CORRECTION AND REMARK TO
“CESARO SUMMABILITY OF FOURIER SERIES.”
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In my article, “Cesaro summability of Fourier series” this Journal, 5 (1953),
198-210, Lemma 1 (p. 204) and Lemma 2 (p. 208) are wrongly stated.” Hence
though Theorem 2 (p. 204) is true, its proof has to be modified. Correct lemmas

are as follows.

LEMMA 1. If 0<a=1and B+1=0, then
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f uﬂ+1(t _ u)zx—leinudu — O (tB+1/7’la).
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Proof of Lemma 1 of the original is valid in this from.

LEMMA 2. If B+ 1>a >0, then
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f wPH(E — 42t eidy = O (858 /n).

PROOF. (1°) When 0 <a =1, 8+ 1>0, by the successive use of the
second mean value theorem and M. Riesz’s mean value theorem, we have
t
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= t51(¢ + h)*! “

= O(t***n~").

(2°) When k£ < a = k + 1 where & is a positive integer, then 8 + 1 > a > &.

1) I am much indebted to Professor Boas for pointing out this to me.
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Integrating by part k-times,

f WP — u?)* ! cosnu du
0

= ’:—k./o. ( —a%)k { wPH(e — u)*! }cos <nu + k—;-) du.

The first factor of integrand

( 582‘_ )k{ u3+1 (t2 — u2)a—1 }

is a linear combination of terms
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The integral of the first term is
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by the second mean value theorem. Since 8+ 1 —%4>0,0<a — k=1, from
M. Riesz’s mean value theorem and case (1°), the last term is

1) tu—ktﬁ—k 1o+R
O<(_“2“T =O( ) )
n* n n
The estimation of integral of other terms is all the same, so we get lemma
for cosine. For sine we can proceed the same way as cosine.

LEMMA 3. If @ >0, then we have for any non-negative integer k
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PROOF. We shall proceed by induction. When 0 < a <1, these formulas
are special cases of Lemma 2, (when £ =0 and 0 < a =1, we can prove it in
the same way.)

When we suppose these formulas are true for some «, then
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If £ =0, the first term does not appear.
In the same way, we have
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Thus induction is completed and Lemma 3 is proved.
PROOF OF THEOREM 2. From the hypothesis B‘> v, we have
_B8+1)
0<a_’8_'y+8 <@ +1.
(1°) when 0 < @ =1, we proceed the same way as the original paper (pp.205-
207).
(2°) when a > 1, we proceed the same way as pp. 208-210.
However, we have to use Lemma 2 in the estimation of term P and use
Lemma 3 in other terms.

REMARK. The condition

5 lal/v = O (n=0-9)

v=n

implies
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2lal/r=0@"*" and 3 (la]—a)=0@).

Hence our theorem is a special case of recent Theorem 4" of K. Yano, “A
remark on convexity theorems for Fourier series”, Proc. Japan Acad., 38(1962),
245-247.

Finally the author thanks to Mr. K. Yano for his valuable suggesions
given during preparation of this note.

TOHOKU UNIVERSITY








