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Recently we proved a number of convexity theorems for Fourier series

[ 2 ], and they were slightly generalized in [ 3 ]. The present paper is a con-

tinuation of [2, 3]. Indeed, we shall treat the allied Fourier series analogues.

With respect to Theorems 1, 2 and 6 in [ 2 ], the results for allied series

will be different a little, while with respect to Theorems 3, 4 and 5 in [ 2 ], the

results will be almost similar. For the sake of contrast, we shall number the

theorems of this paper with the order of theorems in [ 2 ].

1. Notations. Let ψ(t) be an odd function integrable in Lebesgue sense

in (0, TΓ), and periodic of period 2π, and let

~Srn = Σ A'n-vbv ( - oo < r < oo),
υ - l

ίS+1 = Σ, Ar

n-V(vbv) ( - oo < r < oo),

where Ar

H = ί r ^ n \, n = 0,1,2,.... We write

*β(f) = ~ j f \ t - tΐf-Wu) du(β> 0),

ψβ(t) = τ(β + ly-fψfίf) φ > o).

Similarly, from the function

2 f= 2. f±(uldu
T J, u

we define θβ(t) for β^O. For the negative value of β, let

θβ(t) = t - " ~ ί { t - ufθ(u) du (- 1< β < 0).
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Further, we understand

1) t -> 0 means that t > 0 and t -> 0,

2) ψ{t) -> 0(C) means that ψβ{t) -» 0 as ί -> 0 for some β.

These notations will be used throughout this paper.

2. Theorems 1, 2 and 6.

THEOREM 1. Let 0^/3, - l^c,0 < β - b^y - c and -l<c-b<2,

{except the case β — y = b — c = 0).

(I) If Ψβ(t) = o{ty), or more generally

t

(2. 1) [ \Ψβ{u)\du = o{ty+1) as ί->0,

αw<i if

(2. 2) 5£ - Aΰ = O(nδ) α5«->oo

Λo/ίis /or 5ome constant s, then we have

(2. 3) 5£ - Aζs = o(τzQ), g = 6 + (r -c)08 - b)/(y - c),

α5 n—>oo9 for c < r < γ', where

(2. 4) / = inf (γ, [(£ + 2)γ - (/S + 2)c]/(y -c + b - β)).

(II) 7/ (2. 1) Ao/ώ, flwJ

(2. 2X S - i l l ϊ = O^(^δ) ^5 n -> oo,

ίΛ̂ w zί e have (2. 3) /or c: 4- 1 5g r < γ', provided that c + I <rγ\

(N. B. 1) In ( I ) of this theorem, the range of r, i.e. c < r < γ' denotes the

common range of c <r <y and r — q <2.

REMARK 1. In Theorem 1 (and also in Theorem 2 below), Ίίβ^y (except

the case β — y — b — c — ϋ) then we have steadily q — r > 0 and so in view

of (2. 3) 5 may be quite arbitrary. In particular, we then may put 5 = 0. On

the contrary, if β < γ then q — r < 0 occurs in the range c < r < y', and for

such r there exists

lim θr(t) Γ = lim θβ(t) 1 ,
ί-*0 L t^O J

which should be equal to the constant s. For details, see the proof of Theorem 1.

Concerning Theorem 6 below it is slightly different. If β = y then 5 cannot

be arbitrary.

(N. B. 2) In the exceptional case β — y = b — c = 0, Theorem 1 (and also

Theorem 2 below) is true if and only if θ(t) —• s(C), in addition to the assump-

tions. Also cf. the proof of Theorem 1.

THEOREM 2. Let 0 ^ 6, 0 < β - b ^ y - c and - K c - b < 2 , {except
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the case β - y = b - c = 0). If (2. 1) holds, and if Ψb(t) = O(tc), or more

generally

(2. 5) \\\Ψb(u)I - Ψb(u))du = CKf+i) as t -> 0,

then we have the conclusion in ( I ) of Theorem 1, s havingthe same meaning

as in Remark 1.

THEOREM 6. LetO^b,O <β - b^y - c and - K c - b < 2 , [b(y +1)

< (c + 1)0]. / /

5n — An s = o(nβ) as n -» oo?

/or 5om^ constant 5, α/zJ zjf Ψi(ί) = O(ίc)> or mor^ generally (2. 5) holds, then

we have (2. 3) /or c <r <y.

(N. B. 3) In this theorem, the restriction r — q < 2 is superfluous. When

& = 0 and c = — 1, Theorem 1 can be slightly modified as follows.

THEOREM 1°. If 0 < β < y + 1, αrcd %(£) = O(ίγ) or more generally

(2. iy

x e have

~Sr

n ~ Ar

nS = θ ( n ( r +

/or

- 1 ^ r < inf (γ, [2(γ + 1) + β]/(y + 1 - /?)),

where 5 = 0 when β §r γ, αn(i 5 = lim^β(ί) when β < γ.

From Theorem 2 follows the following

THEOREM 2°. 7/Ό ^ β, - 1 < γ < /3 + 2, .0 ^ y, and if Ψβ(t) = o(*Y), or

more generally

(2.1)

sl+r> - Al^s = o(nβ+*), v>0,

where 5 = 0 when β > y, and s = lim θβ(t) when β < y.

(N. B. 4) This theorem is not true when β = y. Cf. Lemma 7 in the next

article.
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Similarly as in the paper [ 2 ], making r = q = a (c < a < γ) we have the
following summability theorems from the above theorems respectively.

COROLLARY 1. Let 0 < / 3 < γ and 0 < δ < 1. 7/(2. 1) holds, and if
either of the two conditions

bn = CKτr«-°>),

is satisfied, then there exists 5 = lim θa(t), and

σl-^X a = (β-y + γδ)/(γ - β + δ).

The existence of lim θa(f) will be shown later in §4.

COROLLARY 2. Let 0 < β < y and 0 < δ < 1. If (2. 1) ΛoZds, and

then there exists s = lim θa(f\ and

COROLLARY 6. Let 0<β<yand 0 < δ < 1. If

sl-Als^o(nη and ψ(t) = OL(t~*\

then we have actually s = lim θa(t), and

?£->*, Λ =/88/(γ -/8 + δ).

(N. B. 5) In Corollaries 2 and 6, we could show that more generally

ify-β<βδ then s = lim 0α,(ί), 0<cΐ = ct-(β-ct)/β<ct,

and ify-β^βδ then 5 = lim »0(ί) = lim θ(t\ in place of 5 = lim 0Λ(ί).

COROLLARY 1°. If 0 < β < 7, α^J (2. 1)'

5 == lim 6 Λ̂(ί),

When β = 0, clearly this corollary is true. Similarly, Corollaries 1 and 2
are true when β = 0.

3. Preliminary lemmas. In order to prove the theorems we need a
number of lemmas.

LEMMA 1. Let O^β, - l^c, 0<β - b^y - c and -Kc-b<2.
(I) If {2.1) holds, i.e.

t

(3.1) [ \Ψβ(u)\du = o(t^\



CONVEXITY THEOREMS FOR ALLIED FOURIER SERIES 53

and tn

0+ι = O(nb+1), then we have

(3. 2) tn

τ+ι = o(nQ^\ q = b + (r-c)(β- b)/(y - c\

for c < r < y', where

(3. 3) </ = inf (γ, [φ + 2)γ - (β + 2)c]/(y -c + b - β)).

(II) If (3. 1) holds, and tn

c+1 = O£(wδ+1), ίA«ι we have (3. 2) /or c + 1

t=^r<y', provided that c + 1 < γ".

LEMMA 2. Let O^b,O<β - b^y - c and - K c -b<2. If (3. 1)

holds, and if Ψb(p) = O(tc), or more generally

(3. 4) [ (I Ψft(«) I - Ψb(u)) du =

then we have (3. 2) for c <r <y', y' being defined by (3. 3).

LEMMA 3. Let O^b, 0 <β - b^y - c and - K c - b < 2 . If tl+1

— o(nβ+ί), and if Ψb(t) = O(tc), or more generally (3. 4) holds, then we have

(3. 2) for c<r< γ.

LEMMA 4 7/Ό< / S<γ + l, αwd (2. 1)'

(3. iy

^ have

1),

for

- 1 ̂  r < inf (γ, [2(γ + 1) + /8]/(y + 1 - β)).

PROOFS OF LEMMAS 1 and 2. We sketch the proofs. They run quite

analogously as those of Theorems 1 and 2 in the paper [ 2 ], the common

principal part of which is essentially based on Lemma 1 in there, in particular

on the use of the kernel

(3. 5) xUt) = —±-rΣΣ Σ « w * + . . . +M,
n m

 V l-i^-l vk-l

where

DQί) 1 AZ ΣAr vt,

and m — m(n) < (2k)~1n, k being a sufficiently large integer.

From the definition for £ / f l in §1 we have



54 K. YANO

(3. 6) t/+1 = - — fψ(t) j - Dl(f)dt.

In order to prove the present Lemmas 1,2, as a matter of fact, it is sufficient
to employ the identity

and its analogue in which n + vx + v2 Λ- + vk is replaced by n — vλ

— v2 — — vk> The second term of the right hand side can be treated quite
similarly as in [ 2 ]. The first term is

where Xn(t) denotes, by (3. 6), the same expression as in (3. 5).
Thus, the only difference between the method of the proofs of Lemmas

1, 2 and that of Theorems 1, 2 in [ 2 ] exists in using the kernel

in place of %n(t). Here, we do not reproduce the argument since these kernels
have almost all the same properties.

The difference between these two kernels, which is analogous to that
between the Fejer kernel and its conjugate, well interprets the reason why we
may restrict to be r — q < 2, cf. (N. B. 1), in the present lemmas, in place of
the restriction r — q < 1 in Theorems 1, 2 in [ 2 ]. Concerning the latter differ-
ence, see e. g. the paper [4,(1. 9) and (1.10)].

The proofs of Lemmas 3 and 4 are similar.

LEMMA 5. If a > — 1, then a necessary and sufficient condition for
θa(t) -> 5 is that ψa+i(t) -> 0 and θ{t) -> s(C).

See Bosanquet [1, Lemma 3].

LEMMA 6. A necessary and sufficient condition that the allied series of
ψ(t) should be summable (C) for t — 0 to the sum s is that θ(t) —> s(C).

See Bosanquet [1, Lemma 5].

LEMMA 7. If a ^ 0 and ψa(t) = O( 1), then the allied series is either
summable (C, a + δ), δ > 0, or not summable (A). A necessary and sufficient
condition for summability to s is θβ(t) —> 5 for β > a — 1.

See Bosanquet [1, Theorem 6].
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LEMMA 8. Let q>0 and Ψq(t) = o(tr) as t~^0. If q < r, then there

exists the limit

s = lim Θq-Λt),
ί-*0

and

βq^(t) - s = o(tr-η.

In the case q = r it is ambiguous.

PROOF. If q > 0, then we have

by Bosanquet [1, (2.14)], and

by the definition for θQ(t) in §1, provided that θq-iit) is defined. Hence, observ-

ing that θq(t) is defined for every t > 0 if q > 0, the assumption Ψq(f) = o(tr),

i. e. ψq(f) = o(tr~Q) implies the existence of θq^(t), t > 0, and

(3. 7) θq^(t) - θq{t) = o(tr~Q) as t -• 0.

Multiplying both sides of (3. 7) by qtQ~ι we have

and then

~

which is

-jj£ θq(t) = o(tr-Q~ι) as t -> 0.

From the last relation, if q < r then we have

which implies the existence of lim θq(t) ( = ί, say), and θq(t) — s' — o(tr~Q).

Consequently, (3. 7) yields 5 = lim θq-λ(t)9 and θq-x(t) — s = o{tr'Q).

In the case q = r, 5 = lim^-Xί) exists if and only if θ(t) —> J(C), i. e.

5« ~ > 5(C), by Lemmas 5 and 6. Thus, we get the lemma.

LEMMA 9. Let 0^β, - 1 ̂  c, 0</3 - b^y - c and - K c - b < 2

(except the case β — y = b — c = 0). If
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(3. 1) [ \Ψβ(u)\du = o(t
Jo

and if

(3. 8) si - Ac~s = OL{nh)

holds for some s, then we have tn

c+ι = OL(nb+ι).

This lemma holds, a fortiori, when L in OL is omitted.

PROOF. ( I ) The case - l < γ < / 8 + 2. If βφy, then Ψβ+ι(t) = o(ty+ι)

which follows from (3. 1) yields, by a modified theorem of M. N. Obrechkoff,

i. e. by Theorem 2°,

(3. 9) SZ+1+* - AVι^~s = o(nβ+1+*>), η>0,

where 5 = 0 when β < γ, and 5 = \imθβ(t) when β < y. (3. 8) and (3. 9) with

η = 1 imply

5W

C+1 - An

c+1s = o(nG+^+2-δ)/(γ+2-c)),

by a L.S.Bosanquet's convexity theorem of Tauberian type. See, e.g. the paper

[2, Lemma 2]. Hence, we have

(3.10) 5 n

c + 1 - An

c+ιs = o(nb+1),

since 0 < β — b ̂ y — c.

On the other hand, from the definitions for tn

c+1 and sn

c in §1 we have

the identity

tn

c+1 = nsn

c ~(c + l K i l ,

which is written as

IT = nQ?n - Ac

ns) - (c + 1) Qc

nt\ - AΪ2J),

independent of 5. Substituting (3. 8) and (3.10) into the last relation we get

tV1 = OL(nb+ι\ which is the required.

Next, if β = y then we have c < b and 0 <β — b <y — c since the case

β — y = b — c = Ό is excepted. Taking the number yx such as β — b = yx — c

we see that

- 1 < yx < β + 2, β Φ y1 and y1 < y,

by the assumptions. Thus, Ψβ+\(t) = o(fι+ι) gives the same conclusion as above.
(II) The case 7 ^ / 3 + 2. This may be reduced to the case ( I ) . Indeed,

taking a number y2 such as y2 = β -f c — b + d for e.g.d= — (c—& + l)/2 we can
make

- 1 < γ2 < /9 + 2, and γ2 < γ,



CONVEXITY THEOREMS FOR ALLIED COURIER SERIES 57

under the assumptions.
Hence, we get the lemma.

4. Proofs of Theorem 1 and Corollaries 1, 2.
P R O O F O F T H E O R E M 1. By Lemma 9, sc

n - Ac

ns = OL(nb) implies

under the rest conditions in the theorem. And, this holds of course without L
in OL. Hence, after Lemma 1, the assumptions in ( I ) of Theorem 1 conclude
that

(4 1) ΐV1 = o{n^\ q = b + (r-c)(β- b)/(y - c\

for c < r < y', η being defined by (2. 4)
On the other hand, we have the well known identities

tr

n

+ι = nAr

n(σr

n -

Thus, (3. 2) is written as, in two different ways,

(4. 2) σl - σltX = o(n"-r\

(4. 3) 5ζ« - ?/_« = oCn'-"-1),

since Al ^ nτ/T(r + 1), r > - 1, as n -»• °o.
If q — r > 0, then adding both sides of (4. 3) from n — 1 to n we get

o"»+I = o(n"~r), and then from (4. 2) σζ = o(n"~r), which is the same thing as

(4.4) iϊ - Alϊ = oin"),

where 5 = 0.
If q — r = 0, then (4. 2), i.e. στ

n — ί^ 1 = o( 1 ), and its analogues in which
r and n are replaced by r + 1, n — 1 r + 2, ?z — 2; , conclude that Σ &n is
summable (C, r) if and only if it is summable (C).

If q - r <0, then (4. 3) implies

σn7i - σ r

n

+ι = o(*β-0 for p=l,2,...,

and then the existence of lim σ£+1 ( = 5, say), and c£+1 — s = o(nQ~r). Hence, from
(4. 2) we have

(4. 5) 5 = lim a*,

and

ίS - s = o0iβ-0,

which is the same thing as (4. 4).
In order to complete the proof it is sufficient to show that there exists

lim θr(f) whenever q — r < 0, and that this limit should be equal to the constant s
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in (4. 5). Now, since

q = b + (r - φ , p = 09 - &)/(γ - c),

by (4. 1), we have 0 < p :g 1, and

(4. 6) q - r = (β - γ) + (γ - r)(l - p),

which conclude that in the interval c < r < γ',
1° if /S ̂  γ (except the case 2° below), then steadily q — r > 0,
2° if (and only if) β — y = b — c = 0, then identically g — r = 0,
3° if β < γ, then there exists an r such that q — r < 0.
In the case 1°, clearly 5 in (4. 4) may be arbitrary. In the case 2°, the

theorem is true if and only if θ(t) —> s(C) by Lemma 6, as it is noticed in (N.B.2).
In the case 3°, taking an r such that q — r < 0 we have (4. 5), which

implies

(4. 7) θ(t)-+~s(C) as ί->0,

by Lemma 6. Since (4. 5) holds when r is, as we may, replaced by a slightly
smaller one, we get

(4. 8) ψv+1(*)->0as t-*0,

by a well known theorem due to L.S.Bosanquet. Cf. e. g. Theorem 4° with
β = y in the last article. (4. 7) and (4. 8) imply s = lim θr(f) by Lemma 5.

On the other hand, by Lemma 8 the condition

(4.9) Ψ s + I (ί) = o(ίγ+1), β<Ί,

which follows from (2. 1) implies the existence of lim θβ(t). So, we have

5 = lim θr(t) = lim θβ(t).

Thus, we get ( I ) of Theorem 1.

The proof of (II) of Theorem 1 is quite similar.
Similarly, Theorems 2, 6 and 1° follow from Lemmas 2, 3,4 and 9.

PROOF OF COROLLARY 1. It is sufficient to show the existence of

(4.10) 5 = lim θa(t).

Applying Corollary 5 which will appear in the next article, and is independent
of Theorem 1, to (4. 9) and bn = OL{rΓ{[-B)), one obtains

Ψβ,(ί) = o(*β/), a! = (γ + 1)8/(7 " β + 8).

And, (4. 9) implies the existence of lim θp(t). So, there exists lim 0«/-i(£) ( = 5 ,
say), by Lemma 5. Observing that a' — 1 = a, we get (4.10).

P R O O F OF COROLLARY 2. (4. 9) and ψ(t) = On(t-) imply
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Ψq(t) = o(trl r = - δ + (γ + 1 + S)q/(β + 1)

for 1 t=^q < β + 1, by a M.Riesz's theorem. See, e. g. the paper [2, Lemma 5].

Here, we may put

q = a + 1 (μ = /3δ/(γ - β + δ)),

since l < t f + l < / 3 + l is easily verified. We then have

r _ g = _ δ + ( γ + l + 8)(Λ + l)/0β + 1) - (Λ + 1) = (γ - /2)/(/3 + 1) > 0 .

Hence, one obtains Ψα+i(ί) = o(ία+1), which together with (4. 9) assures the

existence of the limit (4.10).

Quite analogously we can prove the rest of the corollaries.

5. Theorems 3, 4 and 5. The proofs of the following Theorems 3, 4 and

5 do not differ in principle from those of Theorems 3, 4 and 5 in the papers

[2, 3] respectively.

T H E O R E M 3 . Let - 1 ^ β, 0 ^ c and 0 < y + l - c ^ β + l - b ,

[ 0 8 + l)(c - 1) < by]. ( I ) If sβ

n- Aβ

n~s = o{ny\ or more generally

n

(5. 1) £ \$ - A$\ = o(ny+1), as n -» oo,

holds for some constant s, and if

(5. 2) Ψc(0= O(tb) ast-^0,

then we have

(5. 3) Ψr(t) = o{tq\ q = b + (r- c)(β + 1 - 6)/(γ + 1 - c),

as t —> 0, /or £ < r < γ + 1.

(II) i f (5. 1) holds for some constant s, and

(5. 2)' Ψc(t) = OL(th) as f -> 0,

ί/ι̂ n ?x;£ A-α̂ ^ (5. 3) /or c + l ^ r < γ + l, provided that c < γ.

REMARK 2. In Theorem 3 (and also in Theorem 4 below), we have the

following three cases concerning the constant 5.

1° If β < γ, then s may be arbitrary in view of (5. 1), and so we may

put 5 = 0.

2° If β > γ, then q > r occurs in the interval c < r < γ + 1, and by Lemma

8, for such r (5. 3) implies the existence of lim dr-x{t), and then that of lim

θy(t) since γ > r — 1. Hence, observing that σβ+1 —> 5 by (5. 1), we conclude that

s should be equal to lim θy(t) by Lemma 6.

3° If β = γ, then by a modified S.Izumi's theorem (cf. Theorem 4° below),

(5. 1) implies ψy+ι+η(t) —>0(η> 0), and then θy+η(t) —»5 by Lemmas 6 and 5.
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In particular, 5 = lim θy+λ(t).

Concerning Theorem 5 below it is slightly different. If β = γ, then we may

put 5 = 0.

T H E O R E M 4 Let - 1 ̂ β , 0 ^ c and0 < γ + 1 - c^β + 1 - b9

[(β + 1) (c - 1) < fry]. // (5. 1) Ao/ώ /or some constant s, and if str1 - ASτΊs =

O(n°~ι\or more generally

272

(5. 4) Σ, (IS"1 - &-ιs\ ~ (3~l - ^"'^)) = O(nc) as n^°o,

then we have the conclusion in ( I ) of Theorem 3.

THEOREM 5. Let 0 ̂  c ^^J 0 < γ - c ̂  β - b, [(c-ϊ)β<b(y- 1)]. if

5 t -> 0,

if sξΓ1 — AΪΓ1 J = O^- 1 )* ^^ mor^ generally (5. 4) Λo/ds /or 5om^ constant

s, then zve have

o(ίg), c = 6 + (r - c)0S - b)/(y - c),

as t -> 0, /or c <r<y.

When & = 0 and c = 1, Theorem 3 can be slightly modified as follows.

THEOREM 3°. i f O < γ < / 8 + l , and 5£ - Ag s = O(wγ), or more generally

(5. I)' ΣlsT-A?sΊ =O(nY+1)
pel

/or 5ome J, then we have

Ψr(t) = W-ww), 1 ̂  r < 7 + 1.

From Theorem 4 we have the following

THEOREM 4°. If - l ^ β , - K γ < / 8 + l αnrf J5 - AS5= o(wγ), or
r generally (5. 1) Λo/ώ /or some s, then we have

ψy+ι+η(t) = o(ί9 + 1^), η > 0.

In this theorem, the case γ ̂  /β + 1 is trivial.

Theorems 3, 4 and 5 give the following corollaries respectively.

COROLLARY 3. Let 0<δ and - K y < β , [ δ γ < β + l]. i f

(5. 1) £ |5?



CONVEXITY THEOREMS FOR ALLIED FOURIER SERIES 61

holds for some s, and if either of the two conditions

is satisfied, then we have s — lim θa-\{t), and

Ψa(t) = o{t«\ a = δ(γ + l)/0β - γ + δ).

Here, we prove the existence of the limit s. Indeed, (5. 1) together with
- 1 < γ < β implies 5*+1 -+ s, and then by Lemma 6 θ{t) -> 5 (C). Hence, Ψa(t)
= o(t"), a > 0, assures that s — lim θΛ-ι{t) by Lemma 5.

COROLLARY 4. Let 0 < γ < 1 and -(l-$)<y<β. If (5. 1) holds
for some s, and bn — Oz(n~(Ί~δ) ), the?ι we have s = lim θa-.ι(t), and

Ψa(t) = o{t«\ a = Kβ + l)/0β - 7 + 8).

COROLLARY 5. L ί̂ 0 < δ < l αnJ B<y<β. Then

Ψy(t) =

Ψβ(ί) = o(ί ), Λ = /88/08 - γ + δ),

and the existence of s — lim θa-\(t).

COROLLARY 3°. If 0 < γ <β, and (5. I)7 Λ0ZJ5 for some 5,
5 = lim θΛ~i(t), and

Ψm(t) = o(ία), rt = Oβ + 1)/C8 - γ + 1).
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