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1. Introduction. Littlewood and Paley [ 6 ] proved the following result

For f{x) £ Lp(-7r, TΓ) ( 1 < p < oo), let

Xv)= ~ f Rx)e-*~dx9 (1. 1)

f(x)*^ T" f(v)e''vX (1 2)
i s-n

If

Σ f(v)e*vx n = 1, 2,

/(0) n = 0
-2-n-i

Σ /7 \Λvx 1 O (Λ Q\

j(y)ewx n = — 1, 2, . ., (1. 3;

0 < A D ^ Γ ( y : \Anix)\2\dx I I \fix)\pdx^A'P<
,

Concerning this theorem, discrete and integral analogues were proved by
G.Sunouchi [ 12], [11] and recently J.Schwartz [ 8 ] gave a new proof. On the
other hand, the theorem just cited was extended by I.I.Hirschman Jr. to the
weighted Lp-class (Theorems 6 and 7) and the Fourier integral case with the
weighted norms was investigated by D.L.Guy [ 2 ] (Theorems 1 and 2). However
their proofs are complicated.

In the present note we shall prove the integral, discrete and ordinary cases
with weighted norms with the idea of J.Schwartz. Our main methods depend
upon the extended Marcinkiewicz interpolation theorem and the test for an
operator to be weak type (1, q) due to L. Hormander [ 5 ] which are applied
to vector-valued functions by J.Schwartz [ 8 ], and another tool is of a substitute
of ParsevaΓs relation.

§§2-6 and §§7-8 are devoted to the proof of Fourier integral and discrete
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cases respectively.
In §§9-11, we shall prove the theorems for Fourier series.

In §12 we shall consider some well known inequalities concerning the func-

tions of Littlewood-Paley g(θ), g*(θ\ the function of Lusin s(β) and that of

Marcinkiewicz μ(θ) in view of decomposition theorem. These considerations

give unified real treatment of these functions.

2. The Integral case. The integral analogue of Littlewood-Paley's de-

composition theorem with weighted norms is stated as follows.

THEOREM 1. Let\<ρ<^, - \ < a < ρ - \ andf(x) z LI, that is,

\f(x)\p\x\oc £ L(— oo? oo). Let Δn(x) = Δn(x, f) be the function whose Fourier

transforms Δn(x) is identical with that of fix) in the domain 2n ^ \x\ < 2n+1

and vanishes outside this domain. Then,

\Δn(x)\> \\x\°dx/]_ \f(x)\»\x\«dx^A'P,a<oo.

(2. 1)

The inequalities in this note are to be interpreted as meanings, "if the

majorant is finite, then the inequality is satisfied'', and A, Ap, Ap etc. are posi-

tive constants depending only on the indices submitted and may be different

in each case.

For the proof of Theorem 1, we introduce the auxiliary function used by

J. Schwartz. Let φ(x) be even C°° function equal to 1 for 1 5̂  \χ\ ^ 2 and

equal to zero for | x \ ^ 1/2 or | x \ §: 3, chosen so that its first few moments

are zero. Let Kx be the vector valued function with values in the two-sided
Hubert sequence-space Z2 as

/ *%(y)dy = ( A ( 4 kn+1(x),...), (2. 3)

%{x) = (..., φ(2nx),

= (•••, kn(x), h+i(x\ •) (2. 2)

and define Kx(x) by

where

and

kn(x) = 2-"ka(2-nx). (2. 4)
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For a scalar valued function f{x\ put

(fti/)(*) = Γ Kx(x - y)f(y)dy, (2. 5)
• ' - c o

and for a function G(x) with values in Hubert space Z2, put

(S.G) (α:) - Γ Kx{x - J O ^ ) ^ . (2. 6)

Then ft̂  maps scalar valued functions into functions with values in Z2 and Si

maps functions with values in Z2 into scalar valued functions. If f(x) and G(x)

are suitably restricted, we have

Γ <#iJXxWx)dx = f /(^)(S^χF)^. (2. 7)
•'—oo v — oo

From this equality we can easily deduce the following Lemma.

LEMMA 1. Two inequalities

and

equivalent, where 1 < p <C °°, 1/p + 1/q = 1, /β = (1

( Γ 0 0

II y II __ j / I/*(.r) I *
( J-oo

First of all we show the L«-case.

LEMMA 2. If — 1 < a < 1, ί/^ we

)1 2 1xI α <sfo; ^ A a \ \f(x)\2\x\adx (2. 8)

eo — « J^

To prove this lemma we use the two theorems.

THEOREM A. (I. I. Hirschman, Jr., [ 4 ]). If 0 < a < 2 and f z Li Π ZΛ

£ |/(x)|21x|^x=A«,αj[ j[ |/(α:)-/(3')IΊ^-3Ί-"-α^Φ,
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where En denotes the n-dimensional Euclidean space and f(x) is the Fourier
transform of f(x).

THEOREM B (I. I. Hirschman, Jr. [ 4 ]). Let a, 0 < a < n be fixed. IfT(x)
is a non-negative measurable function on En such that

I [x : T(x) ^ a] | ^ Aa'nla (0 < a < oo),

then

f \f(x)\ *\x\«dx.

PROOF OF LEMMA 2. By Lemma 1, it is sufficient to prove (2. 8) for
0 < a < 1 and (2. 9) for 0 < a < 1.

For a suitable f(x\ we have

$JXx) = %{x) f(x),
therefore noting that support of kn(x) is contained in (2~w~\ 3 2~n) and that

kn(x) is uniformly bounded, (2. 8) with a = 0 is shown easily by ParsevaΓs
relation.

Now we assume 0 < a < 1. By definition

and using Theorem A,

K(χ - y)f(y)dy

Γ - y)f(y)dy

\x\"dx

= A.f f \f(y)k(y) -ϊ(x%

where

ϋ = J" \fa)12^jΓ Ik(χ) - k(y)\'\χ-y\-"a

and

n = Γ Γ ιΛ«) -/ωi21^ωi2\* -y\-ι-dxdy.
J_eβ t/_tβ

By the remark just mentioned for kn(x), we get

^2A«(Γn + Γn),

(2.10)

(2.11)

= Γ ΓI έ ιkωi
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^AΓ Γ \f(x) -f(yW\x-y\-l~
J-oo J _oo

^A Γ \f{x)\*\x\"dx.
J — oo

To estimate II, we consider for x > 0

Ux) = [ Ik(χ) - kiy)V\χ-y\-*-'dy. (2.12)
J— oo

Let 2~m~ι ^ x < 2"m, m being some integer. If m — l rg ; i5gra + 3, then we
put

Γ
= J i W + J%x\ say.

Using the fact that \kn(x) -kn(y)\ < 2nA\x - y\ or Jι

n(x) and
^ A for Jn(^), we get

Jl{x) = A^n f \x-y\Ί-«dy^Aaχ-a,

and

f \x-y\ ->-"dy ̂  Λ.Λ-,

hence

Jn(x) ^ A^-α, f o r m - l ^ w ^

If n > m + 3 or n> m — 1, then observing £n(.r) = 0,

and

Γ ) | χ - y | - ι -

+ f )\χ-y\-'-a dy

^ Aax~a,

where the summation is taken over {n:n^m — 2 or m + 4 ^ n } . There-

fore

(2.13)
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\Kx)\*\x\-« dx

\f(x)\>\x\° dx,

applying Theorem B. Collecting these inequalities, we get (2. 8) for 0 ^ a < 1.
Now we prove the inequality (2. 9) for 0 < a < 1.

Let G(^) = (••., flτn0r). gn+ι(x\ •) belong to L*(Z2) and L2(/2), i. e.

f !
J-oβ

Again by Theorem A,

oo oe

Γ Γ

J-coJ-,

^ 2Aa(P + P),

f
•/-c

< oo, then

(2.14)

where

and

oo oo

-LL
P= ί ί

•/-co • / _

Applying Schwarz inequality, we get,

J - 0 0 ^ -00 V W » _ o o

and

^ f f I Σ l

(2.15)

x-y\-χ-«dxdy (2.16)

21 x — y\ ~λ~adxdy. (2.17)

, (2.18)

. (2.19)

Hence we have the required inequality by using the estimate (2.13) for (2.18)
and Theorem A for (2.19).

3. In order to generalize Lemma 2, we shall state here some preliminary
theorems.
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The first is the Marcinkiewicz interpolation theorem extended by Stein-Weiss
[10] and we can state in the following form without essential change of their
proof.

Let (M, Wl, μ) and (N, 9ΐ, v) be two measurable spaces and oLθ9oLuβ0 and
βι be positive measurable functions with respect to μ> and v respectively. Let
define the measure μs on 90Ϊ and vr on SSI by

dμs = a\~s ax

sdμ and dvτ = β\~rβγ

rdv (3. 1)

for 0 ^ r, 5 ̂  1. Let 1 ^ ft ^ q, ^ oo ( / = 0,1), p0 Φ ft, q0 Φ q»

I/ft - (1 - t)/p0 + ί/ft, (0 ^ t ^ 1) (3. 2)

l/qt = (1 - ί)/go + ί/9l, (0 ̂  ί ^ 1) (3. 3)

and s(t) - (ίftVft, tit) = (tqt)/qι and set

^-«Λ. (3.4)

THEOREM C. Le£ X αwJ Y be two Banach spaces and T be sublinear
operator, mapping functions defined on M and having values in X into func-
tions defined on N and having values in Y. Suppose that T has the fol-
lowing two properties

( i ) The domain of T includes L*(X) U L*(X), where Lί(X)° denotes
the Lv-space with values in X.

(ii) / / / is in L£(X) U = 0,1), let

Fy={xz N: \\Kx)(Tf)(x)\\γ>y}

where k = (βo/βi)ll{Qo~Ql) and y > 0. Then, we have

'. (3.5)

Then, T is defined on Lp* (X) for 0 < t < 1 and iff is in this space

, ^ . (3.6)

Next two lemmas are the variations of L.Hόrmander's theorem [ 5 ] (see
also, J.Schwartz [ 8 ]).

LEMMA 3. With above X, Y, let K(x), x z ( — oo, oo) be the bounded
linear operators of X into Y. Suppose that K(x) is locally integrable suppose
that there exist constant A, A', A" such that

1) In special case dμ(x) = \x\« d<x, L» and | | / > | | P , μ will be denoted by i > and

respectively. If dμ = dx, we write simply L^ and 11/| | p.
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/ HI K{t{x - y)) - K(tx)\\\ dx ^ At" (3. 7)

for all y, \y\ ̂  A""1 and

\\\K{x)\\\^A\x\" (3.8)

for all x. Put for function f(x) having values in X

(x) = f K(x - y)f{y)dy (3. 9)

Suppose also that for some 0 fg a < 1,

k l / « - (3 1 0 )
Then

μ-a({x : \(βf)(x)\r > a}) ̂  A/a\\fh, .a (3.11)

where dμ-a = \x\~adx.

REMARK 1. Though this lemma is stated for ZZα-space on (— °°, oo), it
holds for ZZα-space on finite interval, e.g. (— π, w), and for the space VLa con-

sisting of sequences {f{n)} such that I / ! * , - « =

< oo. Since the proofs of other cases are similar, we omit it.

To prove Lemma 3, we need the following,

LEMMA 4. Let u z LLa (X), 0 ̂  a < 1, where X is some Banach space
and let s > 0. Then we can write

u = v +Σ,v>t ( 3 1 2 >
λ . l

where v £ LLa(X) and wk € L\a(X) Π L\X)y

lr>h,-* + Σ |w*|i,-« ^ A.luh,-. , (3.13)
fc-l

lb(^)lχ^ Aβ 5, α.e. Λ: € ( - oo, oo), (3.14)

and for certain disjoint cubes Ik,

support of wk c 4 k = 1,2,..., (3.15)

έ l / 5 M i , - β (3.16)
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[ wk(x)dx = 0, k = 1, 2, . . . . (3.17)
Jit

PROOF OF LEMMA 4. Our proof is similar to that of L. Hδrmander's.
Divide the whole real axis into the intervals Iό having same measure such

that one of them has origin at its end point and
1

ί T \ ~~~> II ,.,11 X 1 O /Q IQλ
/JL—ccilj) ̂  ll^lll —αj 1 -— J-j ^j •• ^O.lO^

5

Divide each interval into two intervals of same measure and let Iλj be
those intervals on which the mean of u is not less than 5, then we have

(3.19)

We define v(x) and wu(x) by

v(x) = -rj-r- f u(y)dy if x € 7U, j = 1, 2 , . . . , (3.20)

« W - Ϊ<Λ;) if ^ 7U

, J = 1 , 2 , . . . . (3.21)
0 if * 7U

Next we divide Iu into two intervals with same measure and repeat the
above process getting new sequence of intervals I2j. Then we extend the defini-
tion (3.20) and (3.21). Continuiting in this way, we get the sequences of func-
tions τv's and intervals 7's for simplicity we write them by {wk}, {7fc}. If we
define

CO

v(x) = u{x) for x $ O = \J Ik,
kml

then (3.12) (3.15), (3.16) and (3.17) hold clearly. Let x € Ik for some k, then
we have

ί ή ί (3.22)7T ί \\u(x)hdx^-ήγ^ ί \\u(x)\\χdμ-Λ(x\
ι* I Jik μ-«Vk) Jrk

A* not depending on u or Ik. In order to prove (3.22), we denote Ik by (α — h,
a + h) and we may assume a > 0. Noting a §: h by our construction, we have

\{x)hdx

^ 1 f IK

In the case a^h^ a/2, we get
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μ_a(Ik) = χ-« dx ^ χ-« dx ^
Ja-h Λ

^Aaa-«\Ik\,

and in the case a/2 > h > 0,

(X

Therefore we have (3.22).

By (3.20), (3.22) and (3.19), we get

If x K O, then for arbitrary small interval /,

1 Γ

77Γ- I \\u(x)\\χdμ-Λ rg 2 5,

hence we get \\u(x)\\x^2s for a. e. α: ^ O. Thus (3.14) is proved.

To prove (3.13) we first note

M i — =([ + () \<x)\*dμ-.
\ JCo "0 '

^ ||w|h,-α + Σ μ~a

τ ,k ί \\u(y)\\xdy
k = 1 \J-k\ Jίk

and using the inequality (3.22), we have

M i , - ^ ( A α + 1) H|i,_«.

Hence

REMARK 2. In the case of LL«-space on (— TΓ, TΓ), it is sufficient for our

purpose to prove this lemma for s > ^4α||w||i,-αj, Aα being some constant. It is

convenient to divide (— π,π) into four intervals /, and take Aa — 2/τrΛ~a', then

(3.18) holds.

REMARK 3. In the discrete case /!«, intervals Iό are successions of integers

and may not be divisible into two intervals of same measure, therefore, we
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must make subdivision in the way that measure of each interval is not greater
than two times of others.

PROOF OF LEMMA 3. Decompose u € LL« (x) in the way of Lemma 4.
Let k be fixed and denote wk by w and Ik by I = (a — h, a + h), where we
may assume a > 0 and a — A g: 0. By virture of (3. 3) we may assume that
(9. 7) holds with A = 1, A" = 1/2.

= ( if iκ(y -x)-K(y- a)}w{.x)dx\r\y\-dy

5S f ||w{x)Udx [ \\\K(y -x)-K(y- d)\\\\y \-dy
JT Jyi (α-2Λ,α+2Λ)

= ( \xv{x + a)hdx [ \\\K(y - x) - K(y)\\\\y + a\-dy. (3.24)[

Now we show

\x + a\'( \\\K(y -x)- K(y)\\\\y + a| -dy ^ Aa, (3.25)

for \x\ ̂ h. It is sufficient to consider the integral over ( —3α/2, —α/2)Π(— oo?

- 2h) by hypothesis (3. 7). By (3. 8) we get that \\\K(y)\\\, \\\K(x - y)\\\ ^ Aa~ι

for y ^ (— 3α/2, — α/2) Π (— oo, — 2/ι) and x € (— A, /*), therefore noting
| x + α | α ̂  2* a", we have (3.25).

By (3.24) and (3.25),

f l(ftw)l(y)lγdμ-a(y)^Aa[ lw(x)l*dμ-.(x). (3.26)
^Vi (α-2/i.α+2Λ) Jχ*l

oo

If we put w' = 2Z ̂ /tj t n e n ^ follows from (3.16), (3.26) that there exists a

set E of measure at must Aas~ι\u\ι,-« such that

f mw'){y)\\γdμ-a{y) ^ A . l w ' 1 ! , - ^ A^lwli.-α (3.27)
JyiE

By well known argument we have from (3.27) that

μ-a({y: KffiwOωir > *}) ̂  ^ ( r 1 + 5-1)lk»i,-«. (3.28)

On the other hand it follows from (3.14) and hypothesis (3.10) that

Kft tOk- ^ Aasl'2\\v\\l!la ^ Aα5V2 ||w||J;2_α. (3.29)

Since u = v + w, we get by (3.28) and (3.29)
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μ.a({y : |(Λ«)(y) |, > ί}) ̂  A«(r ' + 5 - ' + r2s)||M | |i.-« (3.30)

If we chose s = t, we get

This completes our proof.

4. LEMMA 5. Lέtf 2Ci(.z), x £ (— °°,°°) be the function defined by (2. 3),

then

[ I * , ( * ( * - y)) - Kx{tx) I Λc ^ A/ί, (4. 1)
• ' l a J l ^ l

for all t>0 and y, \y\ ^ 1/2.

This Lemma was proved by J. Schwartz [8], but for the sake of completeness

we show directely.

PROOF. Since ψ £ C°° and its first few moments are zero, we have

ko(x) = OOr-2), ko\x) = O(χ-*) as^-^oo, (4. 2)

and

ko(x) = O(l), ko\x) = O(x) as x -> 0. (4. 3)

Suppose 2m ̂ x <2mh\ m being some integer, then remembering kn(x) = 2~n

ko(2'nx)9

A2'2n-2-nx ίor n^m

I *.'(*) I ̂  ,

( A2~2n(2~nx)~* for n ̂  m + 1.

Therefore, we get

Hence

Γ IXXΛ: - 3̂ ί) - K{x)\dx = Σ ί l^ i(^~ yθ - ^ i ( ^ r ) | ^
•̂  la l > C fc-1 J ί 2*>lίc|S2*—ί

Similarly we can get the following by using the first inequalities in (4. 2) and

(4. 3),

LEMMA 6. We have

I^OrOI^AI*;-1. (4.4)
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LEMMA 7. Let 1 < p ^ 2, and -l<a<p-l, then with the notation
of%29

\ftx)\»\x\«dx, (4. 5)

and
oo oo

f {(^GXx^^xl-dx^Apa ί \G(x)\p\x\"dx. (4. 6)
J-co ' J_oo

PROOF. We show (4. 5) only, a proof of" (4. 6) is similar.
Operator βj mapping L1 into Lι(l2) is weak type (1, 1) by Lemmas 2 and

3 with a = 0. On the other hand this mapping is strong type (2. 2) by Lemma
2 with a = 0 and applying Theorem C, we get the inequality (4. 5) in case
a = 0. Thus we get (4. 5) for p = p0) 1 < p0 < 2, a = # 0 = 0 and for p = pι = 2,
a = au 0 ίg #! < 1 by Lemma 2, therefore using Theorem C again, we have
(4. 5) for 0 ̂  a < p - 1 and 1 < p ^ 2.

In the case — 1 < <x<C 0, operator S^ is weak type (1. 1) with respect to
measure | x | adx by Lemma 2 and 3 and strong type (2. 2), therefore by Theo-
rem C, inequality (4. 5) is proved for — 1 < a < 0 and 1 < p ^ 2. Thus Lem-
ma is proved.

LEMMA 8. Lemma 7 holds for 1 < p < oo αrcd — 1 < Λ < / > — 1.

A proof is obvious by Lemmas 1 and 7.

5. The last lemma is the following which is due to J. Schwartz [ 8 ].

LEMMA 9. Let 1 < p< oo, _ χ < α : < ^ _ i and for each N9 let ®N be
the transformation in Ll(l2) which maps the vector whose n-th component has

the Fourier transform hn(x)fn(x) for n rg N, and fn(x) for n> N. Then there
exists a finite constant A independent on N such that the norm of S>, regarded
as mapping of LP

Λ{12) into itself, is at most A.

Lemma 9 was proved by J. Schwartz for a = 0 and since a proof of the
case for — 1 < a < p — 1 does not differ from it except to use the following
theorem, we omit it. We need only Corollary 1 below to prove Theorem 1,
which follows from Theorem 2 only.

THEOREM 2. Let l< ρ<°o, - 1 <a <ρ - 1 and X be Lq space, 1 <q

<oo, on any measure space (S,$,m). If we defined the conjugate function f
by
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forf{x) € L*(X), x € (00,00),

Ay)
'Y\)^2ten{x-y)/2

for periodic f(X) £ Ll(X) with period 2π and

dy,

for {fin)} € llOQ, then

ίfh,«^APΛ4fh,«, (5.1)
where norms denote Ll(X)-norms on (— 0°, 00) or on [— τr,π] or lp

a(X)-norms
respectively.

PROOF. We show the case L£(X) on (— °°, 00), other cases will be proved

similarly. Since the kernel of mapping Tf = f satisfies the condition (3. 1) in
Lemma 3, T is weak type (1. 1) with respect to the measure dμa = \x\adx,
— 1 < oc ^£ 0. On the other hand we have

f \f(x, s) I «dμa 5Ξ Aq,a [ \f(x, s) I

for 1 < q <°o, — 1 < a <q — 1 and s £ *5 (e. g. see Hirschman [ 3 ], where
we find the proof of compact case, but other cases may be proved by the same
way.) Integrating above inequality we get (5. 1) for p= q. Therefore by inter-
polating argument we have (5. 1) for 1 < p fg q. The validity of our theorem
for 1 < q <C p will follow from adjoint argument.

COROLLARY 1. Let (.. .,/„(*), Λ + 1 O ) , . . . ) «= L*(lQ), l < p < oo, 1 < g <
oo, — 1 < α: < /> — 1, α/Zίi define

Sn(x MΛ, τ;n) = J eιxvfn{y)dy>

then

oo / oo \ pjq oo / oo

f I Σ I sn(x wn, vn) IG [ I α: I α ^ t^Apccf \ Σ l/n(^)
J-oo U — oo J ' J — (»—.
PROOF OF THEOREM 1. Let Φ(Λ:) € L^(/2) and its w-th component <pnθ)

have Fourier transform <pn(x). Consider an operator which maps Φ(x) to the
vector with n-th component ψn(x) defined by

φn(x) if 2n^ \x\ <2n+ι

(5. 2)
0 elsewhere,
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then the norm of this operator mapping Lp

a(l2) into itself is bounded by Corol-
lary 1. Therefore if we put Φ(x) = ($if)(x)9 then the right hand of (2. 1) is
obvious by Lemma 8. The left hand follow at once from the equality

Thus our proof is completed.

REMARK 4. By Corollary 1, we may easily modify the left hand of (2. 1)
in the following way

If (••; 9n(x\ 9n+ι(x\ •) ̂  LI (Z2), Kp<oo9-Ka<ρ-lis suitably
restricted then there exists f € L£, such that

f(x) = gn(x) for2n^\x\ <2n^

and

f f j Σ \gn(x)\*\Pl1 \x\'dx.
-oo ( W--oo JJ -eo

6. Now we state the Marcinkiewicz type theorem.

THEOREM 3. Let 1 < / > < O O , _ 1 < # < ^ _ 1 . For each x, let \{x) be
a bounded operator in Z2, suppose that \(x) is bounded and that its variation
satisfies

vari λ(» ^ A, n = 0, ±1, ±2,. . .. (6. 1)
2Λ^|a |<2Λ+i

Let 9Dΐ be the mapping defined by

$lf)(x) = Mx)f(x) in 2n ^ \x\ < 2n+\

for f € Lv
a then fflϊ is a bounded mapping of the space L^(l2) into itself.

A proof follows at once from Theorem 1.

COROLLARY 2. In Theorem 3, the hypothesis (6. 1) may be replaced by
assumption

A proof is obvious.

7. The Discrete Case. In this section we consider the weighted form of
a theorem in G. Sunouchi [12], that is,

THEOREM 4. Let l<ρ<°o, -Kcc < ρ-1 and {f(k)}zlp

a,that is,
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f - \ i/p

11/11 P,«= Σ I/WKI*! + 1)" < °° Suppose [/(£)} be a Fourier coefficient of
U eo J

some integrable function /(#),

and define

Uk) = [ f{θ)e-*«™dθ n = 1,2,..., (7. 1)
J2_n

oo \p/2 I co

.«=5 Σ Σ l ^ ) l 2 (1*1 +i)" / Σ lyt*) I "CI * I
I J /

(7.2)

We can proceed with a proof in the way of integral case, so we sketch it
only.

Now let K2(x) be vector (kι(x), k2(x), •)> where kn{x) (n ^ 2) are periodic

with period 1 and identical with the functions of (2. 2) for 0 ^ x < 1 and &i(:r)

equal to the function of (2. 2) for 1/2 5^ x < 3/2 and is periodic with period 1.
Let

Kim) = f1 £2(x>-««*ώ: = foOn), Aa(m),. . .), (7. 3)

then we can use the same estimate as (4. 2) and (4. 3), therefore replacing m
for x, we get

Σ \K2(m -I)- K2{m)\ ^A for |/| ^ [m/2], (7. 4)

and

\K2(m)\ S-A/(\m\ +1) for all m = 0, ±1, . . , (7. 5)

For a scalar valued sequence {f(m)}, put

(&2/)(m) = Σ ^ ( ^ " l)N) (7 6)

and for a sequence {G(m)} with values in one sided sequence space I2, put

(22G)(m) = Σ iC2(m - Z)G(Z). (7. 7)
iβ-eo
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If {/(m)} and {G(m)} are suitably restricted, we have

By this relation we get Lemma 1 replacing β1 ? S1? by β2, 82 and LJ-norms by
Zj-norms.

LEMMA 10. Let - 1 <a<l, f z II, and G € Z*(Z2),

Σ l(*VX"0Γ(M +1)-^A. E |/(m)|2(|m| + 1)", (7. 8)

f: ) | 2( |m| + 1)Λ. (7.9)
m = - c o m = — oo

Since a proof is similar to that of Lemma 2, we omit it, but we must use
the followings in place of Theorems A and B.

THEOREM E (A.Devinatz and I.I.Hirschman, Jr. [ 1 ]). Iff € l2
a, 0<a<l

and f{θ) - 2 f(m)e-**imθ, then

f ^ f f \f(θ) -
• ' O • ' Om«-oβ,m=*=0

^ A ; f: \f(m)\X\m\ +1)-.
wiβ-cojmΦO

THEOREM F (special case of Pitt's theorem). With above notations

f |/(*)|2(sin7rx) -«dx^Aa Σ |/(m)|2(|m| + l)α.
*/0 m--co

By (7. 4), (7. 5), Remark 1 and Lemma 10, operators ST2 and 22

 a r e weak
type (1. 1) with respect to the measure concentrated in integers only and having
mass ( |m| + 1)* at m (— 1 < a ̂  0). Hence by interpolating arguments and
discrete analogue of Lemma 1, we get,

LEMMA 11. Let l<ρ<oo9 - i < a < ρ - l and f £ II, Ge liψ),
then

^Λ,« Σ \Am)Π\m\Λ-l)«, (7.10)
m=-eo

|(8,GXm)K|m| +1)«^Λ,» Σ |G(m)|'( |m| + 1)-. (7.11)



DECOMPOSITION THEOREMS OF FOURIER TRANSFORMS 23

8. LEMMA 12. Suppose that {fn(m)} z ll(lq\ where 1 < / > < oo, - 1

<<X< p — 1, l < g < o o and that there exist integrable fjβ) such that fn(β)

Let

frhn O = f ' fafy-^dθ, 0 ̂  tn ^ 1,

Σ ΣΣ Σ
/

Σ Σ
= -oo(n=l

Σ Σl/.(»0Γ (|m)+i)α. (s.i)
( j

PROOF. This lemma was proved by G.Sunouchi [12] for a = 0 and q = 2.
In this case we can follow his proof. Denote the characteristic function of (0, t)
by χt(θ), then

Λ1

 a ( (1 - e-2nimt)/2irim for m Φ 0

Jo I t for m = 0,

and

Mm ί.) = Γ fn
Jo

f -Mm - I)f
2τrtϊ ^ ^

, (8. 2)

where ]P denotes the summation for I Φ 0. Therefore by Theorem 2, we get

(8. 1).

PROOF OF THEOREM 4. The left hand of (7. 2) follows from
oo

&G)(0) = Σ k(β)gn(θ), G = {gn},

and (7.11). The right hand of (7. 2) follows from (7.10) and Lemma 12.

We can prove Theorem 5 using the analogue of Lemma 9, but without it
we can prove the following (see G.Sunouchi [12]),

THEOREM 5. If λ(0) is a function such that

f
J2—
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and f € II, 1 < />< oo, - \ < a < p - l ,

then

and

9. Now we prove the decomposition theorem generalized by I.I.Hirschman,
Jr. along the line of integral and discrete case.

In this and next sections we use the following notation f £ LI implies

\f(x)\v\x\*dx [ < oo and f{rί) represent Fourier coemcients of

THEOREM 6. Letl<p<oo,-l<:a<p-l and f € Lζ, then

^J E IMx)| 2 \x\«dx/f \f(x)\*x«dx ^ A'p>a< oo, (9.1)

where An(x) are the functions defined by (1. 3).

First we define the two sided vector K3(x) = (..•, kn(x), kn+1(x), •)• Let
us denote

and

Define

so that

Δ(ί) =

T»(Λ) =

ι;-
= 2Δ,,.,)

Fourier coefficients

ko(m) ~-

kjjri) — τ2«-

tφn) = 7v

Ux) -

•ι:

\X)

Ux)

if

3.2"-

-+.(m + 3 2"

L(m)e

if 1

if 1

Δ| |(.
by

m =

»+2)>

τ ι Λ ;

o,
m =

m =

o,
o,

(9. 2)

and
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= 1,

ί 2e 2 B α : tcos x,

kn(x) =
- cos

2("-3)(sin :r/2)2

if \n\ = 1

if n > l

if n < - 1.

(9. 3)

LEMMA 13.

L,
for all \y\ ^ 1/2, TΓ ̂  t > 0.

(9.4)

PROOF. Let w ̂  2. By definition of ̂ w(^:), we have

\kn(x - ty) - kn(x)\ ^ \kn(x - ty) + \kn(x)\

A A
Δ vi -̂i τ\y\) £ χ

< A2'nχ-\ (9. 5)

for 7r ΞΞ \x\ ^ ί, 1^1^ 1/2 and n = 2,3, A, On the other hand, since

(2sin x/2Y

+ (2sin 2 n - ^ - sin2n-2.z)

_ cos aτ/2, (cos 2n'2a - cos 2 W - 1 J:) Ί
2n~2 sin Λ:/2 J'

we get

I K{x - ty) - kn{x)I < A2nt \y \ '\

for all TΓ ̂  | * | ^ f, \y\ ^ 1/2 and * = 2, 3,.. ..

Hence for arbitrary positve integer N, we have

(9. 6)

n=0

Σ )\Ux-ty)-kn{x)\*

21xI "2iVΓ + 2 -2Nχ-% (9. 7)

for all π^\x\^t,t> 0,\y\ ^ 1/2, applying (9. 5) for the second term and (9. 6)
- 1

for the first term. For the sum Σ I ^ ( ^ ~~ *3θ "~ kn(x) 12 we get the similar



26 S. ΪGARl

estimation.

Therefore

f \K3(y-ty)-K3(.x)\dx

= A ί ( R + 2*b V*

Ψ h ) x + A> (9 8)

Let 2"m + 1 ^ ί > 2 m, w being positive integer, then the last integral is less

than

1 \ dx

2-υ+l m

f= Σ f =Σ^.8ay (9 9)
v = l *t2-~~v v=l

If we choose N = [(p + m — l)/2], then

Hence

^ = -A. (9.10)
v=l v=l

By (9. 8), (9. 9) and (9.10) we have (9. 4).

L E M M A 14.

\K3(x)\ ^A\x\-\forπ^ \x\ > 0. (9.11)

PROOF. By definition of kn(x)

\kn(x)\ ^A2~Wχ-2 and A2'w"

for \x\ ̂  7r and n = 0, ± 1, + 2, . Hence

Σ l L /^\ I 2 _ / y - , ^v-

4- 2~ 2 ^- 4 ).

Choosing iV so that 2- ivr+2 > α : ^ 2 ^ + 1 , we have
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10. For a scalar valued measurable function f(x), x £ (— 7r, 7r), we put

(ffi,/)(*) = f K3(x - y)f{y)dy (10.1)

and for function G(.r) of two sided sequence space I2,

(23G)0r) = f K3(x - y)G,(y)dy. (10.2)

Since

f (βj)(x) G(x)dx = f f(x) (S3G)0r)' ̂ , (10.3)

we have the analogue of Lemma 1 replacing βx and 21 by β 3 and S3 re-
spectviely.

LEMMA 15. Let — 1 < a < 1,

f * I (ft^(^) 121 * I ̂  ^ AΛ f \f(x) \*\x\ dx9 (10.4)

f |S 3 (G)(a:) | 2 |a :r^^A« ί |G(x)| 2 |x |«^. (10.5)

To prove lemma 15, we use the following.

THEOREM G. (LI. Hirschman, Jr [ 3 ]). If f(x) € L% and 0 < a < 1,

f |/(α:)|2μ|«^^ έ Σ
J—X I = - e β fc-l +

f" \f(x)\>\x\*dx, (10.6)

where f(k) mean Fourier coefficients of f(x) now and later.

THEOREM H. (Spacial case of Pitt's theorem). Let 0 5Ξ a < 1, then

Σ L/WI2(l*l+l)-α ^ A α [* \flx)\*\x\ dx (10.7)Σ

PROOF OF LEMMA 15. Our proof is almost same as before.
If a = 0, then Lemma is easily shown by ParsevaΓs relation and uniform boun-

dedness of JZ \kn(nι)\2. Suppose 0 < a < 1. Applying Theorem G, for n-th
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component kn#f of

f \{kn*fXx)V

3. IGARI

>»=-•= ί=»n+l

say,

Z= Σ Σ l/(0-/

where

p = y y i % (i) ~ b (

Using Theorem G again,

(10.8)

(10.9)

(10.10)

= -oo i-m + 1

Concerning with the term Pn

iί= Σ I/WI2 Σ

= Σ \f(m)VUm),

(10.11)

(10.12)

where

If we have

Σ Jn(m)^A(\m\
W = — 00

then applying Theorem H,

Σ i\= ΣΣ,
n = —00

for m = 0, ± 1, ± 2, ., (10.13)



DECOMPOSITION THEOREMS OF FOURIER TRANSFORMS 29

\f{x)\*\x\adx. (10.4)

Hence by (10.11) and (10.14), we have

f mf)(χ)\2\χ\«^A« f: (ϋ + ϋ)

[ \f(x)\*\x\«dx.

Therefore (10.14) is proved.
Now we verify (10.13). If 2 ̂  | m | then Jn(m) = 0 for n ^ - 1 and n ̂  2.

CO

For any case Jn(m) gΞ Σ |/ - ml""1-" ^ A < oo, therefore (10.3) is proved

in this case. If m ^ 3 then JJjri) = 0 for π fg 2.

Let us fix m ̂  3. If m ^ 5 2n"2 then kn(m) = kn(l) = 0 and Jn(m) = 0. If

m ^ 2n"2, then kn(m) = 0 and

ί-1

If 2n'2 <m< 5 2n"2 then

Σ \knV) ~ kn(m)\*(! - m)-1-*
l-ro+1

4(1-m) "

Hence we get

Σ Mm) = Σ + Σ

^ Aam-«, for m ̂  3. (10.15)

For m ^ — 3, we can prove in the same way.
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To prove (10.5), we denote rc-th component of G{x) by gn(x)9 then by
Theorem G and

kn(m)gn(m)9

we have

^4. Σ Σ Σ {£«

where

Σ k(m){gn{m)-gj,

Σ ffn

r= Σ Σ

i"=i Σ
By Shwartz inequality and Theorem G

Γ^Σ, Σ I Σ \L(m)\A\ Σ,

\m - l\ — α ,

J^Σ^Σ
oo tt

-A\t:jJffn{xW]x] "dx = A" j_x

On the other hand, using Schwartz inequality again
00 ( ~ ϊ ( ~

7// . V—\ ^ — \ 5Γ—% I / Ί\ in 1 V — % 1 7 / \ 7 / 7 X 1 9 1

1 ^ Σ Σ Σ \9n(ΐ)\\\ Σ I*»W-*n(OI |w
I—cc m=l + l { n=-oo ] [ n = -co

co co / o o \ °° A

Σ Iflr-COl1 Σ Λ ( 0 [ ^ A « Σ Σ l^1 +

Therefore a proof is completed.

By Lemma 15,13,14 and Remark 1 in §3, operators β 3 and S3 are weak
types (1, 1) with respect to the measure \x\adx (0 §: a > — 1). Hence applying
interpolating arguments and analogue of Lemma 1, we have the following

LEMMA 16. If 1 < p < °° and - l < a < ρ - 1, ί/ierc /or f z Lp

a and
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Lr £ UcSJ, )

P3/HP,« ^ Ap.αl/ϊp.α, (10.16)

| S s G | A β ^ AP>«|G|Pi«. (10.17)

11. L E M M A 17. Let fn z L», l< p <ooy - i < # < p - 1 αw<i Zeί
^(.z ^n) δ^ the kn-th partial sum of Fourier series of fn, then

* ί oo ,pl2 it

[ Σ l^nfe^l2 \x\adx^Apa \f{x)\»\x\«dx. (11.1)

PROOF. This Lemma follows from Theorem 2 at once.

PROOF OF THEOREM 6. The left hand of (5. 1) is obvious by (10.17),
formula

(SsG)(ra) = 2Z kn(m) ffn(τri),
W=-oo

where G(x) = [An(x,f)}. The right hand of (5. 1) follows from (10.16) and
Lemma 17.

Next Theorem follows from Theorem 5 (e.g. see [ 7 ]).

THEOREM 7. If {Xn} is a sequence such that

and f € L£, 1 < /> < oo, - l < a < p - 1 ,

Σ/(^)λ^ i r ? x

is the Fourier series of an h(x) £ Lp

a and

12. From above results, we can give a real proof of the theorem on the
functions of Littlewood-Paley, Lusin and Marcinkiewicz. Up to the present
these theorems were all proved by the complex methods.

For any function φ(z) regular in \z\ < 1, the Littlewood-Paley functions

g(β), 9*(β) are defined by

= n(β, φ) = {fQ ( i - P) I ψ\peiθ) 12dP

and

g*(β) = jf*(θ, p)=\j\l- p)χ\p, θ)dP
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where

- I -^- ί 1 ~ P2

Lusin's function s(θ) is defined by

y 1/2

"aw '

where Ω&(θ) means the open domain bounded by the two tangents from z = eiθ

to circle \z\ = δ < 1 and by the more distant are of \z\ = δ between the po-
ints of contact.

Let / be integrable and periodic with period 2τr, and F be integral of / ,
then Marcinkiewicz's function is defined by

\Fφ + t) + F(θ-t)-2F(θ)\* d tμ(θ) = μ(θ9f) = I jf

THEOREM 8. Let 1 < p < oo α n J _ i < # < £ _ i . Suppose that φ(θ)

Σ ^ n ζ ^S and f € L2

PROOF. First we prove the right hands of inequalities. It is known that
there are the following relations between these functions

(12.1)

A,g\θ) and μiβ) =g Ag*(θ). (12.2)

(for (12.1) see e.g. Zygmund [16, vol II ; ρ.210] and for (12.2) see Zygmund

[17]).
On the other hand it is well known that

As/Kff) ̂  I Σ | 5 " ( * ) ~ σ " W | 2 I'' ' ̂  A'9*(ff), (12.3)

where sn(θ) and σjβ) mean the partial sums and (C, 1) means of Xcne
nθ

respectively.

By Zygmund's method [16, vol II p.230], we have
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*
S

x\*dx

p/2

using Lemma 17. Following Zygmund [15], we get
2*

Σ (52* ~"5

ΓTo ( 2 *

Hence

Since

* f ~ -j * 2 * - l

^Λ,. fΊf E1 Σ
P/2

(12.4)

(12.5)

. . + |Δjfc+1|, we get

(12.6)

1 - *

^ Σ ^ Y Σ 2j ( E I Δ, I >2*ή ( E 2-1/2)
t-0 Δ + L J.I V i-J ' V i=f '
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ΔJ 2 . (12.7)
i=0

The integrand of the remaining term may be estimated by the same way.
Therefore we have

f I Σ | 5n~ f f"'2 \"~\x\'dx^A,,. f j Σ, \K\2\Pl*\x\*dx. (12.8)

By Theorem 6, (12.1), (12.2), (12.3) and (12.8), we have the right hand of
our inequalities.

In order to prove the left hand, set for f £ La

Kβ) = Kβj) = J £ P-χi -

w h e r e fθ(p, θ) is the derivat ive of Poisson integral of / w i t h respect to θ. By
Z y g m u n d [17],

h(0) ^ Aμiβ) (12.9)

and if/ is the real part of φ, then h(θ,f) rg g(θ, φ) clearly and by conjugacy
method (cf. Zygmund [16, vol II p.215]) we have

l/|p,«^Λ,«|λ|».«. (12.10)

Therefore the opposite inequalities are obvious.

13. Above arguments hold for the integral analogue. For the function
φ(z) regular in right half-plane 9lez > 0, the analogues of above functions are
denned by

σ I φ'(σ + iτ) \ 2dσ

where

* V12

and

ί \φ'(σ + iu)Vdσdu\'~
Ωfi(τ)

where O§(Ό = {(σ", u) : \τ — u\ < δσ}. The last function is

= { f~ ̂  +
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where F is indefinite integral of / in Lp(p > 1).

THEOREM 9. Let 1 < p < oo and -Ka<p-1. Suppose that φ(τ) is
the boundary function of the function φ(σ + iτ) regular in right half plane
and belongs to L*, and f is in L£, then we have the analogous inequalities
in Theorem 8.

PROOF. Waterman [13] and [14] proved that

g(τ)^A8s(τ)^A'8g*(τ) (13.1)

and

μ(τ)^Ag*(r). (13.2)

On the other hand if we put for φ(τ) having locally integrable Fourier

transform φ(x),

5 (ω,τ)= / φ(x)eixτdx
Jo

and

then

\s(ω,τ) — σjω, τ ) | a

(see, G. Sunouchi [11]). Therefore we may follow the above inequalities (12.4),
(12.5), (12.6) and (12.7) term by term, and we will get \\g*\\P.a ^ AP)Λ\\φ\\p,a.
Hence the first part of Theorem is proved.

For the remaining part, we set for f £ Lp

a

where fτ(σ, r) is the derivative of Poisson integral of / with respect to T, then
it holds that

ω(τ) ^ Aμ(τ]

and

by conjugacy (see Waterman [14]). It is clear that if / is real part of φ, then
ω(τ,f) rg g(τ, φ). Therefore we have the opposite inequalities,
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