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Let f{x) be an integrable function with period 27 and let its Fourier
series be

a,/2+ 3" (ay cos kx + by sinkx) = 3 Ay(x).
k=0

k=1

Denote the method of typical means of this series by

n-1

R =5 (1~ ) Aula).

k=0
Then this method saturates with the order n—*, that is, we have

THEOREM A. For the typical means,

(1° f— R)f)=o0(n") & f= a constant,
2 f—=R(f)=0(n™") e f e W,

where W* means the class of functions for which

S FA) ~ e L0, 2m).

k=1
See Aljanci¢ [1], Sunouchi [3] Sunouchi-Watari [4]. Recently Aljancic [2] proved
the following tte>rm.
THEOREM B. Let k=0, 1, ... and 0 <a=1. Then
SO@) €Ak + a <N) & f — Ry(f) = O(n™),
where ¥ (x) € *A, means
SOz + h) + fB(x — h) — 2fx) = O(| h|%).
However this fact is not confined to only the typical means, but also is valid

for more general approximation processes. Indeed we can deduce Theorem B
from Theorem A by method of the moving average.

THEOREM. Letk=0,1,2, ... , and 0 < a =1. Suppose that for linear
approximation processes T, (f)

1) fol =M, implies |T,(f)x)| = kM,
and
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2) @ =M, implies |flx) — TW(f)x)| = kM, n7,
where n™ is the best approximation of the class of functions
fO(x)e? A b+ a =2, kis an integer, 0 <a=1.
Then
FBx) €Ay B+ a <N & f(x) =T f)x) = On 7).

Roughly speaking, this method yields the best approximation, whenever
the order of the Lipschitz class is smaller than the order of saturation.

PrROOF. It is sufficient to prove that f®(x) € A,, (2 + a <\) implies
f=T.(f) = O(n**), because the converse part is evident from the best ap-
proximation (Zygmund [5], I, p. 119) and the first difference theorem can be
transfered to the second difference theorem (Aljanéi¢ [2]).

We set I,(f)(x) the moving average of f(x), that is
5
L@ = o [ fla+ o

and

L) x) = (2—%)-& f.f“( P +de, k=2,3, ...

At the beginning we suppose that A is an integer. For simplicity we con-
sider A = 3. The proof for A =1,2, ... is principally the same.

Case 1. k=0, 0 <a=1 and fe<A..

Since
L(f)x) = {filx + 38) — 3fs(x + &) + 3fi(x — &) — fi(x — 38)}/(28)’,

where f,(x) is the third primitive of f(x), we have

L L(PN) = At @)/ (@)
and f{x) belonging to the class A,,
P ST

When 0< a < 1, F(x) € A,and when a = 1, f(x) € 2A, which yields ﬁx) €A,
which yields f(x) € °A; (Zygmund [5], I, p. 121). Hence we get similarly

* @] = e
On the other hand
1 8 ) 8
LX) =@ = g [ [ [ (e e+ w o) = ) dedud

and
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%) | I(f)(x) — f(x)] = cs8%
Hence, if we set
9(x) = flzx) — L(f)(x),
then
S@) = TW(f)Nx) = L{f)x) — T { (N} (x) + 9(x) — T\(g)(x).

From the hypothesis, (*) and (*¥),

[f(x) = TW(fNx)| = ko8 °n° + kycyd%.
We set 8 = m/n and

|f(@) = TW(x)] =Cn= 0 <a=1).

Case 2. k=1,0<a=1, f(x)cA..
Applying Taylor’s theorem to the fact f(x) € A,

|A3f] = O@*).
In the same way as Case 1, we have
d3
s L@
On the other hand
9 @) = L(f)x) — f(x)

- (2%) f_i [_Z /i {f(x+t+u+v) - f(2))dtdudv

S L) = di

=ds,

and
lg'(x)| = dsé~
Hence from the hypothesis and the result of Case 1, we get
| f(x) — TW(f)@)]
= [ L(f)x) = T,(L)| + |gx) — Tw(g)|
= kydy3*'n—? + Cd6*n! = Dn=4 |
where a = n/n.

Case 3. k=2 0<a<l, f'(x)<cA..
In this case, a is fractional and

g(g:? 13(]?)(-1') ’ = e,0°7.

d3 a—1
@ = e

Moreover

y'(@) = L(f)zx) - f(x)
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1 PP ‘
2@8')7[5f,sf_s{f (@ + ¢+ u + v) — f(x)) dedudv,
= ;0%
Hence
| fx) — TW(f)(2)|
= [Ty(f)x) = TlL(F)] + | g(x) — Tw(g)l
S k8%t + e, D8*nt= En-@+®
where § = m/n.

When M is fractional, the proof may be done in the same idea. For simpli-
city we suppose 1 << A < 2. Then it is sufficient to prove @ =1 and 1 <a <A.
If we can prove these cases, another cases will be proved by method of the
moving average (Zygmund [5], I, p. 117).

Casel. a=1, feA,, 1<A<2

Since

L(f)x)={fex + 28) — 2fi(x) + folx — 28)}/(28)",

we have
S IP@ = gy Lfena@ + 29) = 2£uni@) + fua(e — 20).
|f ()| =M implies fra(x) € Ay-r (Zygmund [5], II, p. 136), and

@) =18
dp TN S 187
Since 2 — A is fractional, ﬁ_A(x) €A, 2 and

| i HOIETES

L(f)(x) e W* with the constant [,8'-*.
On the other hand

lg(x)| =|flx) — L()x)| = Ld.
Hence
| f(x) = TW(f)N2)|
= |L(f) = TA(L)| + 19— Tu(g)]
= kL8t + RIS = Ln7!,
where 8 = 7/n.
Case 2. k=1,1<1+a<na<2 f(x)eA..
In this case fia(x) € Ay_ria, because 0 <2 —A+a <1 and f(x) € Ay
(Zygmund [5], II, p. 136).
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Hence

) E’% L(f )(x)l = m S1-M+a

[:Zgr Iz(f)(x)‘ = 81N

and I,(f) e W* with the constant 72,8'~**%,
Moreover

I!],(x) ‘ = m,8%.

Hence we have

|f(x) = T.(f)=)]

= kmd Ment + Ln'm, 8%
= Mn 0+®

where 8§ = n/n.
Thus we proves the theorem completely.
Applying this, we may deduce Theorem B from Theorem A. An easy

corollary is the following.

COROLLARY. Denote oy, (f) the n-th Cesaro means of the r-th order
(0 <r < o), then

1) f—ou(f) =on?) & f = a constant,

@ f—oif) = O(n) &= f < L0, 2m)

@) f—au(f) = O0n™) = fe A0 <a <1).
(1) and (2) is the saturation theorem (Sunouchi-Watari [4]).
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