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Let fix) be an integrable function with period 2τr and let its Fourier

series be

CO OO

aQ/2+ ]P (ak cos kx + bk sin kx) = ^ Ak(x).
k=l fc=0

Denote the method of typical means of this series by

Then this method saturates with the order n~λ, that is, we have

THEOREM A. For the typical means,

(1°) / - Rl{f) = o(n~λ) « = » / = a constant,

(2°) / - Rl(f) = O(n-λ) 4=-*f e W\

where Wλ ?neans the class of functions for which

See Aljancic [1], Sunouchi [3] Sunouchi-Watari [4]. Recently Aljancic [2] proved

the following tre^rm.

THEOREM B. Let k = 0, 1, and 0 < a ^ 1. Then

β*\x) € >K{k + a<\) f = ^ / - Rλ

n(f) - O(n-fc"«),

where f^'\x) £ 2Λα means

βk\x + A) +/ (* )(;r - A) - 2/(t)(α:) = O{\h\a).

Flowever this fact is not confined to only the typical means, but also is valid

for more general approximation processes. Indeed we can deduce Theorem B

from Theorem A by method of the moving average.

THEOREM. Let k = 0, 1, 2, , and 0 < a ^ 1. Suppose that for linear

approximation processes Tn(f)

(1°) \f(x) \^MX implies \ Tn(f)(x) \ rg kxM»

and
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(2°) \J\x)\^Mt implies \f(x) - Tn(f)(x)\ ^ £2M2 n'\

where n~κ is the best approximation of the class of functions

f{1r\x) £ 2Λ«; k + a = λ, k is an integer, 0 < a ^ 1.

Then

f*\x) <= 2Λα, k + a < λ «—*/(*) -Tn(f)(x) = O(n*-*).

Roughly speaking, this method yields the best approximation, whenever
the order of the Lipschitz class is smaller than the order of saturation.

PROOF. It is sufficient to prove that fiΊc\x) £ Λa, (k + a < λ) implies
/ — Tn(f) = O(n~*~a), because the converse part is evident from the best ap-
proximation (Zygmund [5], I, p. 119) and the first difference theorem can be
transfered to the second difference theorem (Aljancic [2]).

We set Iι(f)(x) the moving average of /Or), that is

and

+ t)dt, * = 2,3,

At the beginning we suppose that λ is an integer. For simplicity we con-
sider λ = 3. The proof for λ = 1, 2, is principally the same.

Case 1. k = 0, 0 < a ^ 1 and /*= Aa.

Since

UMx) = f/3(* + 38) - 3f3(x + δ) + 3Mx - δ) - / 3 ( ^ : - 3δ)}/(2δ)3,

where f3(x) is the third primitive of f(x), we have

and f(x) belonging to the class Λ«,

When 0 < a < 1, /(Λ:) ^ Λ« and when Λ = 1, /(α:) £ ̂  which yields i ( x
which yields /(^) £ 2Λi (Zygmund [5], I, p. 121). Hence we get similarly

(*)

On the other hand

^ c.8"-3.

-Ax) = τAγJ ί ί {Ax + t + u + v) -f{x)}dtdudv
{ΔO) J__δ J_δ J_δ

and
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\Uf){χ)-f{χ)\ g #

g(x) =f(x) - Uf){x\

214

(**)

Hence, if we set

then

f(x) - Tn(f)(x) = IJJXx) - Tn{Uf)Kx) + <

From the hypothesis, (*) and (**),

\f(x) - Tn(f)(x)\ ^ &2c:2δ" 3n~3 + ^^38*.

We set δ = π/n and

|/0r) - Tn(f)(x) I ̂  Cn~« (0 < α ̂  1).

Case 2. £ = 1, 0 < a ^ 1, f'(x) £ Λα.

Applying Taylor's theorem to the fact f\x) £ Λα,

In the same way as Case 1, we have

On the other hand

g(χ) =

and

-fix)

- Tn(g)(x).

l ί v) -f(x)}dtdudv

Hence from the hypothesis and the result of Case 1, we get

\f(x) - Tn(f)(x)\

ί£ \Uf%x) - Tn(Uf))\ + \g(x) - Tn(g)\

ίg k2d2S"- 2n-3 + Cd3B
an~l = Dn-

(1+a),

where a = π/n.

Case 3. k = 2, 0 <a<l, f"(x) € Aa.
In this case, a is fractional and

Moreover

g'Xx) = -f\x)
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u

Hence

\f(x)-Tn(fXx)\
^ \T3(fXx) - Tn(I3(f))\ + \g{x) - Tn(g)\
^k^-'n-3 + e3 D8«n-2= E;r(a+β)

where δ = π/n.
When λ is fractional, the proof may be done in the same idea. For simpli-

city we suppose 1 < λ < 2. Then it is sufficient to prove a = 1 and 1 < a < λ.
If we can prove these cases, another cases will be proved by method of the
moving average (Zygmund [5], I, p. 117).

Case 1. a = 1, /<Ξ A U 1 < λ < 2.

Since

Uf)(x)= {fix + 28) - 2fix) +flx - 2δ)}/(2S)2,

we have

•— Uf)(x) = ~y iA-fc + 2δ> - 2/,-Λ(X) +f*-χ(x - 28)}.

I/'O) I ̂  M implies/LΛ(X) e Λ2_λ (Zygmund [5], II, p. 136), and

-j^Uf)(x)\^l^-\

Since 2 — λ is fractional, f'z-x{x) £ Λ2 x and

Uf)(x) € ̂ A with the constant /3δ
1-λ.

On the other hand

\g(x)\ =\f(x)-Ilf)(x)\ ^/4δ.

Hence

\f(x) - Tn(f)(x)\
5Ξ \Ilf) - Tn(Uf))\ + \g- Tn(g)\
^hhV-^ + W^Ln-1,

where δ = τr/n.
Case 2. * = 1, K l + α < λ < 2 , f\x) s Λα.
In this case f'z-λ(x) « Λ2_λ+α, because 0 < 2 — λ + α < l and

(Zygmund [5], II, p. 136).
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Hence

G. SUNOUCHI

d>

dx

dλ

dxλ

and I2(f) ^ W"A with the constant m3ί
Moreover

l/(χ)l ^ m 4 δ α .

Hence we have

where δ = τr/w.
Thus we proves the theorem completely.

Applying this, we may deduce Theorem B from Theorem A. An easy
corollary is the following.

COROLLARY. Denote σr

n(f) the n-th Cesάro means of the r-th order
(0 < r < oo), then

(1) / - σr

n(f) = o(n'1) f = ^ / = a constant,

(2) /-σ;(/) = 0(θ4^/€L-(0,2τr)

(3) / - σί(/) = O(n-*) <^=^/€ Λα(0 < a < 1).

(1) and (2) is the saturation theorem (Sunouchi-Watari [4]).
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