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1. Introduction. In the modern theory of linear connections on an n-
dimensional differentiable manifold M, an important role is played by the frame
bundle B over M, and by the »* + # fundamental and basic vector fields Ej,
E, (1 <a,nu=<n) on B. While the fundamental vector fields E} are deter-
mined by the differential structure of M alone, the basic vector fields E, together
with the differential structure determine, and are determined by, a linear con-
nection on M. The vector fields Ef and E, are linearly independent everywhere
on B and satisfy the following structure equations :

[Ei, Ef]l= &Ei — &E;,
(1. 1) [Ea, Eﬁ] = - SZEA,
[E., Es]l = — TYHEy — RisES,

where [, ] denotes the Lie product (bracket operation), 85 is the Kronecker delta,
and T7s, Rl.s are functions on B corresponding to the torsion tensor and the
curvature tensor on M of the linear connection.

Now equation (1.1); merely expresses the Lie product in the Lie algebra
of GL(n, R), and equation (1.1); determines the torsion and curvature of the
linear connection. Therefore, among the equations (1,1), only (1.1), imposes
any condition on the basic vector fields E,. There arises then the natural ques-
tion: The fundamental vector fields E} being known, will any set of 7 wvector
fields E, on B satisfying the condition

(1. 1) [Es, Ef] = — &E

determine a linear connection on M ?

In an attempt to answer this question, we discover a new kind of con-
nections on M, to be called quasi-connections, which include the linear connec-
tions as particular case. More precisely, we shall obtain in this paper the follo-
wing results :

i) With any set of 7 vector fields E, on B satisfying (1. 1), there is associated
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a tensor” C of type (1.1) on M and an assignment ¢ to each coordinate system
(U,4") in M of a set of n* tunctions ¢ for which the law of transformation

in U N U* is (Theorem 3.1)
& ou™ — (@ %™ ou™ ou” -
"ot T outod o ot T

ii) The field of planes (i.e. tangent subspaces)spanned by the vector fields E,
on B is projectable onto the field of image planes of C on M (Theorem 4. 3).

iii) If EX E, are linearly independent everywhere on B, then (C, ¢) deter-
minesa unique linear connection on M (Theorem 5.1 and §9).

iv) If E}, E, are not assumed to be everywhere independent on B, then
(C,¢) may not determine a linear connection on M. However, by means of C
and ¢, a covariant differentiation of tensors on M can be defined. We call this
structure (C, ¢) a quasi-connection on M (§ 6).

v) In the general case iv), equation (1.1); imposes a further condition on
E,. If the number z? + m (< n® + n) of independent vectors among (E})., (Ea).
is the same at all points = of B, then the tensor C is of the same rank m (< n)
on M, and conversely (Theorem 4.2). In this case,

a) the condition imposed on E, by (1.1); is that the field of image mplanes
of C on M is involutive (Theorem 7. 2);

b) certain ‘curvature’ tensors for the quasi-connection (C,¢) exist (Theorem
8.1). '

vi) If C is of rank n everywhere on M, the quasi-connection (C,¢) is
equivalent to the linear connection with components I = C-‘}</>fm, where C is
the reciprocal of C (§9).

Since quasi-connection is a generalization of linear connection, there are
various concepts and problems relating to a quasi-connection similar to those
relating to a linear connection. But we shall not consider them in this paper.

2. Linear connections on smooth manifolds (cf. Chern [2], chapter 4 ;
and Wong [5]). In this section we give a summary of the theory of linear
connections which is needed in our later work. We assume as known the classical
(local) theory of linear connections and the elementary properties of n-dimensional
smooth manifolds (i.e. of class C® and with countable base) and their frame
bundles. All the functions, vector fields and tensors defined on a smooth mani-
fold or an open submanifold of it are assumed to be smooth (i.e. of class C*).

Each of the indices a, b, c,...... s Ly Jo Byeennn. , a8, ... » Ny 4, ¥,... Tuns from 1

1) For simplicity and following the convention in tensor calculus, we refer to a tensor
field 7" on M simply as a tensor T" on M, and we sometimes even call Tj,c (for example)

a tensor, meaning by it a tensor 7" of type (1,2) on M whose components in the coor-
dinate system (U,4!) are Tﬁk.
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to n. Summation over repeated indices, Latin or Greek, is implied.

Let M be an n-dimensional smooth manifold, B the frame bundle over
M, and 7w : B—> M the natural projection which maps the frame 2(x) atu€ M
onto the point u.

A covering of M by (local) coordinate systems gives rise to a covering of
B by (local) coordinate systems in the following manner. Let (U, «') be any
coordinate system in M with coordinate neighborhood U and local coordinates
#'. Then the tangent vectors X,(«) of any frame 2(x) in M can be expressed
locally as

2.1 Xolu) = L(j_> :
( ) (u) Z a ui u
where z&, are n® real numbers such that det (z.) <= 0. Thus, {= '(U), (&, x%)}
form a covering of B by coordinate neighborhoods #~*(U) and local coordinates
(W, za).
If (U, ") and (U*, 4'*) are two local coordinate systems in M, and « €
U N U*, then

(2.2) i =W, .l
If 2(x) € #'(U N U*) has the local coordinates (', 2%) and («*,z%), then
. auiu
2.3 o g OU
(2.3) = a2

Thus, the transformation of coordinates in 7 (U N U¥) is expressed by equa-
tions (2.2) and (2. 3).

In the classical theory, a linear connection on M is an assignment I' to
each coordinate system (U, #') in M of a set of n* functions I'% such that, in
U N U*, the two sets of functions I'x and I'm. assigned to (U, ) and (U¥, &
are related by

(2.4 Wi = P + 15 Pk Lo,
where
i 2,8
2.5 o _ou = O
) # o’ pr ou'ou”

The transition to the modern theory in terms of differential forms can be
described briefly as follows: Let () be the inverse of the matrix (x%). Then,
i) There exist on B n 1-forms 6* such that in = *(U),

(2.6) 6 = du'-xf.

i) If a linear connection T' on M is given, there exist on B n® 1-forms
w, such that in = *(U)
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2.7) o, = dzi-ai + 2 Tyxidi’.
i) The n + n* 1-forms 6%, w), are everywhere linearly independent on B
and satisfy the following structure equations
o' = 6* A ol + —;—Tzﬂaw A 6,
(2.8)
doi= o N\ ) + %Rﬁwﬂﬂm N 6.

iv) The 7n® + n vector fields Ef and E, on B which are dual to the n + »?
1-forms 6° and @} are called the fundamental vector fields and the basic vector
fields respectively. They are characterized by the following equations :

<O E,> =8, <ob, E.> =0,
<O, Ei> =0, <of, Et> = 88,

(2.9)

and have the following local expressions:

(2.10) Bt = xia%:z’ E, = xz,(a—ij— x:rgk—é%).
It is easy to see that the fundamental vector fields and the basic vector fields
as defined here are essentially those defined by Ambrose and Singer [1] and
Nomizu [3, p.49].

Expressed in terms of the vector fields Ef and E., the structure equations (2. 8)
take the form (1.1).

3. The equation (1.1),. Let M be an #n-dimensional smooth manifold
and E} the n’ fundamental vector fields on the frame bundle B over M. In
this section, we shall obtain the local expressions for the most general set of
n vector fields E, not necessarily linearly independent satisfying the equation
[E,, E{] = — 84E,.

We first state without proof the easy

LEMMA 3.1. In =~ %(U N U*) C B, the following relations hold :

(3. 1) u" = u"(d,...... , u), xh = x,ipﬁ'
° « O
3.2 = .
(8.2) oxy b oY
a i* a i* a
. = pi + TP —
(3.3) o P 2" D o

Here, as before, pt = ou™/ou", pli = 9%u"/ou’ou".

We now prove

THEOREM 3.1. Let M be an n-dimensional smooth manifold, B its frame
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bundle, and E} the n* fundamental wvector fields on B. Then the most general
set of n vector fields E, on B satisfying the equation

(3.4) [E., Ef] = — 8iEx
is given locally by
I — 2 T 2
(3.5) E. = z, (CJ od ZyQi ory >,

where Ci, ¢% are functions of u' alone such that in U N U¥,

(3. 6) P.i a* = Cap
(3. 7) &% Pd jPalc + pY Plc ¢a*b"

Eguation (3.6) shows that C; are the components of a temsor C of type
(1.1) on M. Equation (3.7) grves the transformation law for the set of func-
tions ¢y defined for each coordinate system (U,u’) in M.

°

PROOF. Let us substitute in (3.4), Ef = zi— — and
oz,
= o) o
3. 8 Eu = n’i + z T~ 1 2
3.8) f ou ge ozl

where f%, giy are unknown functions of #' and 2i. Then the left and right
sides of (3.4) are respectively

BB}~ BiE. = gl ai:. — gﬁ: ai’ - %iiw ai ’
— B = — & (i 2+ g ai; )-
Hence equation (3.4) is equivalent to
(3.9 gy{; = 8 fi
(3. 10) Sigha — 2 %9;{ = — Sighy.

Consider first equation (3.9). For u==a, it becomes 9f:/dx) = 0. Therefore,
(3.11) each fi is a function of u*, 2% (1 < k < n) alone.

For pu = a, equation (3.9) becomes

(3.12) i%f;’w— = fi (a not summed).
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Let a == . Differentiation of (3.12) with respect to z) gives, an account of
(3.11), ‘

of e _ Of
oxh, oxh

On account of (3.11), both side of this equation are functions of #" alone.
Therefore, 4 = 2% Ci + Dj, where C,, D} are functions of #«° alone. Substitution
of this in (8.12) gives D = 0. Hence

(3.13) fv=x.C, Cj = Ci(u"),

which is equivalent to (3.9).

Next consider equation (3.10). For u==v, u==a, it becomes Oghy/dz) =0.
Therefore,

(a,x not summed).

(3.14) each ¢4y is a function of u*, 2%, 25 (1<k=<n) alone.

For us=a, u =1 so that @ =1, equation (3.10) becomes

i
(3.15) Ooy = x{a—g";— (v not summed).
ax'y

For any fixed @, conditions (3.14) and (3.15) in giy are of the same form as
conditions (3.11) and (3. 12). Therefore we may conclude that

(38.16) each ¢.y is homogeneous and linear in % (1=<k=<n).

For u = &, w==1v, equation (3.10) becomes

i
3.17) x{ag—“f' = ghy (a not summed).
Oxu
For any fixed v, conditions (3.14) and (3.17) in g, are again of the same
form as conditions (3. 11) and (3. 12). Therefore,
(3.18) each giy is homogeneous and linear in o (1<k=<n).
Combining (3. 14), (3.16) and (3.18) we find that
(3.19) Goy = — ThxyPl, & = dinlu’),

which is equivalent to (3. 10).

Equations (3.13), (3.19) and (3.8) now show that any set' of » vector
fields E, satisfying (3.4) are locally given by (3.5).

It remains to show that in U N U¥, the transformation laws for C) and
¢y are respectively (3.6) and (3.7). In # (U N U¥), we have (3.5) as well as

-~ e % a % g% 8
. Em (G52, — e ®).
(3.20) To | Cj o Zy Ppax ot
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Rewrite (3.20) and (3.5) by means of Lemma 3.1, and equate the results. We
obtain

hoy Ad 8 1, le% g 4% 8
ZaPh ( P T XyPU Pyn _'T)
ou' ozy

. O . O . o
= xg{cr{<P; o + 2y pie 3;.‘) — Zypi'd —3_.—1‘177} .
Comparison of the coefficients of 9/94* and 9/0zy then gives (3.6) and
(3.7). Hence Theorem 3.1 is completely proved.

4. Some properties of the tensor C on M. Using (2.6) and (3.5), we
obtain '

<@, B> = (dutat, #4(C2,— dhat- 2 )
Y

= 2} Clal.
Hence

THEOREM 4.1. C& = <% E,> are the n* functions on B corresponding®
to the tensor C on M.

It follows from (3.5) that in = *(U),

E,= xin-——ai— + (linear combination of EY).
U

But the 7z + »® vector fields 9/9«' and Ei on 7~ (U) are everywhere indepen-
dent and the matrix (z) is of rank z. Hence,

THEOREM 4.2. If 2 € B and mTE=u € M, the number of linearly in-
dependent ones among the vectors (E,), and (EY), at z is

n® + (rank of the tensor C at u).

Now let us regard the tensor C(«) at # as an endomorphism of the tangent
n-plane T, to M at u. If the rank of C(«) is m (< n), then the image of T,
under C() is an m-plane spanned by the vectors C(#)X., where X, are any n
linearly independent vectors at #. We call this m-plane the image m-plane of
C at u. As the tensor C may not have the same rank at all the points # of
M, the image plane of C need not be of the same dimension at all the points of
M. In any case, however, the tensor C determines a field of image-planes on

M.

2) For a discussion of a natural correspondence between tensors of type (r,s) on M and
certain sets of n”+# functions on B, see Wong [5].
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Let 2 be a frame in M consisting of the linearly independent vectors
X. = z,9/ou' at u € U M so that = € B and u = mz. Consider the vectors
(EY)., (E,), in B at z. Denoting also by o the differential of the natural projec-
tion m: B— M, we have easily from (3.5) that

w(Ef), = 0, m(E.), = (xiC} ai, ) .

u

Thus, #(E,), is a vector in M at u with components
4.1) ziCiw).

In other words, if Q, is the (n* + m)-plane at 2z spanned by the vectors (E), and
(E,)., then 7 Q, is the m-plane at « € M spanned by the vectors (4.1). Conse-
quently, wQ, is the image m-plane of C at u. Similarly, if 2’ is any other
point in 7 (), wQ. is also the image m-plane of C at u. Hence we have

proved
THEOREM 4.3. The field of planes on B spanned by the vector fields

E. is projectable under m onto the field of image planes of the tensor C on
M.

5. The case when the tensor C is of full rank everywhere on M.

In this case, Theorem 4.3 becomes trivial. Let C be the reciprocal of the tensor
C (so that CICi = &} = CiC)) and put

(5.1) T = Cipin.

Then the local expression (3.5) for E, can be written as
5.2 = aC’( °_ _ Zr )
5-2) s o’ *oxl, ozl

Putting T = C i, we can also rewrite (3.7) as

T5ps = ph + Pj " pic Do

This is of the form (2.4). Therefore, the 7* functions I'yx defined by (5.1) are
components of a linear connection T,
For the linear connection TI', the basic vecior fields

(5.3) E, = zl(—2+ - xm,ﬁ—a,a)
Y

ou’ oxy

are such that <@® E,> = 8. Let Ci = 2Ciz!. Then it follows from (5.2)
and (5. 3) that

Ea = C'ng.
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Summing up, we have

THROREM 5.1. Let M be an n-dimensional smooth manifold, B its frame
bundle, and E% the n* fundamental vector fields on B. If E. are any n vector
fields on B satisfying the equations

[E., Ef] = — 8iEx

such that E., E! are linearly independent everywhere on B, then E, determine
a unique linear connection I' on M.

Let <6°,E.> = CE. Then the n* functions C2 on B correspond® to a
tensor C of type (1,1) on M which is of rank n everywhere on M. Further-
more, if (C) is the inverse of the matrix (C%), then CE Es are the n basic
vector fields of the linear connection.

When a linear connection on an n-dimensional smooth manifold M is de-
fined by means of a suitable field of #-planes on the frame bundle B over M,
the action of the real general linear group GL(n, R) on B is an essential part
of the definition (See Chern [2] and Nomizu [3]). It is interesting to observe
that as a consequence of Theorem 5.1, equation (1.1), may be regarded as
giving a global definition of linear connection on M which does not explicitly
involve the action of GL(n, R) on the frame bundle B.

6. A quasi-connection on M. When no assumption is made on the
rank of the tensor C which appears in Theorem 3.1, the vector fields E, may
not define a linear connection on M. But by means of the tensor C and the
sets of local functions ¢ for which the law of transformation is (3.7), a
covariant differentiation of tensors on M can be defined. In fact, we shall
prove

THEOREM 6.1. Let C be any tensor of type (1,1) on M, and ¢ an as-
signment to each coordinate system (U, u") in M of a set of n* functions ¢y
Jor which the law of transformation is

6.1) Pipa = Cipa + 5 Pk Paon.

Then for any tensors X,Y,Z of type (1,0), (0,1), (1, 1) respectively on M,
(6.2) viX' = G0, X" + X ¢, v.Y; = Cid,Y; — ¢iY,,
(6.3) Vil = Cio,Z% + Zigt, — ¢5Z%,

where 9, = 9/0u’, are components in (U, u') of tensors of type (1,1), (0,2),
(1, 2) respectively on M. Furthermore, the following equations hold:‘

3) See Footnote 2).
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(6. 4) Gt(X in) = (ﬁ,Xi)Yj + Xi(ele)’
(6' 5) el(XaYa) = C?ab(XaYa)'

We call the structure on M defined by C and ¢ a quasi-connection (C, $)
on M, and call the tensors vX, VY, vZ, as defined locally by (6.2) and (6. 3),
the covariant derivatives of the tensors X, Y, and Z with respect to the quasi-
connection (C, ¢). The covariant derivative vZ of a tensor of any other type

can be defined in a similar manner such that for any two tensors X and Y, the
equation

vX®Y)=FX)®Y + XQ (VY)
holds, where & denotes the tensor product. Obviously, if Ci = &), the quasi-con-
nection (C, ¢) becomes a linear connection (see also §9).
The proof of Theorem 6.1 follows familiar lines. Differentiate X* = X“ph
with respect to #’, contract the result by C; and then eliminate the second
derivative p& by means of (6.1). We obtain, after rearrangement of terms,

PHCEReX" + X i) = (CiO,X* + X'¢)pt.

Thus, v.X* is a tensor of type (1,1). Similarly we can prove that v.Y; is a
tensor of type (0, 2).

Now (v.X")Y, + X(v.Y,) is a tensor, and on account of (6.2) and (6.3),
6.6) (v.X)Y; + X(V.Y;) = Co.X'Y)) + (XY )pta — ¢pi(X'Yo).

Since a tensor Z} of type (1,1) has the same law of transformation as the
tensor X'Y;, comparison of formula (6.6) with the definition (6.3) of wv.Zj
shows that y,Z} is a tensor and, moreover, equation (6.4) holds. Finally, (6.5)

is a direct consequence of (6.4) and (6.2). Thus, our theorem is completely
proved.

We now proceed to construct a few tensors from C and ¢.
i) First of all, there is the Nijenhuis tensor N for C, defined locally by

Ny = C#,Ct — Cio,Cr — Ci(9,LF — 2,C%).
We shall write this as
(6. 7) NZL = Cf;caq,crzl] - CZ@L;CC?],

where [%...... !] or [%k!1] indicates that alternation is to be taken with respect
to the two indices £ and I.

ii) From (6.1) and the law of transformation for C, it follows that
Cigiops = CiCipha + pi 7 Chipinm,

which gives
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Cidipa = pi p? e
Therefore,
(6.8) N is a tensor.
iii) From the formula for the components of the tensor yC, we have
v:iCh = Cia,Cy — Clidi — $uuCo-
But the middle term on the right side is the tensor (6.8). Therefore,
(6.9) — St = Co,Cl — ¢y = vuCiy + Codli,  is a tensor.

iv) If W is any tensor of type (r,s), r=1, satisfying the equation

""" “Cq =0 in every (U, '), then W::% ¢ is a tensor of type (r,s + 1).

Thxs can be proved by first verifying it dlrectly for the special case when W
is of type (1,0), and then applying the quotient law in tensor calculus.

v) Although we can define a covariant differentiation for the quasi-con-
nection (C, ¢), there does not exist a tensor which corresponds exactly to the
curvature tensor for a linear connection. In fact, a simple computation will
show that —

VL’celJXi = (Ci3.Ch — ¢iCa)o, X"
+ X(CLoudh y — Pltin — Plvpi)-

The right side of (6.10) is a tensor. But 9,X’ is not a tensor although its
coefficient is. Therefore, the coefficient of X° is in general not a tensor. It
is obvious however that if the tensor — Sk = Ci0,Ci, — ¢Ca is a zero
tensor, then the coefficient

Oubt; — Pkbha — Piubas

of X° in (6.10) is a tensor, and conversely.

We shall prove in §8 that under a weaker condition than the above,
tensors resembling the curvature tensor for a linear connection can be con-
structed by using formula (6. 10).

(6.10)

7. Consequences of the Structure Equation (1.1);, We continue the
discussion of the general case where no assumption is made on the rank of
the tensor C in Theorem 3.1. In this case, equation (1.1); may impose a
further condition on the vector fields E,. We shall give a geometric interpreta-
tion to this condition.

We first prove

THEOREM 7.1. The condition imposed on E, by (1.1); is equivalent to
that in every coordinate system (U, u),
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(7.1) Cio.Ch = MuCa,

where N are functions in (U, u').

PROOF. Substitute in (1.1); the local expressions for E¢ and E, given by
(2.10), and (3.5). We obtain

(Ea, Es] = E By,
= 22l (CEA.Ch — $Ch) -2
ou

' ; .y D
— xl;x’ﬂx}’t(cﬁ?aa¢ijj - ¢Lal.c"¢”a — ¢?kl]¢;")5;r s

n

~ TipBy — RiugBt = — Tia3(Ci- 2 — gtaa 2 )~ Rt 2.
Ou ox, ox,,
On account of these, equation (1.1); is equivalent to
x’;x,lg(CﬁcaaCh - ¢$cl]C¢"z) = — Tprt;Cfx,

ZExhZi(ChOuin; — PlesPhia — Phabhs) = Riaprth — Thexiusrh,

1. e.

(7.2) Ci0,C — ¢ C = — THCE,

(7.3) CiiOupty; — Phshia — Pty = Rl — Tragphs,
where

-’1_11':1 = ﬁ&r?x‘;"xﬁ, mkl = magxix'jxﬂx@
Now (7.2) is a condition on the tensor C which is equivalent to the con-
dition that Ci9,Ch is of the form ALC:. On the other hand, (7.3) merely

determines the functions R in terms of C, ¢ and 7. Hence Theorem 7.1 is
proved.

Next we prove

LEMMA 7.1. Let C be any tensor of type (1,1) with constant rank m

on M. Then the field of image m-planes of C is involutive iff in every coor-
dinate system (U, u')

F'kaacli] = AaC,
“where N are functions in (U, ).

PROOF. This is an easy consequence of the definition of the field of image
m-planes of C and the following condition for a field D of m-planes on M to
be involutive : If in any neighborhood, Y (1 < &,9.§ <r) are a set of r (r=m)
vector fields which locally span the field D, then [Y Y,] = /.é,,Y;, or, in local
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coordinates, Y},9,Y% = uf, Y}, where uf, are functions.
Combining Theorem 7.1 with Lemma 7.1, we have

THEOREM 7.2. Let E., given by (3.5), be any set of n vector fields on
B satisfying equation (1.1),. If the tensor C is of constant rank m(< n) on
M, or, what amounts to the same thing, if at every point z of B, exactly the
same number n* + m of the vectors (E%)., (E,). are linearly independent, then
equation (1. 1); expresses the following two equivalent conditions :

a) The field of (n*+m)-planes on B spanned by Eji and E. is involutive.

b) The field of image m-planes of the tensor C on M is involutive.

Theorem 7.2 becomes trivial if C is of full rank everywhere on M.

8. Curvature tensors for a quasi-connection. Let us now return to
§ 6 and prove that if the tensor C is of constant rank m on M and if the field
of image m-planes of C is involutive, then with respect to the quasi-connection
(C, ¢) there exist ‘curvature’ tensors on M resembling the curvature tensor for
a linear connection.

For this purpose, we need the following key lemma :

LEMMA 8.1. Let C, S be respectively tensors of type (1,1) and (1,2) on
M. If C is of constant rank m on M and if in every coordinate system (U, u'),
there exist n* functions Vi such that
(8- 1) 7’:‘1’;& = Sliéz,
then there exists on M a globally defined tensor T of type (1,2) such that
in every (U, )
(8- 2) leaTnm = Slil

PROOF. Let « be an arbitrary but fixed point in U C M. Then the system
of n linear equations ‘

(8.3) G = Siu) (k1 fixed; i=1,......,7n)
admits a solution 7l = Y(x). Consequently, since Cj(«) is of rank m(< 7), the
solutions of (8.3) for 74 (h = 1,...... ,7)span a linear space R*™ of dimension
(n — m). Thus, the solutions of

8.4) Ci(w)min = Stu(w) QI=<i,kl<n)
for 7 span a linear space isomorphic to the product space R"™ X...... x R*™

(n® times), i.e.to R™™ ™. Now for any solution 7y of (8.4), we can define a
tensor of type (1,2) at » by putting Ti(u) = 7.

Let B” be the bundle of tensors of type (1,2) at all the points of M. The
fiber F, over each point « € M is isomorphic to R™. The set of tensors Tk(«)
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of type (1, 2) which arise from the solutiorg of (8.4) forms a linear subspace E, of
dimension 7°(n — m) of F,. Moreover, F, is stationary in F,, i.e., if u€
UNU%, the F‘u defined for # € U coincides with the F* defined for « € U*. In
fact, if w € U N U* and Ti(u) € F‘u, then since

Twu) = ph ploptToln)
satisfies
Ci(w)Tiol) = Spulw),

we have that Ti(z) € Fr. Thus, the totality of tensors of type (1,2) at all
the points of M which are constructed from the solutions of (8.4) form a
subbundle B” of B. Since the fiber F of B” being isomorphic to R™™™ is
solid, differentiable cross-sections of B exist (Steenrod [4] p.55). Any such

cross-section is a tensor of type (1,2) on M satisfying the conditions of Lemma
8. 1.

We note that the tensor T which satisfies the condition of Lemma 8.1
need not be skew-symmetric with respect to the indices 2 and [ even when

Yia, S are. But, it is easy to see that the proof of Lemma 8.1 can be slightly
modified to furnish a proof of

LEMMA 8.2. If, in Lemma 8.1, ¥iu and Si are both skew-symmetric
with respect to the indices k and I, then there exists on M a globally defined
tensor T of type (1,2) such that in every coordinate system (U,u),

CiTh = Su = C;'L"P"/:l, Tw + Th = 0.

We are now ready to prove the following

THEOREM 8. 1. Let (C, ¢) be any quasi-connection on M. Assume that the
tensor C is of constant rank m on M and its field of image m-planes is in-
volutive, so that (by Lemma 7.1) Ci0.Ch = \:Ci in every coordinate system
(U, ). Then there exists on M a tensor T of type (1,2) satisfying the equation

—%ZC;L = (d’l;cl] - 7\.17& ILL
in every (U, ). Moreover, for any such tensor T,
Rl = Cio.piy — s — dadhy + Thdly
are the components in (U,u') of a tensor R of type (1,3) on M.

PROOF. We have shown in §6 that Si = ¢iCe — Cio,Ciy is a tensor.
Now because C;9,Ci; = AiCa,

S;;:l = (¢'ka] - )\%z)Cé.
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Application of Lemma 8.1 to the above equation shows that there exists on M
a tensor T of type (1,2) such that in every (U, «')

TuCa = ($iy — M)Ch = ¢uCh — Ci.Cin
On account of this, equation (6.10) can be written
VavaX' = — TuCid, X" + X(Cioupiy —------)

= — THC:,X' + X'¢ly) + X (Clduiyy — .- + Tadi)

= — Tav.X' + X(Ciduph — e — Sl + Tridin)

= — Tuv.X' + X’Riu.
Since X' is an arbitrary vector, it follows from this that R} is a tensor. Hence
Theorem 8.1 is proved.

If T is another tensor on M satisfying T%Ch = (¢%,n — Ma)Ca, and R is
the tensor on M arising from it, then
Riﬁcl - Ejﬂcl = (ng - Tﬂ)t‘i)&j
is a tensor. But ’T‘Zz — T4 = W may be any tensor satisfying the condition
wCo = 0. Hence, if W is any tensor of type (1,2) on M satisfying the con-
dition WuCo = 0, then Wiias is a tensor of type (1,3). This is a special case
of (iv) in §6.

We remark that the tensors 17" and R in Theorem 8.1 need not be skew-
symmetric with respect to the indices £ and I. However, on account of Lemma
8.2, tensors T exist on M which saitsfy the condition stated in Theroem 8.1
and the additional condition that T + T% = 0. For any such tensor 7T, the’
corresponding tensor R is also skew-symmetric with respect to the indices %
and [.

9. Linear connection as a particular case of quasi-connection. Let us
consider the case when the tensor C is of rank n everywhere on M. Then on
the one hand, we have the quasi-connection (C, ¢) studied in §§6 and 8; on
the other hand, we have the linear connection studied in §5. The link between
the two is (cf. (5.1))

(9' 1) P,[ﬂc = -C—?(ﬁ(il’cy

where C is the reciprocal of the tensor C. We note that in this case, the tensor

T is uniquely determined :
9.2) Th = ¢l — Ci2.CiCh

and is skew-symmetric with respect to the indices %, [. Consequently, the tensor
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R’y is also unique and is skew-symmetric with respect to the indices &, I.

Let us denote by v, T, R the covariant differentiation, the torsion tensor
and the curvature tensor with respect to the linear connection I Then we
easily find that

9.3) vX' = Cv. X',
9.4 vaviX' = Cuvi(Chv.X")
= C(V,Ci — CiTa)veX' + X CaCiRba.

But we also have

. 5) V[le}X‘ = — TuviX' + X’Ri,
where '
9.6) Th = Ty, Riw = 94T — T

Comparison of (9.5) with (9.4) gives
Th = GCiTwCh — Chv,CiCh,
{ 3kl = C—;’gé’fﬁm,
which can also be verified diriectly.
On account of (9.1) and (9. 6),, the tensor defined by (6.8) now reduces

to — CiC'T, so that equation (6. 9) is equivalent to the relation between T and T'
given in (9. 7),. There is no tensor of the kind described in iv) of §6.

9.7
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