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Introduction. Let @ = f | @(v)du(y) be an irreducible decomposition of a
r

representation @ of an involutive Banach algebra B over a measure space
(I, w). As shown by several authors in [41,[81,[9],[ 13 ] etc., this decomposition
cannot be regarded as a decomposition of the unitary equivalence class of @
into the unitary equivalence classes of @ (y) except for some fairly nice cases,
whereas this decompositon is determined only up to unitary equivalence. For
instance, some representations can be decomposed in two ways that have no
common components as in [ 8] and some two representations of quite different
types can be decomposed into the direct integrals of the same components as
in [13]. Therefore it comes into considerations what determines the unitary

equivalence relation among the components {@(v):v<I'} of the decomposition
®

@ = f @ (Y)du(y). For this question we shall answer in § 1 that the algebraic
r

relation between the commutant @(R) = M of (B) and the associated diagonal
algebra A determines completely the unitary equivalence relation # among the
components {@(y):v<I'}. So we can regard R as an algebraic invariant of the
couple (M, A). A. Guichardet used R for characterization of discrete von
Neumann algebras in [5]. We study the behavior of R in more general situation.
In §2 we shall give the definitions of simplicity, smoothness and complete
roughness of A in M using R. In § 3 we shall reduce the study of smooth
maximal abelian subalgebras to that of simple ones. §4 is devoted to show
some relations between simple or completely rough maximal abelian subalgebras
and regular, semi-regular or singular ones defined in [3]. Finally in §5 we
shall give some examples of factors of type II and type III with simple maximal
abelian subalgebras and completely rough ones simultaneously respectively.

1. Unitary equivalence relation. Let I" be a standard Borel space and
u a Borel measure on I'. Let 4 = L=(I",u) be the commutative von Neumann

1) If a Borel space (T',<#) is Borel isomorphic to some separable complete metric space
equipped with the Borel structure generated by closed sets, then we call it standard
according to Mackey[9]. Calling the member of <& Borel set, we shall omit the letter <&.
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algebra consisting of all essentially bounded measurable functions over the
measure space (I', u) . Suppose that 4 is imbedded in a von Neumann algebra M
as a von Neumann subalgebra and that M has a faithful representation on a
separable Hilbert space. Let = be a normal faithful representation of M onto a
separable Hilbert space 9, and let M, be the commutant algebra of = (M).

Then wg eet a decomposition
®

@:fm@@m

of 9. over the measure space (T, u) relative to m(A). m(A) becomes the algebra
of all diagonalizable operators which is called the (associated) diagonal algebra
and each operator in 7(A)" is decomposable. Let A be a uniformly separable
C*-algebra which is weakly dense. in M’,. Then for A we can associate a
family {@,} of representations of % in 9,(y) such that
®
x = f @(x)duly) for every x < ¥.

Besides, we can choose the family {@,} as follows; the function v — (@,(x) & (v),
7 (v)) is Borel measurable over I' for every x <% and for every pair of

® D
&= f EMduly), n = f (v)du(y) € .. We denote such family {@,} by .

The family{9,(y):v<T'} of Hilbert spaces and the family @ are determined
almost everywhere by the §, and the diagonal algebra 7(A). Indeed, if 9. is

&)
represented by a decomposition £, = f 5v) du(y) with respect to m(A) and if
T

@’ is another associated family of representations of ¥, then there exists a null
set NCI' and a family {«,:v< (N}® of unitary operators of £.(y) onto 9.(v")
such that u,p,u;' = @, for every v< CN.

Suppose that 4, = L=(I";,u;) ¢Z = 1,2) is a von Neumann subalgebra of M,
where (I'y, ;) (Z = 1,2) are measure spaces as well as (I', u). Then we get two

decompositions
f.B

D
9, = f ) duv) and B = [ Him)dus(r)

2

of 9, over (I'y, u,) and (I'y, u,) relative to m(A,) and m(A,) respectively and we
fix these decompositions of £.. Let ®' = {@l} and ®* = {@},} be families of
representations of the C*-algebra 2 which are given by the decompositions of
9, as well as ®. We define a relation R*™%"* between the points of I', and
I, as follows; R*“L ¥ (y,,v,) holds if and only if the representations @), and
@2, of U are unitarily equivalent.

Now let & and R’ be two relations between the points of I'; and I';. We

2) (N denotes the Complement of NV in T.
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define a relation R =NR" by the fact that there exist subsets E; of T'; (1 = 1,2)
with null complements such that R(y,,v,)is equivalent to R (y,,v,) for every
(v1,7:) € E, X E,. Clearly this relation = ” is an equivalence relation. We denoe

A

the equivalence class of # under the relation “=" by H.

LEMMA 1.1. S?i”"‘_;?‘;;‘;"“" depends on neither ®' and ®* nor weakly dense
uniformly separable C*-subalgebra U of M. That is, for two weakly dense
uniformly separable C*-sublalgebras U and B of M, and for associated
familis ® and V' (i = 1,2) of representations of U and W, (i =1,2), there
exist Borel subsets E; of T;(I = 1,2) with null complements such that R¥* =87

45,42

(v1,v:) and RETLPY (v,,y,) are equivalent for every (vi,v,) € E, X E,.

PROOF. Let %, be countable uniformly dense subalgebra of A over the
rational complex number field C,. Then R*"% 2% (y,,v,) is equivalent to the
fact that there exists a unitary « of $}(y,) onto $7(v,) such that u @} (x)u!
= @% () for every x <%, Let {x,} be an enumeration of ¥,. For each n there
exists a sequence {y., »} in B that converges strongly to x,. By [2:Chap. II,
§2, no 3 Prop. 4], there exist a subsequence {y..} and null sets N} cT,
(Z =1,2) such that

@4 (x,) = strong-llém Vi (Yam) for every v, (NI (i = 1,2).

Put N, = L_j: Nr (i=1,2). Suppose that R"*BF¥ (y,,v,) holds for (v1,72)

€ (N, XCN,. Then there exirts a unitary » of % (y,) onto $%(y,) such that «
Y Vum) 0™ = Y3, (Yn,m,) for all » and &, which implies u @}, (x,)u™! = @i(z,)
for all #. Hence R*7%%.2"%" (v,,7,) holds. By symmetry R* %% and R¥= B #¥
are equivalent on E; X E;, for some subsets E, C I', and E, c T, with null
complements.

According to Lemma 1.1, we can denote R* =% ®* by R~ and ¢!, (x) by
x' (v,) without the indication of the family &

Let ), be the trivial representation of the scalar field C onto countably
infinite dimensional Hilbert space ... For a representation = of M we define
a representation 7®), onto 9, ®%.. by (7®)) (x) (¢®n) = (w(x) )Ry for x < M,
£c 8, and n€ .

VA e

LEMMA 1.2 nr = R

Ay, dy+
PROOF. Let A and % be uniformly separable weakly dense C*-subalgebras
of M, andB (§..) with units respectively. Then the uniform closure © of the
set consiting of all 3.z, ®y’s ;€ U,y € B, which is AR,B in the sense

of Turumaru [14], is also uniformly separable weakly dense C¥-subalgebra of
Mg, = M, QB($..).From $.5, = 9, R, and (wQ)) (M) = 7(M) ® C, we have
Oigy (7)) = % (v:) P and (x @ y) (v;) = 2 (v,)Qy for almost every v, eI,
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( =1,2)and for every x € A and y € B. Suppose that R®~L.2% (y, v,) holds, that
is, there exists a unitary « of £;(y,) onto £ (v,) such that ux! (v)u'=z(v,)
for all x €. Putting v = #®1I, we have v(z®y)' (y)v™! = (xQy)X(y.) for every
€W and yeB, which implies R LYY (y, y,), where ¥ is the family of
representations ¥, of € defined by ¥ (x®y)= ¢!, (x)Ry for xcU and ye B .

Conversely suppose that R#*:*§4¢¥"% (y, v,) holds. There exists a unitary v
of Dxay (7:) onto Py (v:) such that v(z®y)! (v,)v™! = (®y)* (v,) for all xeU
and ye®B. Taking z = I, v(I®Qy)v~! = IQy for every y € B. Hence there exists
a unitary % of : (v,) onto $(v,) such that v = u®I by [7:p.114, Lemmal].
Since («®I) (x'(v)®y) @RI)™! = x2%(v,)Qy, we have ux'(y,)u"' = z*(y,). Hence
REmL2 (v, 17,) holds.

THEOREM 1.1. Egquivalence class of R*™“EF¥ under the relation “ ="
depends on neither N nor w. That is, for normal faithfull representations
and p of M onto £, and 9, for uniformly separable weakly dense C¥*-
subalgebras % and B of M, and M, respectively and for families ®° and V'
of representations of N and B associated with the decomposition of 9, and
9, respectively (i = 1,2), there exist subsets E, CI'y and E, CT', with null
complements such that RE=E2% (y,,7v,) and RPBLEY (v,,7v,) are equivalent
each other for every (vi,7.) € E, X E,.

PROOF. If = and p are unitarily equivalent, then Lemma 1.1 assures our
mentions. By [8:p. 22, Lemma], we have 7®), =< p®). Hence Lemma 1.2
assures our theorem.

According to Theorem 1.1,in the notation R*%%.2-% the letter 7 does not have
essential meaning. So we assume the von Neumann algebra M to act on a fixed
Hilbert space § from the beginning and we can denote ?j‘iff;,’j;, by ﬂ?ij';, 4, In the
following, we denote R¥™Iydvd by REL L where 7 means the identical
representation of M. When we consider only one subalgebra A4 = L~ (', u) of
M, R*%%* becomes an equivalence relation defined in the measure space (I', u)
which is simply denoted by R*"%*®.

Now we shall give the interpretations of Theorem 1.1 to the decomposition
theory of representations of involutive Banach algebras. In [13], in order to
describe the structure of decompositions of some representations of certain C*-
algebras, at first we have studied the behavior of some special representation
@, of some special C*-algebra %, and next we have investigated the representation
@ of C*-algebra ¥ such that @,(¥,) = @(%)" by comparing the decompositions
of @, and @ with respect to the diagonal algebras which are isomorphic under
the isomorphism between @,(,) and @(%). According to Theorem 1.1, we
can see the theoretical back ground of these arguments in [13]. Let A and B
be two separable involutive Banach algebras and let @ and 4 be representations
of A and B onto separable Hilbert spaces §, and §, respectively. Suppose
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@A) == o(B)" under an isomorphism #. That is, there exist a von Neumann
algebra M and two normal faithful representations = and p such that « (M)
= @), p(M) = V(B) and ¢ = fomr. Let (I';, uy), (I'y, uy), 4, and A, be as in
Theorem 1. 1.

Then @(resp. ¥) is decomposed with respect to m(A,) and m(A,)
(resp. o(A,) and p(A,)) as follows;

\’.D @
o= | @' @)dumly) and <p=f @' (v)dps(v:)

I, Ty

® ®
(reSp. '\P"—‘L '\I"I('Yl)dl-‘q(%) and "a”‘:f 1[/‘2('Y2)dy,2('y2).)

Then we get the folowing

COROLLARY 1. There exist null sets N,CI';, and N,CT, such that @'(v,)
=@*(y,) is equivalent to '(v,) = Y*(y,) for every (vi,v.) € C N, X C N,.

®
PROOF. Putting %, = @(A) and B° = Y«(B), the decompositionp = | @i(y,)

I
®
duy,) and ¥ = | Pi(y,)duly,) (@ = 1,2) give the associated families ®* and
Ty
Vi (7 =1,2) of Y, and B, respectively. Then the relations “@'(v,) = @*(y,)”
and “Y'(y,) ==y (y,)” are equivalent to R*"Fo ™% (y ) and REPBYIY (y,,1y,)
respectively. Hence Theorem 1.1 implies our mention.

Corollary 1 states that the unitary equivalence among the components of
representations is completely determined by the algebraic relation between the
commutant algebra and the associated diagonal algebra.

COROLLARY 2. Let A, = LT, u,) be imbedded in a von Neumann
algebra M, acting on a Hilbert space £, (=1,2). Let U and B be two
separable involutive Banach algebras and let @, and @, (resp. Y, and ;)
be two representations of U (resp. B) onto H, nnd D, respectively such that
(A = M, and @, (U,) = M, (resp. ¥, (B) = M, and V,(B)Y =M,). Then ¢,
and r, are decomposed with respect to A, as follows (i =1,2);

® D
o= [ @) dulv) and  y.= f Vi) duv) G =1,2).

I
If (@ ®@:)A) = (Y1DVY:)B), then the relation “@i(v,) = @y(v,)” of v
and v, is equivalent to “Y,(v,) = ry(v,)” except for some negligible part.

PROOF. Putting @ = @, D@, ¥ =V, BYy, @A) =Y(B)Y = M, (T,u) =
Ty, )BTy, uy) and A= A, D A,, we have MOM,OM, D A,DA,=A= LT, u)
Application of Corollary 1 to @, ¥, M and A assures our mention.



370 M. TAKESAKT

REMARK. If @, and @,(resp. ¥, and y,) are disjoint representations, then
our assumption (@,®@,) (A) = (Y,BY,) (B) is automatically satisfied. Indeed,
we have (@, Dp,) (N) = MO M,. Even if @, and @, are representations of
quite different types, it may happen that there exists a Borel isomorphism ® of
I'; onto Ty such that @,(v,) = @,(0(y,)) for all v, eIy (cf. [13]), though, of
course, u, and O(u,) are disjoint.

Suppose that there is an isomorphism ¢ of A, = L=(T';,u;) onto A, =
L= (T, uy). By [5:81, Prop. 1], there exist null sets N;CI'; and N,cI', res-
pectively and a one-to-one measurable mapping ® of N, onte { N; such that
#a)y,) = a(B(y,)) for every ac A, and for every v,€ (N, and B(y,) is
equivalentto u,.

THEOREM 1. 2. Suppose that there exists a unitary u of M such that
udu =A,. Let ® be the measurable mapping of (N, onto ( N, associated
with the isomorphism 6 of A, onto A, induced by u, where N, and N, are
the null subsets of Iy and T'y defined above respectively. Then R™GV,* (v,
®~!(v,)) holds for almost every v, € CN;.

®

PROOF. Let M act on a Hilbert space §. Let § = f H' (v,) du, (v)) and
® r,
H =] 9H%v,) dus(v,) be the decompositions of  with respect to 4, and A,
Ty

respectively. Applying [2: Chap. II, §6 Theorem 4] to # and O, there exist
a null set N,CT, and a unitary «(y,) of £'(y,) onto $*(® '(y,)) for every

5 ®
v:€ CN', such that the wunitary of f H(vy) dp(v1) ontof H(v2)dus(vs)
I, r2

naturally induced by {w«(y,)} coincides with the original unitary . For x<¥,
putting x (@7'(v,)) = u(y)@y, ()u(y,)™ for v,€ C Ny and z'(v,) =0 for v. &
®~'(C N,), (+) becomes a bounded measurable operator field over I'y which
defines an operator £’ on £. Let %, be a countable dense =%-subalgebra of
over the rational complex number field C,. Let § be a countable dense linear
subspace of § over C, that is invariant under the actions of %, and =. For
each £€J there exists a null set V;CTI'; such that (u&XO® (v,)) = uly,)E(y,) for

ve (N, Putting N = &;{, N;, we have (w)( @ '(y,)) = u(y,) & (v,) for every £ §
and for every v; € ( N. For x e, £¢<& and v, € { N we have
(&' EXO7(y1)) = 2" (O~ (1)) E(O7(M)
= u(y)py, (X)ulv)™ E(O7' (7))
= u(y)@s, (x) @™ E)1)

= u(v, Xxu " Nv1) = (uxu™ EXO'(v1)),
so that 2'& = uxu™'¢ for every x <€, and for every £¢ . Continuity of x’



DECOMPOSITIONS OF REPRESENTATIONS 371

1 1

and uxu™' implies ' = uxu™. On the other hand, we have wru'= x for
every x € . Hence we have x = 2" for every x<%. Then for xz <%, there
exists a null set N,CTI'y such that x'(v,) = @2, (x) for every wy,e ( N,. Putting
N, = UN,:, N, is a null set and we have

x€ Yo

1

u(v)@y, () u (v)™ = 2(O7(m))) = @o-16(2)
for every x € U, and for every v, € ( (B(N,) " N). By the continuity of u(y,)
@L u (V)™ and @by we have @l = @b, for almost every v, €T, that is,
R*% 42 (7,07 (v,)) holds for almos every v, € I',.

REMARK. When an abelian subalgebra A of M is represented in two ways
as A=L~, ) and A== LTy, pu,), taking 4, = A, = A4 and u=1 in
Theoreml. 2, there exis null sets N,CTI';, N,CI'; and a one-to-one measurable
mapping ® from € N, onto ( N, such that © (u,) =~ u, and R* %% (v,, @ '(v,))
holds for every v, € ( N,. Hence the behaviors of the equivalence relations
RELe and R*%¥ in the measure spaces (I'y, u;) and (I'y, u,) are almost
isomorphic. That is, we can say that the equivalence relation R*%® depends
only on the algebraic relation of M and A.

In order to study the behavior of ?)Aij’;, 4,5 we set the following.

THEOREM 1.3. Let A, = L~(T'y, u;) and A, = L= Ty, u;) be two abelian
von Neumann subalgebras of a von Neumann algebra M acting on a Hlbert

® ®

space . Let H = H(v)du () and H = DXvs) Aus (v2) be the decom-
r, Te

positions of § with respect to A, and A, respectively. Let U be a uniformly

separable weakly dense C*-subalgebra of M and let ®' = {@! : v, €T} and

D = {@2 :vy,e 'y} be families of representations of U associated with the

decompositions of 9. Then the graph of R*%L%¥ in T, X Ty is an analytic

subset of T'y X T'y. Besides, if A, and A, are maximal abelian in M then

there exist null sets N,CI'y and N,CT', such that the graph of R*%%¥ in

(I, = N)x(@y — N,) is a Borel subset of (I'y' — N,) x (I'y — N,).

PROOF. Let R be the graph of R#"%%%. Putting I't = {v,eI';; dim. $*(v,)
=n}, i =1,2, I} becomes a Borel subset of T'; for each n, i =1,2, and we

have (U I";)UI“;’ =T, i=1,2,and Rc \_J (7 x T3) U (7 x I'¥).So we may
n=1 n=1

assume that there exists a fixd Hilbert space £, such that 4y,)=9, for each
v,ely, i =1,2. Let B = B(9,) be the algebra of all bounded operators on 9,
equipped with the Borel structure induced by the weak topology. Then B is a
standard Borel space, since B is covered by countably many metrizable compact
subsets. For each x € U the function (v;,v,, %) € T, X Ty, x U — (x' (v,), 2Xv,),
u) € Bx B x U becomes a Borel function, where U means the unitary
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group of B. Besides the function (x,y,u) € BX B X U—>ux —yu € Bis a
Borel function. Indeed, let {£¢,} be a complete normalized orthogonal system of
9,, then we have

([ux — yul&,, Em) = (u.r &, &m) - (yu En, ‘§M)
= Z‘i (x‘fm gk)(ufk: ‘Em) - Z (ugm flc)(yglcy Em)

Since each member of summands is a Borel function of (x,y,%) € B x B x U,
([ux — yul &,, Ex) is a Borel function of (x,y, ). For each &9 € §,

(ux — yulE, n) = >_ (& &), En) (lux — yul &, En)

is a Borel function of (x,y,u). Hence the function (z,y, u)— ux — yu is a Borel
function. After all, the set

A= {(v,Vpu) e, xTy xU: ux'(y)=2%(v,)u for each « e U}
is a Borel subset of a standard Borel space I, x 'y X U. R is the projection
of A to T, X Ty, so that R is analytic.

If A, and A, are maximal abelian in M, then there exist null sets N, c T,
and N, C I'; such that @}, and @3, are irreducible representations for every
v, € I'y — Ny and v, € I'y — N,. Hence (v,v,) e RN (T, — N;) x (T, — N,) is
equivalent to (@, @3) >0, where 3(@},@’,) means the linear dimension of
the space of all bounded operators # such that u @} (x) = @i (x)u for all x
e A But I (@, @) is a Borel function of (v,,v,) by [9; Theorem 8.2]. Thus.
R N (@, — N)) x (I'y — N,) is a Borel subset of (I, — N;) x (I'; — N,).

2. Classification of abelian von Neumann subalgebras. Let A= L~
(', u) be an abelian von Neumann subalgebra of M. Then R*}®* =R is an
equivalence/\ relation associated with M and A defined in the measure space
(T, w). Let T' be the Borel space of all fl-equivalence classes in I' equipped with
the quotient Borel structure of the Borel structure of T' under R. If T' is
countably separated Borel space, then for each Borel set S C T' the space S of
all f-equivalence classes in S equipped with the quotient Borel structure of the
Borel structure of S is so. Hence we can set the following definition by
Theorem 1.1 and Theorem 1. 2.

DEFINITION 2.1. If there exists a Borel null set N C I" for any R associ-
ated with M and A such that " — N )/R is countably separated, then we call
A smooth in M. If Ae is not smooth in eMe for each nonzero projection e of
A, we call A completely rough in M. If for any R there exists a Borel null
set N C I' such that R (v,y") implies v = v for each (y,y) € (' — N)x(I'—N),
then we call A simple in M. Of course, simple subalgebra is also smooth.

LEMMA 2.1. An abelian subalgebra A = L= (I, pn) of M is smooth if and
only if for any R™%?® there exists a Borel subset N CT' and an analytic



DECOMPOSITIONS OF REPRESENTATIONS 373

subset E of T' such that u(N) = 0 and such that E contains one and only one
element in common with each R"%*equivalence class in T' — N. Besides if
A is smooth, then we can choose E to be a Borel subset of 1.

PROOF. Denote #"3* = R. Suppose that A is smooth. Eliminating a Borel
null set from I, T' = I'/R is countably separated, so that T' is an analytic Borel
space by [9:Cor. of Theorem 5.1]. Hence there exists a Borel fi-null set
N C T such that I' — N is standard by [Theorem 6. 1], wehre g is the quotient
measure of w in I'. Let » be the natural mapping of I' onto I'. Then 7 is a
Borel mapping from the standard Borel space I‘—r“(Z/V\ ) onto the standard Borel
space (I' — Z/\\f), so that it follows from [1: § 6, Ex. 17] that the graph of » in
' — r“(I/\} )} x (T — N ) is its Borel subset. From [9: Theorem 6.3] we
conclude the existence of a Borel null set Z<7\1 c I' and a Borel mapping ¢ from
T - ﬁl to " such that 7o¢(¥) = § for every¥ ¢ T' — 1<7\1 Since ¢ is one-to-one, its
image E is a required subset of I' by [9: Theorem 3.2].

Conversely, suppose that there exist an analytic set ECT' and a Borel null
set NC I as in the statement of our Lemma. Then r isa one-to-one Borel
mapping of E onto (I' — N)/R = (I' — N)"Hence if r is a Borel isomorphism
then (I' = N )A is analytic Borel space, so that (I' — N )/® is countably separated.
So it suffices to show that » is a Borel isomorphism, that is, to show that
r(F) is a Borel subset of (I' — N)". for every relative Borel subset F' of E.
Hence we shall show that »~'7(F) is a Borel subset of I' — N. Let R be the
graph of # in "= N)"X (I' — N). Then we have r"'r(F) = pry(F x (I' — N)
N R), where pr, is defined by pr,(v,v)=v" for (y,¥) e T' X I". Since F is a
relative Borel subset of the analytic set E,F is analytic. Hence r7'r(F) is
analytic by Theorem 1. 3. Similarly r~'7(E — F) is also analytic. Since 7 '7(F)
and r~'7(E — F) are complementary subsets of I — N, they are both Borel
sets. This completes the proof.

LEMMA 2.2. Let A be an abelian subalgebra of a von Neumann algebra
M. 1°. If there exists a partition of unit Z:=1 po=1 in A such that Ap, is

smooth in p,Mp, for each n, then A is smooth. 2°. If there exist two wvon
Neumann algebras M, and M, and their smooth abelian subalgebras A, and
A, such that M=M, Q M, and A = A, ®A,, then A is smooth wunder the
additional assumption M' = M," QM,’®.

PROOF. 1°. Let A = L=(T', w). Let P, be the Borel set in I' associated
with p,. Then we have Ap, = L(P,, p). By eliminating a Borel null set we

3) When the one of M, and M, has the part of type III and the other is not of type I,
the question whether M' = M,'@M,’ does or does not hold remains open up to now
(cf. [2: p.30 and p. 102]).
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may assume U P,=T. Let % and @ be the couple as in the preceeding

n=1
arguments. Putting M, = p, Mp,, A, = Ap,, U, =Up, and O, = {@, € P; v
e P,}, the equivalence relation :#*»%»% = R in P, becomes the restriction of
the original equivalence relation R%%* = R to P,. It follows from Lemma 2.1
that there exist a Borel set N, c P, and a Borel set E, C P, for each n such
that u(N,) = 0 and such that E, contains one and only one element in common
with each R,-equivalence class in P,—N,. Let Q, be the NR-saturation of E,*.

oc n—1 .
Then we have Q, D P, — N,. Putting E = U (E, — U Q,), E is an analytic
n=1 k=1

subset of I" whose saturation becomes U Q, and it has one and only one

n=1

element in common with each R-equivalence class in U Q,. Putting N=T —

n=1
U Q., we have N C U N, so that N is a null subset of I". Therefore 4
n=1 n=1

becomes smooth by Lemma 2. 1.

2° Let A, = LIy, py), Ay = LT, py) and (T, p) = T X Ty, py X ).
Then we have A = L>(T', u). Let N; C I'; and E; C T; be the couple statisfying
the condition of Lemma 2.1, 1 =1,2. Let %,,®, and %U,, ®, be the couples
as in the preceeding discussion for M,, A, and M, A, respectively. Then
A= Q%A becomes a uniformly separable weakly dense C*-subalgebra of
M’ by our assumption. Putting ® = ®,QD, ={@, . = @ @i, : @), € D@2
€ ®,, (v,7,) € I'y x I}, ® is a family of representations of U associated with
the decomposition of = §;, @ P, with respect to A = A,QA,, where §, and
9, are the underlying Hilbert spaces of M, and M, respectively. It is clear
that the equivalence relation R*#® in T' is defined as the canonical product
equivalence relation M x M%ads jn T x I',. Putting N=N, x I, U T, X
N, and E = E, X E,, N and E satisfy the condition of Lemma 2.1. Hence 4 is
smooth in M. This completes the proof.

THEOREM 2.1. Let A be an abelian von Neumann subalgebra of a von
Neumann algebra M. Then there exists a unique partition of unit e+ f=1
in A such that Ae is smooth in eMe and such that Af is completely rough

in fMf.

PROOF. Let {p.} be a maximal family of orthogonal non-zero projections
in A such that Ap, is smooth in p.Mp.. By the separability of underlying

4) For any equivalence relation ®# in T' the R-saturation of any subset ST is the set of
all elements of I' that are R-equivalent to some element of S. If S contains every
element that is R-equivalent to some one of S, S is called R-saturated.
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Hilbert space of M, {p.} is at most countable. e = Zp, and f= I — e are the

desired projections in A by Lemma 2.2 and by the maximality of {p.}. The
unicity of e and f is clear from Definition 2.1. This completes the proof.

Theorem 2.1 reduces the study of abelian von Neumann subalgebras to
that of smooth ones and that of completely rough ones.

3. Smooth maximal abelian subalgebras. In the present section we
reduce the study of smooth maximal abelian subalgebras to that of simple ones.
In the following if a maximal abelian subalgebra 4 = L>(T',px) of a von
Neumann subalgebra is smooth, then we assume that the quotient space I'/R= T'

of T' is standard by eliminating a null set from the whole space T

LEMMA 3.1. Let A, = L°(T,, u,) and A, = L~(Ty,ps) be two abelian von
Neumann subalgebras of the von Neumann algebra M. Let 9, ®' and ®* be a
triard as in §1. Let E, C T, and E, C Ty, be Borel subsets respectively. If
there exists a Borel mapping © from E, to E, such that R*%%5% (v,,0 (1))
holds for almost every v, € E,, then for almost every v, < E, there exists a
unitary u(y,) from 9H(O(v,)) onto H(V) such that u(y,)'z' (v))u(y,) = x*
(O(vy)) for every x € U and such that u(y,) &(B(y,)) is a measurable vector
Sield over E, if &(+) is so over E,. If ® is a Borel isoamorphism such that
O(u,) = us,, then the operator u defined by

wt= [ ) w () EO()) o ZOTED i)

D
Sfor &= f E(yy)dusy,) € O is a partial isometry of M which carries e, onto
.

e, where e, and e, mean the projections of A, and A, associated with E,
and E, respectively.

PROOF. We use the notation in the proof of Theorem 1.3. As in the
proof of Theorem 1.3 we may assume that there exists a fixed Hilbert space
9, such that H(v,) = H, for each v, € I';, ¢ =1, 2. Putting B = {(v,,u) € E,
X U; u'x'(yv)u = 2X(B(y,)) for every x € U}, B is a Borel subset of E, x U
whose projection to E, covers E,. Indeed, B is the projection of the intersection
of A and the product of the graph Ry of ® in E, X E, and U to E, X U. Re
is a Borel set in E;, X E, by [1: §6 Ex. 17] and the projection of E; X E, to
E, is a one-to-one Borel mapping on Re. Hence the projection of A N (Rg X
U) onto B is a one-to-one Borel mapping of the standard Borel space A N
(R5 x U) into the standard Borel space E, X U, so that B becomes a Borel
subset of E, X U by [9: Theorem 3.2]. Applying [9: Theorem 6.3] to E, U
and B, there exist a null set N, C E, and a Borel mapping u«(y,) from E, —
N, to U such that (v, u(v,)) € B for evry v, € E, — N,. This «(-) is desired
one. Suppose that ® is a Borel isomorphism of (E, u,) onto (E,, u,).
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D
For &= f E(v,)dp,(v) €
we have'

gl = [ Jur) E@I i%@ () dpua (72)
= f IE(O())AO 1))y

= 18Cr:)IPdpalys) = llek |*.

®(Ey)

For each £ € % we have

] -—
uag = [ u(%)(x£)2(®(%))\/ é@i;.z‘i&><vl>dm(vl>
] .
= f u(m)xﬂ(@(m))fﬁ(@(vo)\/M ) dps(v,)
= [ 2ot @) NEHOIN

= f  uly EOm) \/d@) ) (v, )ds(,)

=zuk for every £=f E(v,)dulys) € 9,

so that # is a partial isometry of M mentioned above.

THEOREM. 3.1. For a maximal abelian subalgebra A of a von Neumann
algebra M, acting on a Hilbert space 9, to be smooth, it is necessary and
sufficient that there exzsts a simple maximal abelian subalgebra A of some
von 1 Neumann algebra M on a Hilbert space_ R and a normal isomorphism 6
ofA into A" such that 6(A)cC A and G(M)—M If A is smooth, then
(M A 6) is unique.

PROOF. NECESSITY: Let R = R*%* and (T, £) = (T, u) /R. Let r be the
canonical mapping of I' onto I". Then there exists a Borel mapping ¢ of T
into T such that ¢(y) € 7 %(¥) for every¥ ¢ T' by Lemma 2.1, eliminating a null
set from T'. Putting (%) = H(H?P)) for each v ¢ I', where £(y) means the

)
component of the decomposition § = f H(v) du(y) of § with respect to A,
T
we get a measurable Hilbert space field {®%)} over T, so that we can define
a Hilbert space & by & = f KT)du(@). The diagonal algebra of this decom-

position of & becomes A= L>(T", it). Since the mapping ® = ¢or of I' onto HT*)
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is a Borel mapping such that R(y, ®(y)) holds for every v € T, there exists a
family {w(y)} of unitaries from {§(v)} onto {H(O(y))} as in the conclusion of
Lemma 3.1. Since each operator £ ¢ A" is decomposable with respect to the

decomposition of &, there exists a measurable operator field {x(¥)} over I' such
®

D ~
that x = f 2(NART). Putting 6(x) = f u(y)'x(r(y)) u (y) du (v) for x € A,
P r
6 becomes a normal isomorphism of A’ into A", In fact, if there exists another

measurable operator field z,(y) over I'for x € A’ such that f z,(F)dE(¥)=
f (7)dp(7) = x, then E= {7 ; 2,9) # 2(F)} is a Borel null set in I'. Since
f

{v; x(r(v)) = x,(r(v))} = r“(E) is a Borel null subset of T, we have
)

®
[ wy e nr)dut) = [ ultn) )i,

.
so that ¢ is well defined. Similarly it is easily verified that ¢ preserves the
algebraic operations. Let {x,} be a sequence in the unit sphere of A- convergmg
strongly to zero. Then there exists a subsequence {x,} and a null subset N of
T such that {z,(y)} converges strongly to zero for every ¥ € ( N by [2 Chap.
II, § 2 Prop. 4]. Since x,, (#(v)) converges to zero for every vy e r” 1(N ) and
r*‘(ﬁ ) is a null subset of I, &x,,) converges strongly to zero in §. Therefore
any subsequence of {#(x,)} contains a subsequence converging strongly to zero,
which implies the strong convergence /\of {6(x,)} to zero. He/r\me # is strongly

continuous on the unit spherﬁz\ of A'. It is clear that #(A) c A’, and 6(4A")
C A’,since each operator of #(A) is diagonalizable and each one of #A4’) is
decomposable.

®
Putting 7= f 2(p@)dj (7)  for each xe,
r

D
we have #(&) = f u(v) & (r (7)) w(y) dp (v)

r

D
- f u ()™ z (O() u (v) dp ()

D
=f x (V) dp(y) = .

Hence 0(;1\') covers M'. Putting 67'(A) = A and A’ = I/li, we have 0(]&) =M
Since each y-component of U coincides with ¢ (v)-component of U as the operator
algebra over & (7) = & (7)), almost every y-component of % is irreducibly
acting on & (¥). Because, putting E = {v;y-component of U is not irreducible},

E is saturated and E is a null set by the maximality of A in M. Hence
(7 (E))=0. On the other hand, we have
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o~ ~ o . . .
r(E) ={%; 7-component of U is not irreducible},
Fol o . . . ~ .
which implies that almost every 7-component of U is irreducible. Hence A4 is a

maximal abelian subalgebra of M ~
Finally we shall show that A is simple in M. Putting @; (£) = 6(Z) (7))

= % () for each % « A and @ = {@3:7 e T'}, suppose that R*"%?® (v,,v,) holds
for v,,v, € I'. That is, there exists}\a unitary » of £(7,) onto & (7,) such thac
ug;, ()u™' = @;(2) for each 2 € U, which implies that
ugy, () u™ = ub (2)(p(T)u™ = 0(2)($(72))

for each # < . Hence we have ux(¢p(¥)u' = x(¢(7,) for/\each xe ¥
\y\hich implies R (¢ (7,), ¢ /(:72)/)\ Hence we have ¥, = 7,, so that A is simple in
M. After all, the triard (M, A, ) is the desired one.

SUFFICIENCY : Suppose that there exists a triard (M, A, #) satisfying the

condition in our theorem. Let A = L“(F, ,:) Let % and ® = {@5} be a couple

_— @
as in §1 for (M, A). Let & = f R (¥)diz (¥) be the decomposition of & with
©

~ ~ @ ~ ~ ~
respect to A’, which induces the central decomposition A" = [ A (V)dp (¥) of
'

the von Neumann algebra A'. Since almost every component A (%) becomes
the algebra B (8 (7)) of all bounded opertors on K (¥) and almost every ¢, is
irreducible, almost every A (¥) is the weak closure of @y (‘:’I) By[2: Chap. II,

(-B ~
§ 3 Prop. 11] there exists a decomposition § = f H (¥ di (7) of  over I with
- Jp

~ - ®
respect to 6 (A)which induces the decomposition 6 (A") = f (A (V) dE(¥) of
T

6’(2" ) and there exists a measurable field {#;:7 € I'} of normal isomorphisms

~ ~ P -
of A'(¥) onto 6(A")(¥) such that 6 (x) = f 65 (2(7)) dfi (7) for each = € 4,

r
® ~
that is, 6 = { 65 dfz (7). Putting 6 () = A and 5 (x) = 65 @5( 67! (x)) for each
’n

x € A, A is weakly dense in M’ and almost every 5 (¥) is weakly dense in

6(A")(7) by the continuity of almost every 3. Hence almost every ¥y is a
representation of type I which is quasi-equivalent to irreducible representation

@706 of A. Modifying ® on a null subset of F, we can assume from the

assumption for A that each distinct members of D are disjoint. Besides, elimi-
nating null set, Y, is quasi-equivalent to @y06~! for every ¥ € I'. After all, we

conclude that there exists a von Neumann subalgebra B = 6(A) =L~ (T, ;) and
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®
a decomposition $ = f H@F)d @ (¥) of H with respect to B which induces a
fy
family ¥ = {4,} of mutually disjoint factor representations of type I of ¥ such
o
that z = f Vs(2)dfi () for each z < .
T

By [5:85, Prop.2] we get the following :

1°. there exist null subsets N I" and N T and a Borel mapping ® of
I'—N onto I'—N such that for each @ ¢ 4 6(a)(v) = a(® (v)) for almost every
yeI'— Nand O ()= a.

®
2°. there exists a decomposition u = f W di (¥) of w such that u¥ is
)

~

concentrated on ®~(¥) for every ¥ ¢ T—N.

3°. there exist a null set N; c T'and a unitary of § (y) onto f H) du’ (v)

8—X¥)

for every ¥ < T — N, which carries Yry(x) onto f @i{x) dp'(y) for every

8 —1(7)

x el

Since 5 is a factor-representation of type I, @, is quasi-equivalent to vy for
w-almost every y€ ®~' (¥) by [8:p.103, Lemma]. Putting N = {y ¢ T; @5 is
not qua31 equivalent to Yre,y}, we have u(N") = f w"(N) dig (¥) = 0. For each
pair (fy,ry) ¢ I'=(NUN)} x {I'—(N UN' )} R(v,v) holds if and only if
B(y) = "), so that (I' — (N U N’), p)/R is isomorphic to the standard measure
space (f:— N’;, &), which implies the smoothness of A in M.

UNICITY : Suppose that there exists another triard (]'IZ, Zl, 6,). For (]E, Zh
#,) we shall use the corresponding notations in the proof of sufficiency adding

the suffix 1 (For instance, let A4, = L= (T}, ;1) and so on.) Suppose that 6 (Z)
=6, (Zl) is proved. Since A (resp. 711') is generated by M and 4 (resp. My
and Zl) by the maximality of A (resp. Z,) in ]lT (resp. lll~1) O(Z) (resp. 6, (Zl))
is generated by M = 0(1'7’) and 6(A4) (resp. M’ = 6, (M) and ¢ (Al)) which

implies 6(2') 6, (Al) Hence ¢7'c8, becomes an isomorphism of 4, onto A
which is a spatial isomorphism by [2:Chap. III, §3 Cor. of Prop. 3]. Therefore

it remains only to prove 0(2) =6, (Zl) Each element a ¢ A= L=(T, u) belongs
to 0(2) (resp. 6, (Zl)) if and only if a(y) is constant on the coset ® '(¥) (resp.
o;\(¥ 1)) for almost every ¥ < F(resp. ¥, ¢ T',). As seen in the proof of sufficiency,
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almost every coset ®~(¥) (resp. ®(7,)) becomes R-equivalence class in I', which
implies 0(2) =6, (Zl) This completes the proof.

DEFINITION 3. 1. For each smooth maximal abelian subalgebra A of a von
Neumann algebra M, we call the triard (M, A, 6), appeared in Theorem 3.1, the
simplification of the pair (M, A).

DEFINITION 3.2. Let A,, 4,, (T}, ), (T, p;) and M be as in §1. Let p,
and p, be non-zero projections of A, and A, associated with Borel subsets
P, c T, and P, C T, respectively. Let E, and E, be the projections of the graph
of REXL.¥ =R in P, X P, into I'; and TI', respectively. If there exist partitions
of E, and E, such that E, =F, UF,, E,=F,UF,, FFNF,=F,NF,=4¢,
F,,«-, F, are measurable, u, (F{) = p, (F;) =0 and F; contains every v; € K,
satisfying the condition (y,,v,) for some v, € F; i = j, 7,7 = 1, 2, then we say
that A,p, and A,p, are unrelated. That is, A,p, and A,p, are unrelated if and
only if R (y,,7v,) does not hold for every pair (v,,v,) € P, X P,, eliminating null
sets from P, and P, Otherwise, we say that A,p, and A,p, are related.
Moreover if for each non-negligible subset E, c P, (i = 1,2) the set F; of
all v/’s of P; satisfying the condition R(y,y,) for some v, € E;, (i # 7, i,j = 1,
2) is not negligible, then we say that A,p, and A,p, are similar

THEOREM 3. 2. For a maximal abelian subalgebra A of a von Neumann
algebra M to be smooth, it is necessary and sufficient that there exists a

partition of unit p, + > Do + p. = Lin A satisfying the following conditions :
n=1

1°. For each 1=n=oco p,Mp, and Ap, can be represented such as
puMp, = M, ® B, and Ap, = A, Q1= ({1,2,+++,n}) by some von Neumann
algebra M, and its simple maximal abelian subalgebra A,, where B, means
the full operator algebra over the n-dimensional Hilbert space [*({1, 2, «+,n}).
Besides Ap, and Ap, are unrelated if n+ m,n,m = 1.

2. pMp, and Ap, can be represented such as pMp, = M, @ B, and
Ap, = A, ® L~ (0,1) by some von Neumann algebra M, and its simple
maximal abelian subalgebra A,, where B,, means the full operator algebra
over the Hilbert space L*(0,1).

If A is smooth, then the above decomposition of M and A is unique. If
M is of finite type, then p, = p. = 0.

PROOF. The sufficiency is a direct conclusion of Lemma 2.2, so we shall
prove only the necessity. Suppose that A is smooth. Let A = L~ (T, ) and
R = (3o Let (T, ) be the quotient measure space of (I', #) by R and let » be
the canonical mapping of 1" onto I'. Identifying f and for for each f ¢ L= (T, )
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= A4,A becomes a von Neumann subalgebra of A. By [5:86, Prop.7] there
exist unique orthogonal projections p, and g, in A such that p, + q, = I, p, is
the greatest relatively continuous projection with respect to A and g, is the
greatest relatively discrete projection with respect to A. So we shall study
(PeMq,, Aq,) and (p, Mp,, Ap,) separately.

1°. Case of g, = I. For each non-zero projection e € A there exists the
smallest projection ¢ in A majorizing e, which is called A-carrier of e. Let e
and f be two relatively minimal projections in A with respect to A with the
same A-carrier. Let E and F be the Borel subsets of I' associted with e and f
respectively. Since Ae = Ae and Af = Af, both the r|E and r|F, the rest-
rictions of 7, are one-to-one mappings except for negligible parts. Since ¢ and
are the projections of A associated with r(E) and 7 (F) respectively, we have
r(E) = r(F). Hence there exists a one-to-one Borel isomorphism ¢ from E onto
F such R(y,¢(y)) for almost every v € E. Since Ae = Ae = Ae under the
canonical correspondence, r transforms the class of all null sets in E onto the
one in r(E). Hence ¢ is an isomorphism of the measure space (E, u|E) onto
(F,p|F). By Lemma 3.1 there exists a partial isometry # of M defined by a
family {«(vy), v € E} of unitaries from 9 (¢ (y)) onto ¥ (v) such that wu* =e
and u* u = f. Hence, for each pair of relatively minimal projections e,f of A
with respect to A, there exist orthogonal projections g,h,k in A such g +h
+k=1(ge)y =(gf) =g,9g th=e,g + k=f and ge ~ g f.

For each non-zero projection e € A there exists a relatively minimal projection
f of A with respect to A4 such that f =e and f = e. Indeed, let {f,} be a
maximal family of relatively minimal orthogonal projections in A such that

Ja =e and thef, ’s are orthogonal each other. Then f = > f, is requried

one.
Let {e.} be a maximal family of relatively minimal orthogonal projections

in A with A-carrier I If I+ 3} e, then (I — 3 e.)” # I by the maximality

of {e.}. Putting p=1— (I — 3 ae.)” € 4, we have p= 3" pe, and p = (pe.)
If the cardinal of {e,} is finite, then we repeat this argument for A(I — p)
and A (I — p). If it is infinite, there exits a family {f.} of relatively minimal
orthogonal projections such that > "« fo = I and f, = I. Indeed, let {gs} be a

maximal family of relatively minimal orthogonal subprojections of I — >_ e, in A.

«

Since A is discrete over A, we have I — > e, = > gs-Since M is acting on a

separable Hilbert space, both {e.} and {gs} are at most countable. Let f{e,}
and {g,} be their enumerations respectively. Let E, and G, be Borel subsets of
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I' associated with e, and g, respectively. Since e, = =g, and e, and g, are
relatively minimal, there exists a one-to-one Borel mapping ¢ from TI' into

U E, such that ¢ (G,) C E,,.1, ¢(E,) = E,,, R (v, () for almost every vy € T'
and ¢ (u) =~ p|¢ (I"). By Bernstein’s method itis easily shown that there exists a

Borel one-to-one mapping v from T' onto U E, such that & (v, ¥ (v)) for almost
n=1

every v € I' and v (n)=p U E,. The family {f,} of projections associated
n=1

with ¢~1(E,) is the required one.

After all, there exists a family {p,} »-1,. .. of orthogonal projections of A
and for each n there exists a family f{e,,,:1 =% =<mn} of relatively minimal
orthogonal projections of A such that e,, = p, for k=1,2,++, n and p,

n
= Zk s ke Besides for each n and % there exists a partial isometry u of M

such that u*u = e,,,, uu* =e,,, and wude,, u* = Ae,,,. Since Ae,,, = Ap,
under the natural correspondence, p,Mp, =e,, MR B, and Ap, = Ae,,, ®
1°(1,2, + -,n). Now it is clear that Ae,,, is a simple maximal abelian subalgebra
of e,, . Me,,, and that Ap, and Ap, are unrelated if n = m.

2°. Case of p, = I. Replacing p by an equivalent finite measure, we may
assume the finiteness of u. By the smoothness of 4 we get a decomposition

= f uw? di(7) of w over the measure space (T', 2) with respect to the mapping
)

7. By [5:85, Prop.1] we can define
®

2
S5O =[ SMa and @) = [ x() dw )

T=1(3) 1)
for almost every v € I" and for x € % and we get a decompostion

® ®
5= 2Ddaw) andx:f z(7) dig (7)
Jp i
under suitable identification. A becomes the diagonal algebra in this new decom-
position. Since there exists a unitary « of § (y,) onto § (v) for each v € 71 (7,)

such ux(y)u™ = z (v), we get

HTo)=9H () @ L* (¢ (7), p?) and x(7,) = x (v,) @I
for almost every ¥, € I' by [2:Chap. II, §2 Theorem 2]. Moreover, A is
decomposable with respect to this new decomposition, whose almost every
component A (¥) is represented by A®F)=C® L~("%), p¥), where C
means the complex number field. By [5:8§6, Prop.10] A(y) is relatively
continuous with respect to A (7) = C for almost every ¥ € T', so that almost
every measure space ("' (7), u¥) has no discrete summand. Since almost every
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7! (-'?) is a Borel subset of the standard Borel space I', almost every measure
space (' (¥), w) is isomorphic to (0,1)-interval equipped with Lebesgue
measure. Hence we get

H$@) =6 @ L*(0,1) and AF)=CQ L~(0,1)
for almost every v € T

By Lemma 2.1 there exists a measurable mapping ¢ from I' to I' such
that ¢ (y) € »"(¥) for almost every v. Since

@) =9@@)®L*0,1) and x(v) =z ($p (V) @ I

for almost every v, we get

e ~ ~
5= { [ 6@ du("’)} ® 1°(0,1)

and

x = {f x(qS(‘?))dz’i(V)} QI for each x ¢ 9.
)

@D (&3]
Putting & = f $ (7)) da (Vand zq= f x (HT)) di (3) for = < U, we have

.
H=8QL¥0,1) and & = xo ® I. It is clear that the diagonal algebra A4, in
the decomposition of & is isomorphic to A under the canonical corres-
pondence and that {zq(v);x € &) = {z(¢(¥)); x € A} acts on & (¥) = H (¢v))
irreducibly for almost every y<TI. Besides the representations xo— xq(y) of
the C*-algebra Uq = {xa x € A} are mutually disjoint. Hence A, is a simple
maximal abelian subalgebra of M, = Ugq. Since x = x4 ® I for every x € YU,
we have M= =M ,® B,. And we get A = A4, ® L= (0,1).

The unicity of {pn}n-o4,.~ is almost clear from its construction. This
completes the proof.

THEOREM 3.3. Let A, and A, be two maximal abelian subalgebras of
a von Neumann algebra M. Let e, and e, be non-zero projections of A, and
A, such that A.e, and A.e, are smooth in e,Me, and e,eM, respecsively. A,e,
and Ase, are similar if the simplifications ((elMels, (AlelA), 6,) and ((ezMez)A,
(Ase,), 6,) are unitarily equivalent in the sense that there exists a unitary u
of the underlying Hilbert space &, of (61M613 onto the one 8, of (exMe,) such
that u(Ae)u™"' = (A,e,), u(elMelju“‘ = (e;,MegS and 0, (uxu™') = 6, (x) for =
€ (elMe,S'.

PROOF. Suppose that A,e, and A ,e, are similar. Let E, and E, be the
Borel sets in I', and I', associated with e, and e, respectively. Putting %; = e,
and ®'e; = {@f, € D%y, > E} (@=12), R = R, and ¥ lave= R, are the
restrictions of "% * and R"%* to E, and E, respectively. Let (E\l, £,) and (1/2\2, £y)
be the quotient measure spaces of (E,u,) and (E,, u,) by R, and R, respectively.
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Let r, and 7, be the associated canonical mappings of E, and E, onto I/E\l and
E, respectively. Since REL (v,,v), ROLE# (v,7,) and RELP (y,, ¥;) imply
RLHEP (v, ;) for vy,v € I‘l and for w,, ¢, € T',, the mapping e of E, to E,
defined by
?(?l) = 10 pr, ((7'1_1(?1) X Ey,) N R)

for ¥, € E, is a one-to-one mapping, where R is the graph of R¥%%* in E
x E,. By the similarity of A,e; and A,e, # is deﬁned almost everywhere in E,
and it has the range with null complement in E2 Eliminating null sets from
/I\fl an/d E: respectlvely, we may assume that is a one-to- >-one mapping of El
onto E,. Since # 1(52) = rloprl ((E, xry” 1(.5'2)) N R), 7 1(.32) is analytic in E
for each Borel subset S c Eg, so that # is measurable. Similary #7' is also
measurable. Besides the similarity of A, and A,e, implies that # is an
isomorphism of the measure space (El, £,) onto the one (E,, Z,). Let ¢, and ¢,
be measurable mappings of E, and E2 to E, and E, such that ¢, (7)) € i (7,)
and ¢, (7,) € "' (¥,) for almost every 7, and ¥, respectively. Then we have
RELYEY (b, (V,),p, (1)) for almost every ¥, < E1 Using the naturally corresponding
notatlons in the proof of necessity of Theorem 3.1, there exists a unitary u of

R7) = le (¢.(7))) onto &, 7 (7)) = 9%, (#(¥,))) for almpst every ¥, /E such
that u~'z! (¢,(7,)u = x“ (¢o(7 (7)) for each x € A. By Lemma 3.1 there exists
a family {u(¥,);7, € El} of unitaries from 92 (¢, o # (¥,)) onto 9'(¢,(¥,)) such
that w(#,)'2Y($:,(F,) =z (¢, o 7 (¥,)) for each x €U, which defines a unitary u of

R®, onto &£, by

wk = ® @) EE@, ))\/df* Ry (G0 (fy) (7,) for £ € Ry

E

It is clear that w carries (Azez) onto (A4, el). Since ub;' (x)u™! = 67! (x) for each
x € U, u! induces the desired spatial isomorphism of (elMe,3 onto (e, Mes).

Conversely suppose that there exists a unitary # of £, onto &, satisfying
the condition of our theorem. By [8: Theorem 2.7] and Lemma 3.1 there exists
a one-to-one mapping 7 from a Borel suset of E, onto a Borel subset of E,
with null complements such that §(@)= @, and there exists a family {«(%,); ¥,
€ El} of unitaries from &,(#(¥,)) onto &,(¥,) such that

@ A
uf = f u @) EFF)) \/é%@ RALACH)

for £ € &, and u (7,)7'07 (xe,) (7)) u (7,) = 67 xe,) (#(¥,)) for almost every ¥, < E\l
and for each o € %. By the proof of necessity in Theorem 3.1 there exist
unitaries #, and u, of $'(v,) and H¥y,) onto &,(r(v,)) and K.(ry(v,)) for almost
every v, € E, and v, € E, respectively such that

wx (v) uit = 67" (xe,) (1)) and u, x (v,) s = 67" (we,) (72(y2))
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for every x € A. Theorefore we have RENLE(y,,v,) if # o ry(y,) = 7, (y,) for
almost every v, € E,, and v, > E, that is,

pr((S; X E) N R) D ri'%%ry(S)) and pri((E, X S,) N R) D 17'#ry(S,)
for each subset S, C E, and S, C E, respectively. Since 7,(u,) = £, and 7y(u,)
= f&,, we have

pa(pra((Si ¥ E) N R) >0 and  m(pri((Ey X S3) N R) >0

for each non-negligible subsets S, ¢ E, and S, C E,, which implies the
similarity of A,e; and A,e,. This completes the proof.

Then we get the following

COROLLARY. Similar simple maximal abelian subalgebras of a von
Neumann algebra are unitarily equivalent.

THEOREM 3.4. Let A, and A, be two maximal abelian subalgebras of
a von Neumann algebra M. Let e, and e, be non-zero projections of A, and
A, respecively. If Aie, and A,e, are both smooth in e,Me, and e,Me, respect-
tvely, then there exist unique projections p, and p, of A, and A, majorized
by e, and e, respectively such that A,p, and A,p, are similar and A\(e; — p,)
and A,(e, — p,) are unrelated.

PROOF. If A,e, and A,e, are unrelated, then our mention is trivial. So we
assume A, e, and A,e, are related. We use the notation in the proof of Theorem 3.3.

As in the proof of Theorem 3.3, there exists a one-to-one measurable
mapping # from subset of E, into E,, whose definition domain F, and range
F, are given by

Fy=ropr((E X E) N R) and F, = ry0 pry((E; X E;) N R) respectively.
By the relatedness of A,e, and A,e, the measures #(&,|F,) and &,|F, are not
disjoint. Hence there exists a unique subset P, C F, up to u,null set such- that
the measures #(&,|F,)|P, and f,|P, are equivalent and the measures #(£2,|F,)|
(Fy, — P,) and f,|(F, — P,) are disjoint. Putting ri'e# “(P,) = P, C E, and 73!
(P,) = P, C E,, the projections p, and p,, associated with P, and P, respecti-
vely, are required ones.

In closing this section we state the following interpretation in the represent-
ation theory.

COROLLARY. Let @, and @, be two representations of an involutive
separble Banach algebra % over separable Hilbert spaces £, and 9, respectively.
Let A, = L=(I'y, py) and A, = L=(T,, u,) be smooth maximal abelian subalgebras
of @(B) = M, and p(8) = M, respectively. Decompos ep, and @, into direct
integrals of irreducible representations over I, and T, with respect to A,
and A, as follows respectively,
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o

&
H, = f i) dmly), .= f $a(v2) dpaly,e)

2

] <]
Py = f @:(7)dp(y,), and @, = f @a(Y2) Aps(v,).
I T

Then there exist Borel subsets P, C T'y and P, C Ty such that @.(v,)E @y(v,)
for every (vy,7vs) € CP, X CP, and if P, and P, are non-negligible then for
each non-negligible subset S; C P, we have

l‘j( {'Yj € P py(v,) = @o(Ys) fOT some vy, > Si}) >0

i) =1,2,i#j. Bedides if p, and p, are the projections of A, and A,
associated with P, and P,, then @' and @ are quasi-equivalent®. Hence if
@, and @, are disjoint, then p,(P,) = p,(P,) = 0.
PROOF. Put
=000, o= Dp.and A=A, D A, = LTy @ Tyy py @ o).

Then Ac M, ® M, C »(B) = M and A becomes a maximal abelian subalgebra
of M. Let e, and e, be the projections of § onto $; and H, respectively. Then
e, and e, belong to A. Application of Theorem 3.3 and 3.4 to M, Ae, and Ae,
yields our mention.

REMARK. Unfortunately @{*~?) and @{"» need not be disjoint. Indeed, if
e,— p~e, — p, in M then @{? and @{* are unitarily equivalent. Such
case often occurs if M is of continuous type. For instance, let A4 be a simple
maximal abelian subalgebra of M and let ¢ be a projection of A suche ~ I — e.
Then @° and @"® are unitarily equivalent, though the decompositions of ¢°
and @ with respect to Ae and A(I — ¢) has no common component.

4. Simple maximal abelian subalgebras and completely rough maximal
abelian subalgebras. In [3] Dixmier introduced the notions of regularity,
semi-regularity and singularity for the maximal abelian subalgebra of factor.
This section is devoted to the study of the relation between these algebraic
properties and rather analytic properties : simplicity and complete roughness,
of maximal subalgebras. First we shall slightly generalize the notion defined by
Dixmier.

DEFINITION 4.1. Let M be a von Neumann algebra, Z its center and A4
a maximal abelian subalgebra. Let P be the von Neumann subalgebra of M
generated by all unitaries of M safisfying the condition uAu~! = 4. We call A
regular, semi-regular or singular according to P=M,P'N M= Z or P = A.

5) For a representation ¢ of <& and a projection e of @(-#), o is the representation of &
to e § defined by o?(z)¢é = p(x)et for every £ € e and z€F.
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"THEOREM 4.1. A simple maximal abelian subalgebrais singular.

PROOF. Suppose that a maximal abelian subalgebra A = L=(T', u) of a von
Neumann algebra M is not singular. Then there exists a unitary « of M such
that #Au™" = A and u ¢ A. By the maximality of A, does not commute with
some element of A, so that # induces a nontrivial automorphism ¢ of A. Hence
the associated mapping ® of I" onto I' is not trivial, that is, there exists a
Borel set E such that u(E)> 0 and ®(y)==rv for every v € E. By Theorem 1.2
we have R"¥? (y, O(y)) for almost every v € E, so that R*%?® (v,v) does not
imply v = v". Hence A4 is not simple.

THEOREM 4. 2. If there exists a semi-regular smooth maximal abelian
subalgebra in a von Neumann algebra M, then M is of type I

PROOF. Let A = L=(I', u). Let G be a countable group of unitaries satisfying
the condition #uAu~' = A which generates P. The existence of such group is
guaranteed by the separability condition for M. By the countability of G we
may assume that the associated automorphism ©®, in (I, u) is defined over the
whole space T" for all # € G by elimination of some null Borel set from T

Replacing the measure p with an equivalent finite one, we assume that p
is a finite measure. We shall use the notations in the proof of 2° of Theorem 3. 2.
As in the proof of Theorem 3.2, we decompose p over the measure space

(', w) as follows; p = f p¥die (V) and w7 is concentrated in 7' (¥) for almost

every 1. Putting
e ®

H) = f >A Py) duily) and x(y) = f () d(y)

7—1(y) r=1(7)
for each x € ¥, we have
2T) = 9() @ L*'(v), pu7), (V) = 2(v) @ I

for some y € ~%(¥) and

® ®

5= 8% di®, x=[ 2@)dp®

P P
for each x € ¥ as in the proof of Theorem 3.2. Since A is maximal abelian
in M, {x(y):x € U} acts irreducibly on 9(y) for almost every v € T so that
{x(y):x € A} generates a factor of type I on H(y). The associated diagonal
algebra in the new decomposition of 9 becomes A= L=(T', £). On the other
hand, ©,, # € G, transforms each equivalence class onto itself, so that every

element of A commutes with # € G. Hence we have A = Z,since P’ N M= Z.
Therefore the new decomposition of  induces the central decomposition M’

®
= f M@)di() of M. Since M'(7)is generated by {z(¥7):x < A}, M'({¥) is of
)
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type I. Hence M’ is of type I by [2:Chap. II, §3 Prop.3], so that M is of
type I. This completes the proof.

COROLLARY. Every semi-regular maximal abelian subalgebra A of a
von Neumann algebra M of continuous type is completely rough.

PROOF. Let A == L=(T", u). Suppose that there exists a non-zero projection
e of A such that Ae is a smooth maximal abelian subalgebra of eMe. Let E
be the Borel subset of I' associated with e. Then we have Ae = L=(E,p).
Denote :f = R*%® and R° = K22 in " and E respectively. By Lemma 2.1
there exists a Borel subset S € E which has one and only one element in
common with each R-equivalence class, eliminating a null set.

Now let G and {®,:u € G} be the groups of unitaries of M and of
transformations in (I', p) defined in the proof of Theorem 4.2 respectively.
Putting U {®,FE;u € G} = Z, the projection z of A associated with Z commutes
with every # € G. Hence z is a non-zero central projection. Since R is the
restriction of R to E, S has one and only one element in common with each
Rz-equivalence class in Z where R means RYZ2%%. Hence Az is a smooth
maximal abelian subalgebra of Mz by Lemma 2. 1. Moreover the semi-regularity
of A yields the semi-regularity of Az in Mz. An application of Theorem 4. 2.
to Az and Mz yields our mention.

THEOREM 4. 3. A completely rough maximal abelian subalgebra and a
smooth one are unrelated.

PROOF. Let A, = L~ (", n;) be a completely rough maximal abelian
subalgebra of a von Neumann algebra M and A, = L=(I'y, p,) a smooth one of
M. Put R = R0V R, = R*LY, and R, = R*%LY. Suppose that A, and A,
are related. Let R be the graph of R in I', X T,. Put E, = pr(R) and E, = pr,
(R). By Theorem 1.3, E, and E, are analytic subsets of T, and T, respectively.
Eliminating a 1}1\111 set from I',, we may assume that T', is a standard Borel
space, so that E, = r,(E,) is an analytic subset of T',. Since R(y.,v,), Ri(y, )
and Ry(ve, 72) imply R(vi, %), fv)) = 7o 0 pro({vi} X Ty) N R) defines a mapping
of E, into f‘ whose range is E For each Borel set S C I‘2, f“(S ) = P
(I, X ry” (S )} N R) is an analytic subset of E,. Smce f 1(52) and f“‘(CS)
are analytic and complementary subsets of E, f~ (SZ) is a relatively Borel subset
of E,. Hence f is a Borel mapping of E, into I',. The measures f(x,) and £,
are not Adisjoint by the related/r\less of A, and A,, 80 that the/r\e exists a Borel
subset F, c I', contained in E, such that f(u,)|F, and £,|F, are equivalent.
Putting F, = f“(ﬁ), F, is a relatively Borel subset of E,, so that f deﬁnes/\ a
Borel mapping from th/(z analytic Borel space F; onto the standard one F.,.
Besides, for each #, € F,, f~(#,) becomes a R,-equivalence class in F,, so that
the mapping ¢ defined by ¢(¥,) = f(r,~'(¥)) becomes a well defined, one-to-one
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Borel mapping of F/i)? :f onto f*‘\ because of r“¢“(§)—f“(§) for
each Borel set S cF F, where 71 means the canonical mappmg of F, onto F

For each Borel set S C Fl, ¢(S ) —f(r1 1(S )) is analytic in F2 and ¢(CS1) and
qS(SA) are co/r{lplementary subsets of F, 5, so that ¢ becomes a Borel isomorphism
of F, onto F,. Hence F, is a standard Borel space. Since F, is analytic, there
exists a relatively Borel null set N, C F, such that F, — N is standard, that
is, F| — N‘ is a Borel subset of Ty, (F, — N)/R, =F, — Nl) is analytic since
(F, — N ) =rF,— N)C Fl. Hence if f| is the projection of A, associated
with F; — Njthen A, f; becomes smooth in f;Mf,, but f, does not vanish by the
definitions of F; and F,. This contradicts to the complete roughness of A, in M.

Combining Corollary of Theorem 4.2 and Theorem 4. 3 we assert the
following

COROLLARY. In the von Neumann algebra of continuous type, a smooth
maximal abelian subalgebra and a semi-regular one are unrelated.

THEOREM 4. 4. A smooth singular maximal abelian subalgebra is simple.

PROOF. Let A be a smooth singular maximal abelian subalgebra of a von
Neumann algebra M. Let {p,}n-01...~ be the family of projections appeared in
Theorem 3.2. If p, # 0 for some n # 1, it is clear that there exists a unitary
u, of p,Mp, such that wu, A pu, = Ap, and u, ¢ Ap,. Putting u = u,
+UJ—p,), then uAu'=A,u c M and u ¢ A. Hence A is not singular.
Therefore we have p, = 0 for each n # 1, which implies the simplicity of A.

Throughout the discussion of § 3 and § 4 the following natural questions arise
for us: Are there algebraic characterizations of simple, smooth or completely
rough maximal abelian subalgebra? In particular, is any singular maximal
abelian subalgebra simple? Indeed, as shown in the next §, every already known
example of singular maximal abelian subalgebra is simple.

5. Examples. In [8, Chap. III §5] Mackey gave an example of unrelated
pair of maximal abelian subalgebras in a factor of type II, which consists of
simple one and regular. Besides his arguments show that the example of
singular maximal abelian subalgebra of hyperfinite factor constructed by Dixmier
[3] is simple. So in this section we shall give an example of simple max-
imal abelian subalgebra in a factor of type III by showing the example of
singular one in a factor of type III constructed by Pukanszky [12] to be simple.

Let G be an arbitrary countably infinite discrete abelian group. For each
element g € G we associate the cyclic group Q, = {0,1} of order 2. By Q we
denote the product compact group of {Q4g9 € G}. A is the subgroup of Q
composed of the element « such that a(g) = 0 except for a finite member of
gs. For 0<p=1/2 we define the measure u, in Q, by u, ({0}) = p and
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po({1}) =1 — p and the measure p in @ by u = II p,. For go € G we define

geG
an automorphism of Q by «%(g) = w(g.g). Putting ® = G x A, we define the
product in & by (g, @) (g,, @) = (9192 a* + @,). We canonically identify G
and A with G x {0} and {e} x A respectively. Next we define the action of &
on Q by os =0’ +a for s=ga < ®. Then the measure pu becomes quasi-

invariant under the action of & by [12: p. 144]. Putting cf;:: () = p(w, 5), where

us, means the measure defined by p,(E) = u(Es), we have p(w, ga) = plog, ) for
g € Gand a € A.

Let $, = L*(Q X A, p X 8), where 8 is the discrete measure in A. Let I'
be the dual group of G with Hear measure ». For each v € I" and & € 9,,
defining

(@% (ga)E) (o, B) = v(g) p(w, @) E(0’ + a,B” + a) forg €« Gand a € A,
(IN(a) &)@, B) = a(w) & (o, B) for a € L=(Q, p),

(Pa(@)E) (w,B) = Ew, B — ) for a € A
and
(ma(@)EXw, 8) = ale — BEw,8)  for a ¢ L(Q,p),
we get bounded operators #4(s), li(a), 9, ( @ ) and m,(a) on H, for s € &,

a € A and a € L=(Q, u). Besides #%(s) becomes a strongly continuous operator
valued function over I' and /i(a) becomes a constant function, so that we can
define operators 9(s) and /(a) on $ = H, ® L¥T,») by

(3] (&)
2(s) '=/ 256)du(y)  and  Ua) :f Ix(a) dv (7).

Of course, we have l(a) = [1(a) ® L
Let U” be the unitary representation of ® induced by the one-dimensional
representation v of the subgroup G and let # be the unitary representation of
® on L*Q, u) defined by '
(u(5)E) () = plw, 5)*E(® 5) for s € ® and & € L¥Q, p).
Then we have, for s € & and a € L=(Q, p),

uX(s) =u(s) @U"s) and li(a)=a® I on H, = L(Q, p) ® I}(A).

Since
D=9, Q LN, v)= 9. QI¥(G) = L*(Q, p) @ I’(®)

under the natural identification and the right regular representation R of & is

®
decomposed into the direct integral R = f U"(s)dv (v) by [7:Cor. of Theorem
r
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10.1], we have

u(s) = u(s) @ R(s) and l(a) =a ® I on H = LX(Q.u) ® I}(®),
fors € ®and a € L=(Q, ). Since the diagonal algebra in the decomposition

®
R = f Udv(7)is generated by the image of G under the left regular representation
r

®
of ®, the diagonal algebra A in the decomposition wu(s) = ] ul(s) dv(7) is
T
generated by the image of G under the respresentation v of ® defined by

(v($0)E) @, 5) = E(w, 557'5) for s, s € ®

and £ € & = L Q X ®, u x 3). Let M, be the von Neumann algebra generated
by {vala), msy(a): a € A, a € L*(Q, ).} Then for every ¥ € T {ui(a), [i(a):
a € A and a € L=(Q, n)} generates Mi. Let M be the von Neumann algebra
acting on 9 generated by {v(s), m(a):s € @ and a € L*(Q,u)}, where m(a)
is defined by (m(a)é)w, s) = ales™ (o, s) for € € & = L(Q x @, u X §). Then
M and M, becomes a factor of type II or type III according to the choice of
p and A is a singular maximal abelian subalgebra of M by [12]. We shall
show that A is simple.

Let A be the C*-subalgebra of M’ generated by {u(s), /(a): s €® and
a € C(Q)}. Then % is a uniformly separable weakly dense subalgebra of M

by [12]. For ¥, and 7, of I' suppose that there exists a bounded operator x on
$,such that

ul(s)x = xu¥(s) and D¥{a)x = xl%(a)

for every s € & and for every a € C(Q). Then x belongs to M}, so that x can

be expressed by x = > mu(x,)x(a) in the strong operator topology. For each

aepn

g € G we have
(uX(g)x€) (o, @) = V(g N xEN’, a’)
="(g) 2. xa((0 — a)g)E(e’,a’ — B)

BeA

and

(xuX ) (0, @) = 3°  xlo — a) @l (9)E) (o, — B)

BeA

=7(9) 2. xple — a)E (e, a’ — B)

BeA

for every &€ € H,. Hence we have

(g2 xp(e’ — a’)E(e’,a’ — B)

Bed
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=7(g) > xale — B E(e’, Q" — B)

BeA
tor every € € 9,. Putting &fw,a) =1 if a = 0,=0, if a0 we have
V(g (@ — a’) = Yo(g) Tolw — @)
for every a € A, g € G and for almost every o € Q. Hence
’Yl(g) i (o’) = ’Yz(g) Ty (@).
for every a € A, g € G and for almost every o € Q. It follows that

Q

fn |2 (@) dp(@) = [ |2260)'dpto) = [ |.(o) I dpto).

Since > f | 2o(@)|*du(w) = (x2*E,, &) < + oo and the set {a’: g € G} has
Q

aeA
infinitely many elements if a # 0, we have x.(w) = 0 almost everywhere for
a # 0. Putting

(w(9) =1/2)x(9)

@) = (= 1) Z"Tl(p/(1—p))

geq
geG

for @ € A, {£.; @ € A} becomes a complete orthonormalized system of L*Q, u)
by [12:Lemma 4]. Putting

Ca= (To Ea) = f Zo(@)a(0)dp(@),

Q

we have

cg = f () £() dp(0) = [ o) £ulo™) du(@)

= [ weke @) du@) = [ 00 20 £u(w) du (@)

_ 'Yz(g)
B 'Yx(g) Car

which implies |c¢Z| = |c.|. Hence ¢, = 0 if a % 0. This means that z,(e) is a
constant. That is, « becomes a scalar. Therefore, if ¥, and 7, are different
characters of G then x = 0. If v, = 7,, say 7, then {u3(s) and X (a)(a):5s € &
and a € C (Q)}, which generates the Y-component of U, acts irreducibly on
%, Hence R™%*® (v,, ¥,) implies ¥, = 7, for 7,7, €T, that is, A is a simple
maximal abelian subalgebra of M, where ® means the set of representations
of % defined by its ¥’s-compoments.

After all, we get the following
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THEOREM b5.1. Hyperfinite factor has a simple maximal abelian subalgebra
and a completely rough one simultaneously. There exists a factor of type 111
which has a simple maximal abelian subalgebra and a completely rough one
simultaneously.
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