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1. Introduction. Various sufficient conditions are known for the con-
vergence oΐ Fourier series at an assigned point or almost everywhere. For
example, the Dini, Lebesgue and other tests for the former case and the
Kolmogoroff-Seliverstoff and the Marcinkiewicz theorems for the "almost
everywhere" case. On the other hand Marcinkiewicz obtained a theorem of
another type, that is, for an integrable function f(x) of period 2ττ, if

Γ \f(χ + t) -f(*)\dt = θ(\h\/ log HAD
«/n

as h —> 0 for every x in a set £, then its Fourier series converges almost
everywhere in E.

A proof of this theorem is based on a decomposition of the function
f(x) into the sum of two functions ψ(x) and φ(x) which satisfy the Dini
and the Kolmogoroff-Seliverstoff conditions for some values of x respectively,
and on the localization property of convergence of Fourier series.

In this note we are interested in an application of his method to the
absolute summability of Fourier series which has the localization property for
suitable summability indices.

2. For the absolute summability the following theorems are known.

THEOERM A ([!]). Let I<^p<,2 and let f(x) be of period 2ττ and
integrable LP(Q, 2ττ). If the series

' lφ'®1' df}'" (2.1)

where 2φx(t) = f(x -f ί) -t- f(x — t) — 2f(x\ is convergent, then the Fourier
series of f is summable \ C, l/p + € \ at the point x for any 8 > 0.

This theorem shows that the summability |C, l/ρ+ £\ is of local property
for 1 ̂  p ̂  2. We note that the convergence of the series (2. 1) is easily
obtained from each of the next two conditions:
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r 1^0n log(i/ι*i)i»-** a<00> (2>2)
Λ £

f' I φx(u) \ »du = OOΛlog I/1 f I )»+") as ί -» 0 (2. 3)
Jo

where δ and ^ are some positive numbers.

THEOREM B ([2]). Let the Fourier coefficients of f(x) be an, bn. If the
series

Σ^W+fr?))1" (2-4)

fs convergent, then the Fourier series off is summable \C, 1/2 + B\ almost

everywhere for any B > 0.

This theorem is an amelioration of the Wang theorem [3] whose con-
clusion is the same one as above and the assumption is the convergence of
the series

oo

Σ(«» + #OOog«)1+δ (2.5)
w«l

where δ > 0. The convergence of the series (2. 4) is an easy consequence of
the convergence of (2. 5). Further we note that if

^(ί)=0(l/(log I/I ί I )>«+<) as t -+ 0 (2. 6)

uniformly in x for some £ > 0, the series (2. 5) with suitable δ > 0 and a
fortiori the series (2. 4) are convergent, hence the Fourier series of / is sum-
mable |C, 1/2 + £ I almost everywhere.

3. We shall prove the following theorem :

THEOREM. Let f(x) be of period 2ττ and integrable Lp(0 ,2ττ) (l

f l/(* + t) - f(χ) \ dt = o( i h I (log i/ 1 h i rxiog log i/ 1 h \ y-^) (s. i)
Jo

as h -+ 0 /br :r € £ d(0, 2ττ) where 8 is some positive number, then the
Fourier series of f is summable \C, l/p + δ| almost everywhere in E for any
δ>0.

In the case p — 1 we may take 6 = 0, that is, (3. l) may be replaced by
the weaker condition

\f(x + «)-/(*) I dt = 0( I A I / log I/ 1 A I ). (3. 2)
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PROOF. We shall follow the Marcinkiewicz method (cf. Zygmund [4] p. 170)
except the explicit use of the notion of density point.

If the Fourier series of two functions are both absolutely summable, so is
the Fourier series of the sum function. Therefore it is enough to show that
the function / can be written

/O) = φfcr) + Kx)

and the absolute summability of Fourier series of φ is concluded from Theorem
B almost everywhere, and that of ψ almost everywhere in E is concluded by
Theorem A.

For the simplicity we denote

λ(Λ) = (log I/1AI )-(log I/1AI )-p+1-* if 1< p ίS 2,

= Gogl/ |A | )- ' ifp=l.

From the assumption we can take a perfect set PC E where \E — P\ is
arbitrarily small and two numbers M and η such that

fJo
t)-f(x)\*dt for *€ P, \h\ < η.

Then, there exists a constant M' such that for any two points x, y in P,

\f(x) -/6>)l ^ M\(h)llp where h = [y - x\ < η. (3. 3)

In fact, supposing x < y and denoting

,
3 3

and H = [u € 7; !(«) > JVl we have

I H| ^N-1fξ(u)du^N-1\(h/3rι f \f(u) -f(a )\ du
J J

\f(x + t) -f(x) \'dt

£ Λr-1λ(V3)~IAλ(A).

Since we can find a constant M, independent of h such that MI > X(A/3)~'X(A),

we have

I H| ^SMJ/I/JV.

Similarly, considering the function ξ(u) = !/(«) ~/(^)| VX^ ~ ̂ ) instead of
(&) we conclude that the measure of set //j = [w € 7; f (u) > JV] is not greater
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than 3:M2II\/N, where M2 is a constant independent of h and N. Hence if N
is large enough, there exists a point u0 € 7 — (H U ί/x) such that

l/ω-/(«o)l

and we have (3. 3) with Af ' = 2ΛΓ1/2ί.

Let us put φ(x) = f(x) for x € P and let φOr) be linear in the closure of
each interval contiguous to P. Put

ψ(x)=f(x)-φ(x\

For x, y in P the function φ satisfies the condition (3. 3) with φ instead of /,
and by its linearity in the closure of the contiguous intervals of P, we have
easily that

\φ(x) - φ(y}\ :gM"λ(|;r -3>I)1/P for \x - y\ < η (3.4)

uniformly in x where M" is a constant independent of x,y.
Since I<:p^2, we have clearly λ(Λ)1/p=O(l/(log l/ |A| 1 / 2 4 ε) as h -> 0, and

we see the summability |C, 1/2 + θ| - hence |C, !//> + fi] - almost every-
where of the Fourier series of φ by Theorem B.

Now, in order to prove the summability 1C, l/p+S\ almost everywhere in
P of Fourier series of ψ, we make use of Theorem A. It is sufficient to show
that

for almost all x^P. For this purpose we shall only show the finiteness of the
following integral

oo x + τt/2J-» 1 - I U / j Λ P x 1 / ^

* (3 6)

since the other integral in (3. 5) is treated similarly. And this fact is the only
one left to prove, since we can take -\P\ so close to |£| as we please.

Denote by dτ = (aτ,b^, d2 = (<22,&2),... the intervals contiguous to P and
included in (0, 2ττ). For their lengths we use the same letters. We have ψ(t) = 0
f or t € P and

f
Λα<+Λ Λαi

^ 2"-1 f l/(ί) - /(«4) \>dt + 2"-1 Γ
Jat */«!

dt
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^ Ah\(K)

where A is a constant indepent of h arid d^ bίit not necessarily the same

in each occurrence.
By the Holder inequality we have ,

dr

ι / r Λ ' /»^— E^'-iE/ itωr^f
. .T jj.ϋ, / : .^ί=lV^ ' r,/

The inner sum in (3. 8) is not greater than

Γ
ί •'rti

= S, + S2

say, since in the term $2, if αt + ττ/25~l < t < bί9 we have fa > t — ττ/23. >

t - τr/2*-1 > αt and hence (t - ττ/2^1, ί - Tr/^dd^ that is? "P Π (t ~ π/2J~\
t — ττ/2J) is empty.

To estimate J we divide jt into two parts Jτ and J2 corresponding to 5Ί

and *SΊ respectively:

Now

oo

^ AΣ(Σ f iψcofw' ^ ̂ Σ (Σ^λw) . (3. 9)
J«0 \ / Jcli ' j*Q \ « /

For any non-negative integer m we denote by Λ^ the number of i such that
<7r/2m < dt ̂  τr/2m-\ Obviously we have

^ — Σ*-<
"

Then, (3. 9) is less than

Σ ^λ(4) (3.Π)
ί
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/P. (3. 11)

In the case 1 < ρ<L 2, (3. 11) is less than

1/5

1'"

by use of the Holder inequality, where 7 = €/(p — 1) and q = p/(p — 1). The
second factor is finite and the last factor is not greater than

N~ Tr^ + DOogOi

N.
riΠ

m-0 ^

which is finite by (3. 10).
In the case p = 1, (3. 11) is majorated by

Finally we have by (3. 7)

l/P

0 i at

1/P

. (3.12)

In the case 1 < p 5j 2, (3. 12) is not greaer than

(3el3)
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by the Holder inequality as in J19 and (3.13) is ̂  A Σ Nm(2m(m + l] l which

is finite by (3.10). In the case p = 1, (3. 12) is less than
00 -i J-l « ΛT

Thus we completed the proof of J < °°, and the theorem is proved.
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