(n) Π T by the canonical correspondence, we may
identify G with SU(n)/SU(n) Γ) T. Since SU(n) ft T has a local cross-section
in SU(n)(cf. [14: § 7.4]) there exists a neighborhood V of the unit of
G( = SU(n)/SU(n) Π T) and a continuous mapping f of V into SU(n) such
that f(g) induces the (inner) ^--automorphism g for each g € V. It follows T
has a local cross-section f in V(n) whose values belong to SU(n). From [14:
Corollary of Theorem 7. 4], U(n) is considered to be a principal bundle over
G(= U(n)/T) with group T. The structure of this bundle is the following:

Let V and / be a neighborhood of the unit of G and a local cross-section
over V mentioned above, then the family {σ V\σ € SU(n)} becomes an open
covering of G which is the system of coordinate neighborhoods of G. We
define the local cross-section fσ on σ V = Vσ by fσ(g) — σf(σ~1g) for g^Vσ.
For each (g, λ) € Vσ x T, define the function φσ(g, λ) = \fσ(g\ We get the co-

ordinate transformation gσr(g} = (/>(#))"Ί/τ(#) for g € Vσ f] Vτ which belongs
to SU(n) Π T. Hence U(n) is a fibre bundle over G with fibre T and group
SU(ri) Π T. As it was shown in the proof of Theorem 10, the Poincare group
of G is a cyclic group of order n. It follows that the Poincare group of
G X T is isomorphic to the product group of order n and the additive group
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of all integers, the Poincare group of T. On the other hand, it is known that
the Poincare group of U(n) is isomorphic to the additive group of all integers.
Therefore the above bundle is not equivalent to a product bundle.

Now let G(P) be the group of all -^-automorphisms of A(P), then we have
G(P) = G. We consider on G(P) the simple convergence topology on A(P},

then the preceding isomorphism relation becomes topological. Put BG = \J G(P)
PeΩ(4)

For every b € Bθ, there exists a unique point P €L Ω(A) such as £€G(P). We
define po(b} = P. Let Ua be a coordinate neighborhood of the structure bundle
of A. We define the coordinate function ^ of Ua X G onto pel(Ua) by

for each a € -4(P) where λίX^[/>α(α)]) means the (i, j) component of the matrix

g{.pa(β)\ and pΛ = φά,V. Take an arbitrary element P € Ua Π t/p, then we have,
for each a ζ A

= Σ

and

Hence we get

that is,

We introduce the topology on Bff by the family of the mapping {^«|. Then
the above arguments show that BG is a fibre bundle over Ω(A). The fibre of
this bundle is G and the group is also G, but acting on the fibre as inner
automorphisms.

Set Bπ = \J U(P) where U(P) denotes the unitary group of A(P\ Since
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U(n) is an invariant subspace of Mn under G, Bπ becomes a fibre bundle over

Ω,(A) with fibre U(n) and group G as a subbundle of B. For each u € C7(P),
we define a ^--automorphism gu € G(P) of -4.(P) by gu[a]= uau'1 for <z€ A(P\
Set the mapping z> : Bπ — > BG by v(u) = gu. Denote by η the natural mapping :

U(n) ->• G. Then we have, for a € -A(-P),

v(μ)[a\ =

where pr(u) = P € C7α. Hence, by [14 : Theorem 9. 6], we get the following

result:

bundle over BG relative to the projection v. The fibre of

the bundle is one- dimensional torus group T and the group is SU(n) Π T

acting on the fibre by left multiplications.

The restriction of the structure group from T to SU(n) Π T follows from

the following observations.

Set

Waσ = ^a(Ua X Vσ) and vaσ(^a(P, g\ λ) == φa(P, λ/α(flf))

for each (P, g, λ) € ί7α x Vσ x T, where Fσ and j£(#) mean the notations

used in the first paragraph of our discussions. As it was shown in the proof

of the above cited theorem, {Wασ} and [vaσ\ are the coordinate neighborhoods

and the coordinate functions. The coordinate transformations are

for b = γ£P,g) € Waσ {] Wβτ

which are easily seen to belong to SU(n) Π T.

From Theorem 5, one can see that there exists a one-to-one corres-

pondence bstween UA and the family of all cross-section in Bπ. That is, for

each element u€UΆ the mapping: P-+u(P) € Bu defines a cross-section over
Ω,(A) and conversely, for each cross-section f over Ω(A)9 there exists an element

ue UA such as u(P) = f(P\

Consider a -^-automorphism θ leaving Z elementwise fixed We have

Θ(P) Π Z = P Π Z for each primitive ideal P of A and as A is central this

implies Θ(P) = P i.e. P is invariant by θ. Hence θ induces a -^-automorphism

Θ(P) on -A(P) and one sees without difficulty that the mapping P-*θ(P) defines a
cross-section of BG over Ω(-A). Conversely, suppose jΓ(JP) is a cross-section of BG.
A straight-forward calculation shows that f(P)[a(Py] defines a cross-section of
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B for each a € A. Hence there exists an element 5 € A such as a(P) = f(P)
\_a(P)~\ by Theorem 5. Define the mapping θ by θ(a) = a, then one verifies easily
that θ is a *-automorphism of A leaving Z elementwise fixed and 0(P) = f(P\

Put ΏB = |0(P) : P € βU)j c: β*. For each element u € ZΛ, we define
the inner automorphism θu(a) ~ uau~l. Then the mapping θu(P)-*u(P) is a
cross-section of the relative (SU(n) Π T5 SU(n) Π T)-bundle β^ over the base
space (BG,Ωθu). Conversely, let θ be a ^-automorphim of A leaving Z element-
wise fixed. If there exists a cross-section f in the relative bundle Bσ over βθ,
then / defines a cross-section f of the bundle Bu over β(A) by /'(P) =/(0(P)).
Hence we can find an element u € C/4 such as u(P) — f\P\ We have ΘU(P} =
0(P) for all P € β(A). Thus 0 is an inner automorphism of A. We have

THEOREM ll. Bu is a fibre bundle over BG relative to the map v. The
fibre of this bundle is T and the group is SU(n) Π T acting on the fibre by
left multiplications. A *~automorphism θ of A leaving the center elementwise
fixed is inner if and only if there exists a cross-section in the relative
(SU(n) Π T, SU(n) f] T)-bundle Bπ over the base (BG, ίlθ)

COROLLARY. If Ω(A) is arcwise-connected, arcwise locally connected and
simply connected, then every *-automorphism of A leaving the center ele-
mentτvise fixed is inner.

PROOF. As it is clear that ίlθ is homeomorphic with ίl(-A) for each
'^-automorphism θ, ίlθ satisfies the same conditions as O(A) does. Hence, by
[14 : §13. 9], the relative bundle Bu over Ω,9 is equivalent to the product bundle.
Therefore this bundle always has a cross-sect ion.

REMARK. Assume ίl = G and A = C(ίl) ® Mn, then by Theorem 9,

B^G x Mn, hence Bπ^ G X U(n). Moreover we get BG^G X G. A is con-
sidered to be the ring of all Mn valued continuous functions on G.

Define the ""-automorphism θ of A by

θ(a)(g) = g\_a(g)'] for each a € A and g € G.

We have ίlβ = \ ( g , g ) \ g ^ G}. We shall show that this automorphism is not
inner. In fact, suppose there exists a cross-section f in Bu over ίlθ

? then we
have

f(g, g) = (g, σ(#)) € Bπ. Since f(g:g) induces the automorphism θ(g\ σ(g}
induces the automorphism g for every g € G. Hence σ(g} is a cross-section of
the bundle U(n) over G. But the first part of our discussions in this section
shows that U(n) is not a trivial bundle over G, which is a contradiction (cf.
[14 : §8. 31]). Thus there exists an outer ^-automorphism in A.

3. Concluding remarks Though we assumed the unit in a C*-algebra
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throughout this paper, the assumption is not essential in our discussions of §2
except Theorem 11. Some minor modifications and usual transitions for lack of
the unit such as taking the word "vanishing at infinity" for "all" make us
enable to prove the analogous results for an /z-homogeneous C^-algebra without
unit, so we omit the details.

ADDED IN PROOF. After writing this paper, Glimm's new paper has
appeared 'Type I C*-algebras, Ann. Math., 73(1961), 572-612" in which he treats
the analogous problem to our Theorem 1 without the assumption of the unit.

He informed us kindly that FelΓs unpublished paper, "The structure of algebras
of operator fields", treated the same problems as our §2 and his results overlap
with ours in many points, though we do riot know which parts of this paper
overlap with his. All results of this paper were derived independently of
those of the above paper.
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