CORRECTION AND REMARK TO "CESÅRO SUMMABILITY OF FOURIER SERIES."

Gen-ichirô Sunouchi

(Received February 27, 1963)
In my article, "Cesàro summability of Fourier series" this Journal, 5 (1953), 198-210, Lemma 1 (p. 204) and Lemma 2 (p. 208) are wrongly stated. ${ }^{1)}$ Hence though Theorem 2 (p. 204) is true, its proof has to be modified. Correct lemmas are as follows.

LEMMA 1. If $0<\alpha \leqq 1$ and $\beta+1 \geqq 0$, then

$$
\int_{0}^{t} u^{\beta+1}(t-u)^{\alpha-1} e^{i n u} d u=O\left(t^{\beta+1} / n^{\alpha}\right)
$$

Proof of Lemma 1 of the original is valid in this from.
Lemma 2. If $\beta+1>\alpha>0$, then

$$
\int_{0}^{t} u^{\beta+1}\left(t^{2}-u^{2}\right)^{\alpha-1} e^{i n u} d u=O\left(t^{\alpha+\beta} / n^{\alpha}\right)
$$

Proof. (1^{0}) When $0<\alpha \leqq 1, \beta+1>0$, by the successive use of the second mean value theorem and M. Riesz's mean value theorem, we have

$$
\begin{aligned}
& \qquad \int^{t} u^{\beta+1}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u d u \\
& =t^{\beta+1} \int_{h}^{t}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u d u \quad(0<h<t) \\
& =t^{\beta+1}(t+h)^{\alpha-1} \int_{h}^{k}(t-u)^{\alpha-1} \cos n u d u \quad(h<k<t) \\
& =t^{\beta+1}(t+h)^{\alpha-1}\left\{\int_{0}^{k}(t-u)^{\alpha-1} \cos n u d u-\int_{0}^{h}(t-u)^{\alpha-1} \cos n u d u\right\} \\
& =O\left(t^{\alpha+\beta} n^{-\alpha}\right) .
\end{aligned}
$$

(2 ${ }^{0}$) When $k<\alpha \leqq k+1$ where k is a positive integer, then $\beta+1>\alpha>k$.

1) I am much indebted to Professor Boas for pointing out this to me.

Integrating by part k-times,

$$
\begin{gathered}
\int_{0}^{t} u^{\beta+1}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u d u \\
=\frac{1}{n^{k}} \int_{0}\left(\frac{\partial}{\partial u}\right)^{k}\left\{u^{\beta+1}\left(t^{2}-u^{2}\right)^{\alpha-1}\right\} \cos \left(n u+\frac{k \pi}{2}\right) d u .
\end{gathered}
$$

The first factor of integrand

$$
\left(\frac{\partial}{\partial u}\right)^{k}\left\{u^{\beta+1}\left(t^{2}-u^{2}\right)^{\alpha-1}\right\}
$$

is a linear combination of terms

$$
u^{\beta+1-k}\left(t^{2}-u^{2}\right)^{\alpha-1}, u^{\beta-k+3}\left(t^{2}-u^{2}\right)^{\alpha-2}, \cdots, u^{\beta+1+k}\left(t^{2}-u^{2}\right)^{\alpha-k-1} .
$$

The integral of the first term is

$$
\begin{aligned}
& \frac{1}{n^{k}} \int_{0} u^{\beta+1-k}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos \left(n u+\frac{k \pi}{2}\right) d u \\
& =\frac{1}{n^{k}} \int_{0}^{t} u^{\beta+1-k}\left(t^{2}-u^{2}\right)^{k}\left(t^{2}-u^{2}\right)^{\alpha-k-1} \cos \left(n u+\frac{k \pi}{2}\right) d u \\
& =\frac{\left(t^{2}\right)^{k}}{n^{k}} \int^{h} u^{\beta+1-k}\left(t^{2}-u^{2}\right)^{\alpha-k-1} \cos \left(n u+\frac{k \pi}{2}\right) d u, \quad(0<h<t)
\end{aligned}
$$

by the second mean value theorem. Since $\beta+1-k>0,0<\alpha-k \leqq 1$, from M. Riesz's mean value theorem and case (1°), the last term is

$$
O\left(\frac{\left(t^{2}\right)^{k}}{n^{k}} \frac{t^{\alpha-k} t^{\beta-k}}{n^{\alpha-k}}\right)=O\left(\frac{t^{\alpha+\beta}}{n^{\alpha}}\right)
$$

The estimation of integral of other terms is all the same, so we get lemma for cosine. For sine we can proceed the same way as cosine.

Lemma 3. If $\alpha>0$, then we have for any non-negative integer k

$$
\begin{aligned}
& \int_{0}^{t} u^{2 k}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u d u=O\left(\frac{t^{\alpha+2 k-1}}{n^{\alpha}}\right) \\
& \int_{0} u^{2 k+1}\left(t^{2}-u^{2}\right)^{\alpha-1} \sin n u d u=O\left(\frac{t^{\alpha+2 k}}{n^{\alpha}}\right)
\end{aligned}
$$

Proof. We shall proceed by induction. When $0<\alpha \leqq 1$, these formulas are special cases of Lemma 2, (when $k=0$ and $0<\alpha \leqq 1$, we can prove it in the same way.)

When we suppose these formulas are true for some α, then

$$
\begin{gathered}
\int_{0}^{t} u^{2 k}\left(t^{2}-u^{2}\right)^{\alpha} \cos n u d u \\
=-\frac{1}{n} \int_{0} \frac{\partial}{\partial u}\left\{u^{2 k}\left(t^{2}-u^{2}\right)^{\alpha}\right\} \sin n u d u \\
=\frac{-2 k t^{2}}{n} \int_{0}^{t} u^{2 k-1}\left(t^{2}-u^{2}\right)^{\alpha-1} \sin n u d u \\
\quad+\frac{2(k+\alpha)}{n} \int_{0}^{t} u^{2 k+1}\left(t^{2}-u^{2}\right)^{\alpha-1} \sin n u d u \\
=\frac{2 k t^{2}}{n} O\left(\frac{t^{\alpha+2 k-2}}{n^{\alpha}}\right)+\frac{2(k+\alpha)}{n} O\left(\frac{t^{\alpha+2 k}}{n^{\alpha}}\right)=O\left(\frac{t^{(\alpha+1)+2 k-1}}{n^{\alpha+1}}\right) .
\end{gathered}
$$

If $k=0$, the first term does not appear.
In the same way, we have

$$
\begin{aligned}
& \int_{0}^{t} u^{2 k+1}\left(t^{2}-u^{2}\right)^{\alpha} \sin n u d u \\
= & \frac{1}{n} \int_{0} \frac{\partial}{\partial u}\left\{u^{2 k+1}\left(t^{2}-u^{2}\right)^{\alpha}\right\} \cos n u d u \\
= & \frac{(2 k+1) t^{2}}{n} \int_{0} u^{2 k}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u d u \\
- & \frac{2 \alpha+2 k+1}{n} \int_{0}^{t} u^{2 k+2}\left(t^{2}-u^{2}\right)^{\alpha-1} \cos n u d u \\
= & \frac{(2 k+1) t^{2}}{n} O\left(\frac{t^{\alpha+2 k-1}}{n^{\alpha}}\right)-\frac{2 \alpha+2 k+1}{n} O\left(\frac{t^{\alpha+2 k+1}}{n^{\alpha}}\right)=O\left(\frac{t^{\alpha+1+2 k}}{n^{\alpha+1}}\right) .
\end{aligned}
$$

Thus induction is completed and Lemma 3 is proved.
Proof of Theorem 2. From the hypothesis $\beta>\gamma$, we have

$$
0<\alpha=\frac{\delta(\beta+1)}{\beta-\gamma+\delta}<\beta+1
$$

(1^{0}) when $0<\alpha \leqq 1$, we proceed the same way as the original paper ($\mathrm{pp} .205-$ 207).
(2°) when $\alpha>1$, we proceed the same way as pp . 208-210.
However, we have to use Lemma 2 in the estimation of term P and use Lemma 3 in other terms.

REMARK. The condition

$$
\sum_{v=n}^{\infty}\left|a_{v}\right| / \nu=O\left(n^{-(1-\delta)}\right)
$$

implies

$$
\sum_{\nu=n}^{2 n}\left|a_{\nu}\right| / \nu=O\left(n^{-(1-\delta)}\right) \quad \text { and } \quad \sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{v}\right)=o\left(n^{\delta}\right) .
$$

Hence our theorem is a special case of recent Theorem 4" of K. Yano, "A remark on convexity theorems for Fourier series", Proc. Japan Acad., 38(1962), 245-247.

Finally the author thanks to Mr. K. Yano for his valuable suggesions given during preparation of this note.

Tôнoku Unversity

