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1. Introduction. In the modern theory of linear connections on an n-

dimensional differentiable manifold M} an important role is played by the frame

bundle B over M, and by the n2 + n fundamental and basic vector fields Eχ,

Ea (1 <Ξ OL, λ, μ rg n) on B. While the fundamental vector fields Eχ are deter-

mined by the differential structure of M alone, the basic vector fields Ea together

with ths differential structure determine, and are determined by, a linear con-

nection on M. The vector fields Ex and Ea are linearly independent everywhere

on B and satisfy the following structure equations :

{El, Eζ] = S*PE°λ -

(1 .1) [Ea, Eft = - Sβ

aEλ,

[Ect, Eβ] = — TlβEy — RμaβEχ,

where [, ] denotes the Lie product (bracket operation), δp is the Kronecker delta,

and TZβ, R^ccβ are functions on B corresponding to the torsion tensor and the

curvature tensor on M of the linear connection.

Now equation (1. l)i merely expresses the Lie product in the Lie algebra

of GL(n, R), and equation (l. l ) 3 determines the torsion and curvature of the

linear connection. Therefore, among the equations (l, 1), only (l. l) 2 imposes

any condition on the basic vector fields Ea. There arises then the natural ques-

tion : The fundamental vector fields Eχ being known, will any set of n vector

fields Ea on B satisfying the condition

(1.1)2 [£«, E£] = - 8»Eλ

determine a linear connection on M ?

In an attempt to answer this question, we discover a new kind of con-

nections on M, to be called quasi-connections, which include the linear connec-

tions as particular case. More precisely, we shall obtain in this paper the follo-

wing results:

i) With any set of n vector fields EΛ on B satisfying (1.1)2 there is associated
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a tensor1* C of type (1.1) on M and an assignment φ to each coordinate system

(U,uι) in M of a set of n3 functions φj* for which the law of transformation

in U Π U* is (Theorem 3. 1)

9& ou ou ou3 ou

ii) The field of planes (i.e. tangent subspaces) spanned by the vector fields EΛ

on B is projectable onto the field of image planes of C on M (Theorem 4. 3).

iii) If Ex, Ea are linearly independent everywhere on B, then (C, φ) deter-

minesa unique linear connection on M (Theorem 5.1 and §9).

iv) If jEJί, Ea are not assumed to be everywhere independent on B, then

(C, φ) may not determine a linear connection on M. However, by means of C

and φ, a covariant differentiation of tensors on M can be defined. We call this

structure (C, φ) a quasi-connection on M (§ 6).

v) In the general case iv), equation ( l . 1)3 imposes a further condition on

Eot. If the number n2 + m ( ^ n2 + w) of independent vectors among (Eχ)2, (E*)z

is the same at all points z of B, then the tensor C is of the same rank m (tin)

on M, and conversely (Theorem 4. 2). In this case,

a) the condition imposed on Ea by (1. l ) 3 is that the field of image mplanes

of C on M is involutive (Theorem 7. 2)

b) certain 'curvature' tensors for the quasi-connection (C, φ) exist (Theorem

8.1).

vi) If C is of rank n everywhere on M, the quasi-connection (C, φ) is

equivalent to the linear connection with components Γ# = C^φί^ where C is

the reciprocal of C (§9).

Since quasi-connection is a generalization of linear connection, there are

various concepts and problems relating to a quasi-connection similar to those

relating to a linear connection. But we shall not consider them in this paper.

2. Linear connections on smooth manifolds (cf. Chern [2], chapter 4

and Wong [5]). In this section we give a summary of the theory of linear

connections which is needed in our later work. We assume as known the classical

(local) theory of linear connections and the elementary properties of w-dimensional

smooth manifolds (i. e. of class C°° and with countable base) and their frame

bundles. All the functions, vector fields and tensors defined on a smooth mani-

fold or an open submanif old of it are assumed to be smooth (i. e. of class C°°).

Each of the indices a,b,c, , i,j,k, , oc,β,y, , \μ,v,... runs from 1

1) For simplicity and following the convention in tensor calculus, we refer to a tensor
field T on M simply as a tensor T on M, and we sometimes even call T1* (for example)
a tensor, meaning by it a tensor T of type (1,2) on M whose components in the coor-
dinate system (t/,w*) are Tjfc.
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to n. Summation over repeated indices, Latin or Greek, is implied.
Let M be an w-dimensional smooth manifold, B the frame bundle over

M, and 7r: B-+M the natural projection which maps the frame z(u) at w€ M

onto the point u.

A covering of M by (local) coordinate systems gives rise to a covering of
B by (local) coordinate systems in the following manner. Let (Ϊ7, uι) be any

coordinate system in M with coordinate neighborhood U and local coordinates

u\ Then the tangent vectors XΛ(u) of any frame z(u) in M can be expressed

locally as

(2.1)

where xΛ are n2 real numbers such that det ( ^ ) 4 = 0 . Thus, {w~ *([/)> {U\ X«))

form a covering of B by coordinate neighborhoods π~ι(U) and local coordinates

If (U, uι) and (£/*, «**) are two local coordinate systems in M, and w €

?7 Π U*9 then

(2.2) / = e/V, ,un).

If s{«) € π~ι(U Π Ϊ7*) has the local coordinates {u\ xΛ) and (u*,Xa), then

(2.3) jS^totL
duJ

Thus, the transformation of coordinates in π~ι(U Π U*) is expressed by equa-

tions (2. 2) and (2. 3).

In the classical theory, a linear connection on M is an assignment Γ to

each coordinate system (U, uι) in M of a set of n3 functions T^ such that, in

U Π U*9 the two sets of functions Γ% and Γ%« assigned to (U, uι) and (U*9 u
1*)

are related by

where

The transition to the modern theory in terms of differential forms can be

described briefly as follows: Let (xf) be the inverse of the matrix (xtt). Then,

i) There exist on B n 1 forms θ* such that in ΊΓ'^U),

(2. 6) ff* = du'-xΐ.

ii) If a linear connection T on M is given, there exist on B n2 1-forms
ωl such that in π~ι(U)
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(2. 7) ωλ

μ = dxl xl + xlT'}icx\du5.

iii) The n + n2 1-forms θ", ωl are everywhere linearly independent on B
and satisfy the following structure equations

(2.8)

dθy = θ" Λ ωl + —Tlβθ* Λ θβ

9

2

dωλ

β= ω£ Λ ωλ

P + ~Rλ

μ«βθ* Λ θ\

iv) The w2 + n vector fields E{ and Ea on β which are dual to the n + n2

1-f orms 6>3 and ω? are called the fundamental vector fields and the basic vector
fields respectively. They are characterized by the following equations:

<θβ, Ea> = 82, <α>?, £ α > = 0,
βEϊ - 0,

and have the following local expressions:

It is easy to see that the fundamental vector fields and the basic vector fields
as defined here are essentially those defined by Ambrose and Singer [1] and
Nomizu [3, p. 49].

Expressed in terms of the vector fields Eχ and Ea, the structure equations (2. 8)
take the form (1.1).

3. The equation (l. 1)2. Let M be an w-dimensional smooth manifold
and Eχ the n2 fundamental vector fields on the frame bundle B over M. In
this section, we shall obtain the local expressions for the most general set of
n vector fields EΛ not necessarily linearly independent satisfying the equation

We first state without proof the easy

LEMMA 3.1. In iΓι(U Π t/*) C B, the following relations hold:

(3.1) utm = uι\u\ , un), xζ = xltf.

C 3 ' 2 ) ~dxY~Ph^xY'

(3.3)

Here, as before, pt = 3 ^ 7 9 ^ , p% = d2uι*/duJdu\

We now prove

THEOREM 3.1. Let M be an n-dίmensional smooth manifold, B its frame
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bundle, and El the n2 fundamental vector fields on B. Then the most general

set of n vector fields Ea on B satisfying the equation

(3.4) lΈa,Bβ= -Sift-

is given locally by

(3. 5) EΛ =

xvhere Cj, $* are functions of u alone such that in U Π U*,

(3.6)

(3. 7)

Equation (3.6) shows that C) are the components of a tensor C of type
(1.1) on M. Equation (3.7) g /t es ίfo transformation law for the set of func-
tions φ]jc defined for each coordinate system (U, uι) in M.

PROOF. Let us substitute in (3.4), El = x{—^— and
dxμ

( 3 . 8 ) S . / . ^ . + A ^

where / i , giy are unknown functions of u% and Λ:«. Then the left and right
sides of (3. 4) are respectively

~ EίR. = g*a

Hence equation (3. 4) is equivalent to

(3. 9) ^

(3.10) S^αλ - V λ-ML =
OXμ,

Consider first equation (3. 9). For μ4=tf, it becomes dfi/3xl = 0. Therefore,

(3.11) each fι

Λ is a function of uh, x% (l ^ k <=n) alone.

For μ = ot, equation (3. 9) becomes

(3.12) * ί - l π π =Λ (« not summed).
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Let Λ=j=λ. Differentiation of (3.12) with respect to xt gives, an account of

(3.11),

§4 M (Λ, λ not summed).

On account of (3. 11), both side of this equation are functions of u alone.

Therefore, fι

a = A Cl + D*, where CJ, £>* are functions of uk alone. Substitution

of this in (3. 12) gives Dί = 0. Hence

(3.13) Λ = *ίC5, C5 = CJ(tt*),

which is equivalent to (3. 9).

Next consider equation (3. 10). For μ=j=7, μ=%=&9 it becomes dgay/dxji = 0.

Therefore,

(3.14) each gι

Λy is a function of uk, x%, Xy {l^k^n) alone.

For μφoc, μ = γ so that ci =j= γ, equation (3.10) becomes

(3.15) piγ = xl-^r- (7 not summed).
3

For any fixed Λ, conditions (3.14) and (3.15) in g^y are of the same form as

conditions (3.11) and (3.12). Therefore we may conclude that

(3.16) each gl

ay is homogeneous and linear in Xy (l<^k<Ln).

For μ = CL, μφy, equation (3.10) becomes

(3.17) x{ dg"J = giy (a not summed).
OXoύ

For any fixed 7, conditions (3.14) and (3. 17) in gι

ΛΊ are again of the same

form as conditions (3. 11) and (3.12). Therefore,

(3.18) each giy is homogeneous and linear in xk

a

Combining (3.14), (3.16) and (3.18) we find that

(3.19) g\Ί =

which is equivalent to (3. 10).

Equations (3.13), (3. 19) and (3.8) now show that any set of n vector

fields Ea satisfying (3. 4) are locally given by (3. 5).

It remains to show that in U Π U*> the transformation laws for C) and

ή>j1c are respectively (3. 6) and (3. 7). In τr"1(i7 Π U*\ we have (3. 5) as well as

(3. 20) EΛ = a
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Rewrite (3. 20) and (3. 5) by means of Lemma 3.1, and equate the results. We

obtain

Xccph ί Cj* — Xypi φj*k« <<t )

\ du dxy /

Comparison of the coefficients of d/dul* and d/dx\* then gives (3.6) and

(3. 7). Hence Theorem 3.1 is completely proved.

4. Some properties of the tensor C on M. Using (2. β) and (3. 5), we

obtain

Hence

THEOREM 4.1. C% •= <θβ,EΛ> are the n2 functions on B corresponding

to the tensor C on M.

It follows from (3. 5) that in ir~l(U),

EΛ = xicC) ~ + (linear combination of Ex).
au

But the n + n2 vector fields 3/9*/ and E{ on 7r-1(i7) are everywhere indepen-

dent and the matrix (xi) is of rank n. Hence,

THEOREM 4. 2. If z € B and irz = u € M, the number of linearly in-

dependent ones among the vectors (EΛ)Z and (E£)2 at z is

n2 + {rank of the tensor C at u).

Now let us regard the tensor C(u) at u as an endomorphism of the tangent

#-plane Tu to M at u. If the rank of C(u) is m ( ^ n), then the image of Tu

under C(u) is an m-plane spanned by the vectors C(u)Xa, where Xa are any n

linearly independent vectors at u. We call this m-plane the image m-plane of

C at u. As the tensor C may not have the same rank at all the points u of

M, the image plane of C need not be of the same dimension at all the points of

M. In any case, however, the tensor C determines a field of image-planes on

M.

2) For a discussion of a natural correspondence between tensors of type (r,s) on M and
certain sets of nr+s functions on B, see Wong [5],
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Let z be a frame in M consisting of the linearly independent vectors

Xa = xίd/duί at u € U CZ M so that z € B and u = πz. Consider the vectors

(E{)Zi (Ea)2 in B at z. Denoting also by TΓ the differential of the natural projec-

tion 7r: B-> M, we have easily from (3. 5) that

ία = 0, 7r(Ea)2 =

Thus, 7r(Ea)2 is a vector in M at w with components

(4.1) ajCXw).

In other words, if Qz is the (n2 + τrc)-plane at z spanned by the vectors (E\)z and

(Ea)Zi then 7rQ0 is the m-plane at u € M spanned by the vectors (4.1). Conse-

quently, irQz is the image m-plane of C at u. Similarly, if z is any other

point in π~ι(u\ *πQz> is also the image m-plane of C at u. Hence we have

proved

THEOREM 4.3. The field of planes on B spanned by the vector fields

Ea is projectable under π onto the field of image planes of the tensor C on

M.

5. The case when the tensor C is of full rank everywhere on M.

In this case, Theorem 4. 3 becomes trivial. Let C be the reciprocal of the tensor

C (so that CiCl = δί = CicCl) and put

(5.1) T% = C$*.

Then the local expression (3. 5) for Ea can be written as

(5. 2) Ea = a £ C 2 ( - A — aSΓfc 3
\ du3 dxy

Putting Γ£fc* = CjΐφS k , we can also rewrite (3. 7) as

1 jkpa = />jfc -Γ pj

This is of the form (2. 4). Therefore, the n3 functions ΓJ& defined by (5.1) are

components of a linear connection Γ.

For the linear connection Γ, the basic vector fields

(5. 3) Ea = j

are such that <θ",Ea> = St Let Cl = x\C\afι. Then it follows from (5.2)

and (5. 3) that

Έx = CtEβ.
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Summing up, we have

THROREM 5.1. Let M be an n-dimensional smooth manifold, B its frame

bundle, and El the n2 fundamental vector fields on B. If Ea are any n vector

fields on B satisfying the equations

such that Ea, Eί are linearly independent everywhere on B, then EΛ determine

a unique linear connection V on M.

Let <θβ,Ea> = Ct Then the n2 functions Cβ

a on B correspond to a

tensor C of type (1,1) on M which is of rank n everywhere on M. Further-

more, if (Cί) is the inverse of the matrix (Cβ), then C£ Eβ are the n basic

vector fields of the linear connection.

When a linear connection on an ̂ -dimensional smooth manifold M is de-
fined by means of a suitable field of w-planes on the frame bundle B over M,
the action of the real general linear group GL(n} R) on B is an essential part
of the definition (See Chern [2] and Nomizu [3]). It is interesting to observe
that as a consequence of Theorem 5.1, equation (l. l) 2 may be regarded as
giving a global definition of linear connection on M which does not explicitly
involve the action of GL(n, R) on the frame bundle B.

6. A quasi-connection on M. When no assumption is made on the
rank of the tensor C which appears in Theorem 3.1, the vector fields EΛ may
not define a linear connection on M. But by means of the tensor C and the
sets of local functions φ1^ for which the law of transformation is (3.7), a
covariant differentiation of tensors on M can be defined. In fact, we shall
prove

THEOREM 6.1. Let C be any tensor of type (1,1) on M, and φ an as-
signment to each coordinate system (U, uι) in M of a set of n3 functions φ)τc
for which the law of transformation is

(6. l) φ%p£= C}pΆ + pfpΐiS*.

Then for any tensors X,Y,Z of type (l, 0), (0,1), (1,1) respectively on M,

(6. 2) VX = CfdaX' + Xaφίa, VlY} = CΐdaY, - <fijYa9

(6. 3) ViZj = CΐdaZj + Zajφιa — φfjZa,

where da = d/dua, are components in (U, uι) of tensors of type (1,1), (0, 2),
(1,2) respectively on M. Furthermore, the following equations hold:

3) See Footnote 2).
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(6. 4) Vι(X%) = QvX)Ys + X'CviΓΛ

(6. 5) Vι(XaYa) = adb(XΎa).

We call the structure on M defined by C and φ a quasi-connection (C, φ)
on M, and call the tensors χ?X, χ?Y> yZ, as defined locally by (6. 2) and (6. 3),
the covariant derivatives of the tensors X, Y, and Z with respect to the quasi-
connection (C, φ). The covariant derivative ^Z of a tensor of any other type
can be defined in a similar manner such that for any two tensors X and Y, the
equation

holds, where ® denotes the tensor product. Obviously, if C) — δ), the quasi-con-
nection (C, φ) becomes a linear connection (see also § 9).

The proof of Theorem 6.1 follows familiar lines. Differentiate X1* = Xapa
with respect to u, contract the result by C? and then eliminate the second
derivative pab by means of (6. 1). We obtain, after rearrangement of terms,

a + X φ%)pa.

Thus, v ^ 1 i s a tensor of type (1, l). Similarly we can prove that \?>Yj is a
tensor of type (0, 2).

Now (ViX^Yj + XXviYj) is a tensor, and on account of (6. 2) and (6. 3),

(6.6) (πX)Y3 + XXviYj) = C?θα(X%) + (XΎ3)φ\a - φ%{XΎa).

Since a tensor Z5 of type (1, 1) has the same law of transformation as the
tensor XΎj9 comparison of formula (6.6) with the definition (6.3) of τj{Z)
shows that ^{Z\ is a tensor and, moreover, equation (6. 4) holds. Finally, (6. 5)
is a direct consequence of (6.4) and (6. 2). Thus, our theorem is completely
proved.

We now proceed to construct a few tensors from C and φ.
i) First of all, there is the Nijenhuis tensor N for C, defined locally by

Nici = Cfc3αGz — CΐdaCk —

We shall write this as

(6. 7) N/ci = = C[kdaCi] —

where [k Z] or \kΐ] indicates that alternation is to be taken with respect
to the two indices k and I.

ii) From (6. 1) and the law of transformation for C, it follows that

c* . a*Pi . c* .
T" pk P

which gives
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Cycφijcpa, == pk pi C|e φα ]& .

Therefore,

(6.8) Cb

[kφ
7ί]b is a tensor.

iii) From the formula for the components of the tensor vC, we have

V *Ci] = Crjcdb(Ji] — C[kφl]b — φ&lfsb

But the middle term on the right side is the tensor (6. 8). Therefore,

(6. 9) - Sί, = C^3ΛC!] - φgbijCΪ = Vι*C?j + C?fc<#]6 ώ a tensor.

iv) / / W is any tensor of type (r, s\ r > 1, satisfying the equation

W\\\a "Cha = 0 in every (!/,»'), then W : : : * " ^ zs a tensor of type (r,s + 1).

This can be proved by first verifying it directly for the special case when W

is of type (1, 0), and then applying the quotient law in tensor calculus.

v) Although we can define a covariant differentiation for the quasi-con-

nection (C, φ), there does not exist a tensor which corresponds exactly to the

curvature tensor for a linear connection. In fact, a simple computation will

show that —

Kb. 10;
+ X (Qfc3αφ* b ~~

The right side of (6.10) is a tensor. But 3bX
ι is not a tensor although its

coefficient is. Therefore, the coefficient of Xb is in general not a tensor. It

is obvious however that if the tensor — Sίi = CvcdaP^ — φζafiί is a zero

tensor, then the coefficient

of Xb in (6.10) is a tensor, and conversely.

We shall prove in § 8 that under a weaker condition than the above,

tensors resembling the curvature tensor for a linear connection can be con-

structed by using formula (6.10).

7. Consequences of the Structure Equation (1.1)3. We continue the

discussion of the general case where no assumption is made on the rank of

the tensor C in Theorem 3. 1. In this case, equation (1. l ) 3 may impose a

further condition on the vector fields EΛ. We shall give a geometric interpreta-

tion to this condition.

We first prove

THEOREM 7.1. The condition imposed on Ea by ( l . 1)3 is equivalent to

that in every coordinate system (U9 u
ι),
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\J 1) C|fc3ftCy] = XjciCa,

zvhere λ*ι are functions in (U, uι).

PROOF. Substitute in (1.1)3 the local expressions for El and EΛ given by
(2. 10)! and (3. 5). We obtain

] = E[aEβ]

du

D* _l 3

On account of these, equation (l. 1)3 is equivalent to

i. e.

(7. 2) C[JcdaCi] — φ[Jcl]Ca = — TϊclCa,

(7. 3 ) Qfcθaφjjj — φjcjφl]a — Φtwφaj = Λjfci

where

Now (7. 2) is a condition on the tensor C which is equivalent to the con-
dition that C^3αC*3 is of the form XtiCa. On the other hand, (7.3) merely
determines the functions R%ι in terms of C, φ and T. Hence Theorem 7.1 is
proved.

Next we prove

LEMMA 7. 1. Let C be any tensor of type (l, 1) with constant rank m
on M. Then the field of image m-planes of C is involutive iff in every coor-
dinate system (U, uι)

where λw are functions in (U, uι).

PROOF. This is an easy consequence of the definition of the field of image
m-planes of C and the following condition for a field D of m-planes on M to
be involutive'. If in any neighborhood, Y$ (l ^ ζ, η, ζ ^ r) are a set of r (r^m)
vector fields which locally span the field D, then [Yg, y j =μζ

ξηYζ, or, in local
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coordinates, Y^3ώy^ = μ%ηYζ9 where μ\η are functions.

Combining Theorem 7.1 with Lemma 7.1, we have

THEOREM 7. 2. Let EΛ, given by (3. 5), be any set of n vector fields on

B satisfying equation (l. 1)2. If the tensor C is of constant rank m(<L n) on

M, or, what amounts to the same thing, if at every point z of B, exactly the

same number n2 + m of the vectors (Efyz, (Ea)z are linearly independent, then

equation (1. l) 3 expresses the following two equivalent conditions:

a) The field of (n2 + m)-planes on B spanned by Ei and Ea is involutive.

b) The field of image m-planes of the tensor C on M is involutive.

Theorem 7. 2 becomes trivial if C is of full rank everywhere on M.

8. Curvature tensors for a quasi-connection. Let us now return to

§ 6 and prove that if the tensor C is of constant rank m on M and if the field

of image w-planes of C is involutive, then with respect to the quasi-connection

(C, φ) there exist 'curvature* tensors on M resembling the curvature tensor for

a linear connection.

For this purpose, we need the following key lemma :

LEMMA 8.1. Let C, S be respectively tensors of type (1,1) and (l, 2) on

M. If C is of constant rank m on M and if in every coordinate system (U, uι),

there exist n3 functions ψli such that

(8. l) αψίi = sίh

then there exists on M a globally defined tensor T of type (1, 2) such that

in every (U, uι)

(8. 2) CnT^ = SL

PROOF. Let u be an arbitrary but fixed point in U d M. Then the system

of n linear equations

(8. 3) CL(u)τh

kι = SUu) (k, I fixed i = 1, ,n)

admits a solution τ7ίι = ψlι(u). Consequently, since CXu) is of rank m(^ n), the

solutions of (8.3) for r^ (h = 1, ,w)span a linear space Rn-m

 of dimension

(n — m). Thus, the solutions of

(8. 4) a(uym = SL(u) (1 5S ί, kj^n)

n—mfor T^ span a linear space isomorphic to the product space Rn m X x R

(n2 times), i.e. to i?n2(n~m\ Now for any solution T^ of (8. 4), we can define a

tensor of type (1,2) at u by putting Tlι(u) = T\Z.

Let Bτ be the bundle of tensors of type (l, 2) at all the points of M. The

fiber Fu over each point u € M is isomorphic to i?w8. The set of tensors Ttiu)
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of type (1, 2) which arise from the solutions of (8. 4) forms a linear subspace Fu of
dimension n%n — ni) of Fu. Moreover, Fu is stationary in FU9 i. e., if u €
Uf] U*9 the Fw defined for u € U coincides with the F* defined for u € U*. In
fact, if u e U Π U* and 71(w) € ^ u , then since

satisfies

we have that Tΐn*(u) € ί ΐ . Thus, the totality of tensors of type (l, 2) at all
the points of M which are constructed from the solutions of (8.4) form a
subbundle Bτ of Bτ. Since the fiber Fjή Bτ being isomorphic to 22^»-»> is
solid, differentiate cross-sections of β7' exist (Steenrod [4] p. 55). Any such
cross-section is a tensor of type (1,2) on M satisfying the conditions of Lemma
8.1.

We note that the tensor T\ι which satisfies the condition of Lemma 8.1
need not be skew-symmetric with respect to the indices k and I even when
ψti, Sίi are. But, it is easy to see that the proof of Lemma 8.1 can be slightly
modified to furnish a proof of

LEMMA 8. 2. //, in Lemma 8.1, ψίi and Sίi are both skew-symmetric
with respect to the indices k and I, then there exists on M a globally defined
tensor T of type (1, 2) such that in every coordinate system (ί7, uι),

aril = si, = cw-ίi, 7ΐ, + n = o.
We are now ready to prove the following

THEOREM 8. 1. Let (C, φ) be any quasi-connection on M. Assume that the
tensor C is of constant rank m on M and its field of image m-planes is in-
volutive, so that {by Lemma 7. 1) C^daC

li\ = XΐiC'ά in every coordinate system
(U,ul). Then there exists on M a tensor T of type (1,2) satisfying the equation

fciU/i — Kψ'Jcl] — Λ>kl)^h

in every (JJ^u1). Moreover, for any such tensor T,

Rjkl = Q&θαφίjj ~~ Φίkjφίla — Φjdφai + Ttiφaj

are the components in (U,uι) of a tensor R of type (l,3) on M.

PROOF. We have shown in § 6 that Sίi = φ[ufa ~ C?kdaC\} is a tensor.
Now because Q3αCί] = λ«Cά,

Sjcl = \φίkl] — Xfcϊ)Ci,
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Application of Lemma 8. 1 to the above equation shows that there exists on M

a tensor T of type (1,2) such that in every (U, uι)

Tfxt yorf / , a •* a \/nr/ a s^i

On account of this, equation (6.10) can be written

+ X (

+ Xb<tL)

X (Cιicdaφ\]b — φμebφUa ~ Φlkliφab + Ttlφab)

-X"

Since X1 is an arbitrary vector, it follows from this that R)u is a tensor. Hence

Theorem 8.1 is proved.

If T is another tensor on M satisfying T%ιCa = (φ^π — λ«)Ci, and 2? is

the tensor on Λ/ arising from it, then

is a tensor. But Tϊi — T%ι = Wϊi may be any tensor satisfying the condition

W&C'a = 0. Hence, if W is any tensor of type (1, 2) on M satisfying the con-

dition WliCa — 0, then WΐiψLj is a tensor of type (1,3). This is a special case

of (iv) in § 6.

We remark that the tensors T and R in Theorem 8.1 need not be skew-

symmetric with respect to the indices k and /. However, on account of Lemma

8. 2, tensors T exist on M which saitsfy the condition stated in Theroem 8.1

and the additional condition that Ί\ι + J% = 0. For any such tensor T, the

corresponding tensor R is also skew-symmetric with respect to the indices k

and /.

9. Linear connection as a particular case of quasi-cόnnection. Let us

consider the case when the tensor C is of rank n everywhere on M. Then on

the one hand, we have the quasi-connection (C, φ) studied in §§ 6 and 8 on

the other hand, we have the linear connection studied in § 5. The link between

the two is (cf. (5.1))

(9. 1) Γjfc = C]φU

where C is the reciprocal of the tensor C. We note that in this case, the tensor

Ί%ι is uniquely determined:

(9. 2) Tjci = φ^i] — C[fc3αC?]C&

and is skew-symmetric with respect to the indices k, I. Consequently, the tensor
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R)ki is also unique and is skew-symmetric with respect to the indices k, I.
Let us denote by V> T, R the covariant differentiation, the torsion tensor

and the curvature tensor with respect to the linear connection Γ. Then we
easily find that

(9. 3)

(9. 4)

= Qfc(VδQ] ~~ C^i bC)\7αA + X

But we also have

(9. 5) VifcV*]*1 = - ΊliVnX' +

where

(9. 6) Tjci = T[m, Rjki = 3 L tΓ Π j

Comparison of (9. 5) with (9. 4) gives

which can also be verified diriectly.

On account of (9. 1) and (9. 6)2, the tensor defined by (6.8) now reduces

to — QίC^Tob, so that equation (6. 9) is equivalent to the relation between T and T

given in (9. 7)i. There is no tensor of the kind described in iv) of § 6.
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