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1. The central limit problem in the theory of probability is to determine
the conditions under which the distribution functions of sums of random
variables should converge [2]. In the case of independent variables the
problem was solved completely. The studies on this problem for dependent
variables are separated into two ways. One is to specify the dependency of
variables by their conditional probabilities and one of the best known result
is due to S. Bernstein [1]. The other is to specify the functional form of
the variables and in this direction R. Salem and A.Zygmund proved the
central limit theorem for lacunary trigonometric series [3].

THEOREM OF SALEM AND ZYGMUND. Let

N
LN(t) = Z Cr COSZka(t+¢k) 5 mk+1/mk Z q > 1 ,

k=1
where {c;} and {¢.} be arbitrary sequences of real numbers for which

1 g 1/2
”LN”:(TZC?C) — 4+ oo and cy=o0(|Lyl), as N— +oo.
k=1

Then we have, for any set EC[0,1] of positive measure and any real number

o,

SN SR __ 1 ) _w #
lim ey |65 £ € B L@/ Lol Z)| =~ [ exp (47 s

This theorem shows that the asymptotic behavior of a lacunary trigonometric
series resembles that of independent random variables.

The purpose of the present note is to prove a version of the central limit
theorem for trigonometric series not necessarily lacunary. Throughout this

*¥) For a measurable set E, |E| denotes its Lebesgue measure.
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note we set

N N 1/2
11 Sy(®) = >_ arcos2mk(t+a,) and Ay = (—21— > a,%) ,

k=1 k=1
and assume that
1. 2 Ay — +oo, as N— +oo,

In §82-6 we prove the following

THEOREM 1. Let {n,} be a lacunary sequence of positive integers, that
is,

(L 3) nk+1/nlc =q> 1,

and let us put

(1. 4) AR = S(t) and AE) = Sp(O)—Su &), for k>1.
If
(1. 5) sup |A:(®)] = o(Ar), as k— 4o,

and, for some function g(t)

i 3 (A) + 284OBun(®) —g(t) | de = 0,

e m=1

1
@o  im

then the function ¢(t) is non-negative and we have, for any set E C[0,1] of
positive measure and any real number o # 0,

a7
' . 1 o/ p/5(T) u2
L ) < = ———— - T
}VI—I}: |El |{t’t€E,SN(t)/AN:w}I I\/27]-|E| Ldtf_mexp( Z)du,

where o/0 denotes +oo or —oo according as o >0 or o < 0.

If Si{(¢) is lacunary, then our theorem is that of Salem and Zygmund.
In [4] we proved this theorem under somewhat restricted conditions.
For any given lacunary sequence {n,}, we can construct a trigonometric
k

series Sy(¢) such that I}im A2 (Ao (®)A,@®)} exists for all ¢ and does not

m=1
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vanish identically. Therefore, the above theorem shows that the sequence of
functions {A.(¢)} is asymptotically one-dependent, that is, n— 2>1 implies the
asymptotic independence of two sets of functions

{Al(t)’ Az(t)’ R Ak(t)} and {An(t)’ An+1(t)’ MR Am(t)} .

Let Fy(w) be the distribution function on the right hand side of (1.7), then
we have, for any real number A,

B Ao 1 7\’2
e’ dF g(w) = TE] | exp1— 5~ gt)t dt .
Therefore, for the proof of our theorem, it is sufficient to show that for any

fixed real number A

1.8 Il\}‘{nw Lexp {% S‘v(t)} dt = fEexp{ _ZV g(t)} dt .

In the same way we can prove a corresponding limit theorem for the
remainder terms of the Fourier series of a squarely integrable function.

2. From now on we assume that the conditions of Theorem 1 are
satisfied. Let us put

2.1 U@ = :Z_r(l 1A)rk+(1t) = S, &) = Speny. &) 5
@ 2) B=[ Gyd md Ci=3 Bi=a,,

0 1=1
where 7 is a fixed positive integer satisfying
@. 3) 71— g )>6.
Then we have, by the conditions of the theorem,
2. 4 Cy— +0c0, By =0(Cy),

wr

2. 5) sup | Un(?)| = sup EN_I)ITﬁk(t)I =0(Cy), as N— +oo,

and, for any m satisfying ny_y, <m = ny,,
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2
dt = By = o(C%), as N— +oo,

2. 6) f 1 }Smu)— :éUl(t)

LEMMA 1. We have

1

lim
N-oo ¥

C%% {Uit) + 2U0)U 11:@)} — 9@)|dt = 0.

PROOF. We have

r

2.7 Ui ()+2U,@)U,4,(@) = X {AM®)+2A:0)Ar (@)} + 2W(2),

k=(-1)r+1

where W,(¢) = X,(t)+Y (¢)+Z,(¢) and

XO=3 MO A,

k=(1-1)r+3 Jj=-1)r+1

¢+ ir

@. 8) Y()=2 A2 AW,

k=lr+2 J=@-1r+1

Ir-1

Z(t) = Do (2) Z A(2).

\ j=Q-17+1

Let w,(or w;) denotes the maximum (or minimum) frequency of terms of a
trigonometric polynomial X,(¢), then we have, by (1.3) and (2. 1),

271“- > w, ; w; :2_ Min{nk—-nk_l 5 (l'—l)r + 2§ k é lr} > n(l_l)r+2(1—q_l) .
From (1.3) and (2. 3), it is easily seen that
Wi/ w; > g (L—g™) 27 > 1.

This implies that if |k—/| = 2, then X,(¢) and X,(¢) are orthogonal. Hence,
by the Schwarz inequality, we have

2. 9) f {li X,(t)}z dr =2 ?2 j: Xi)dt = 2%[: {i AE) § Aj(t)],-z dt .

k=C-1)r+3 Jj=(1-1)r+1

k-2 m-—2

In the same way we can see that A.(¥) 2. A,) and A,(¢) > A,@¢) are

Jj=Q-Dr+1 J=-1)r+1
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orthogonal if |m—£k|> c(q), where c(¢) is a constant depending only on
Hence we have, for some constant K depending only on g,

j: Ai(t) {15 A,‘(t)}2 dt

J=@-D7r+1

1 ir
f Xio)dt =K Y

k=(l-1)7r+3

ir 2 Ir 1
_S_K(s?pz iAj(t)|) > fA,i(t)dt=oC?)B'f, as [— +oo.
0

J=(@-1)7+1 k=Q@-1)r+3

By (2. 9) and the above relation, we have
1 N 2
fo {Z Xl(t)} dt = o(C), as N— +oo.
=1

In the same way, we can obtain

fol {i Yl(t)r dt = o(CY) and f: {% Zl(t)r dt = o(Ch), as N— +oo.

By the above relations, (2.7) and (1.6), we can prove the lemma.

3. From (2.5) it is seen that there exists a non-decreasing sequence
positive integers {¢(%)} such that

3. 1) N)— +co and H(N) l\‘/Isellvx SI%p\U,(t)\ =o(Cy), as N— 4oo.

k

of

Putting Y(k) = >_ ¢(m), we can take a sequence of integers {p(k)} satisfying

m=1
the following conditions;

p(0) =1, and Y(2k—1) < p(k) =¥ (2k)

3 .2) wR) -1
and Bl = {¢(k)}' > Bi, for k=1.

1=y(2k—1)
Since Y(2k—1) < p(k) and ¢(k) — +oo, as k— + oo, we have

m m-1 Wk)-1

(B.3) X Buw1=2 {¢B)) 2 Bl + Bymy-t = 0(Cimy), a8 m—> +oo.
k=1 k=1 1=9(2k—1)

If we put

p(m)—2
Dm - Cp(m) and Tk(t) = Z Ul(t) 5

l=p(m-1)
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then we have, by (3. 3),

3. 4) fo 1

and, by (3.1) and (3.2),

(k)

(3.5  |TdOl =X U] = 342K Max sl U0)|

l=p(k-1)

n(m) 2

D Tw@®) =2 Ufp)| dt =o0(D%), as m— +oo,
k=1 l=1

= 3¢(p(k))hl£:1&c) sup [U2)| = o(Dy)*), as k— +oo.
By (2.6), (3.4) and (3.5) we have, for any k satisfying 7,,m_1y < & = 7rpm),
)

Hence by (1.8), to prove our theorem it is sufficient to show that for any
fixed real number A,

2
dt =o(Dh), as m— +oo,

8t = L T0

m k=1

3. 6) }nLrELexp{g—)"iTk(t)}dt = Lexp {—%ﬂg(t)} dt .

LEMMA 2. We have

1 N
; 1 25y _ ‘ —
%52 s kgl Tut) — g)|dt =0.

REMAEK. By this lemma we can see that g(¢) is non-negative.

PrROOF. We have

o(k)-2

B. 7 Ti) =2 Ui)+2U.0)U 18} — 2Upay-2(0)U iy ) +2V i (2) ,
1=p(k-1)

where

p(k)-2 -2

3. 8) Vi) =22 Ue) 3- Uy@).

l=p(k-1)+2 j=p(k—1)

Estimating the maximum and minimum frequencies of terms of a trigonometric
polynomial V(¢) in the same way as those of X,(¢) in Lemma 1, we can see

*) From (3.2), it is seen that p(B) >¢y(2k—-1)=Rk-1)¢(1)=(2k—-1).
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that {V(¢)} is orthogonal. Hence we have, by (3. 8),

p(k)-2 t—2 7

fol {évk(t)rdtf=éﬁ{z Uft) > Uj(t)jzdt,

l=p(k-1)+2 J=p(k-1)

-2 §-2

and in the same way we can see that U,(¢) > U,(#) and U,#)>_ U,@) are
J=p(e-1) J=p(k-1)
orthogonal if |s—I|=2. Therefore we obtain, by the Schwarz inequality and

3.5),

1/ m ‘ m  p(k)-2

f{kz Vk(t)tht§ZZ S flU%(t){g Uj(t)th

k=1 l=ptk-1)+2 * 0 J=pk-1)

p(k) } p(k)—2 1

=23 (w> wolly [ v

J=p(k-1) L=p(k-1) +2

p(k)—1
oDY) Y. Bi=o(Dy), as m— +oo.

l=p(k-1)

=

k

Il
[

On the other hand we have, by (3.7),

p(m)

(3- 9) z lec(t) = Z {U%(t)'*“ZUl(t)UH 1(t)} —U?I(m)(t)_2Up(?ﬂ)(t)Up(m)H(t)
+ Z Vi) — 2 (Ut 18) +2U pgy 1) {U piay-o(8) + Ui (£)} 1 .
By (3.3) and (3. 1), it is easily seen that

[ S Usios0) de = o(DR) , 1Usm @+ 20U 1i(8)] = (DR,
k=1

and

Z, U sy () {U iy o) + Upiiy(2)}| a2

1
j;)
V172

m 1/2 m
= (Z Bfr(k)—l) ](Z (Bywy-2+ szuc)))l =o(D}), as m— +oo,
k=1 k=1

Thus by Lemma 1 and (3.9), we can prove this lemma.
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4. Since Dy1 +oo, (3.5) implies that Max sup| T:(¢)/Dy | = 0o(1),
k=N t

as N — +oo, Hence without loss of generality we may assume that
I}C/glvx SL}pITk(t)/DN| < 1/2 for all N, that is,

4.1 Ilvim ex=0 and 0<exy<1/2 for all N,
where
4. 1) ey = 1>/£slivx sup | T(2)/Dy]| .

If we put, for M=1

k
4. 2) Pox(t, M) =1 and P.x(t,M)= ][ {1—

m=1 |

then we have, by (4.1),

N
(4. 29 0=1— Pyyt,M) = L 2 Tit) P (e, M) =1,
k=1

MD% <
and

N
. , 2T TH) | p
@2)  1-PaeM =3 (2780 - T e o).

k=1

Since 0 = P, »(¢, M) =1, the above relations imply that

1 N
. 3) T2 50 THE) Pleaalt, MY = M,
N =1
1 N
4. 3) o 2N Tk(t) Peoyw (8, M)|* = exM,
N =1
and
1 N
(4. 3") FiDy & THOPEs(6 M) = 6.

By (4.2”) and (4.3") it is seen that

N
(4. 4) I}%}; SO THE) Py alt, M) — M{1— Pi(t, M)}| < & .
k=1
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On the other hand estimating log Py, x{¢, M), we have, by (4. 1),

exp {W 2 THe) } = Py x(t, M) < exp { MDD Z TXt) }

Hence we have, for any a >0,

(4. 5) | P& w(t, M) — e 0@/

=[x |7 = Ti0) | —exp| 505 > 10|

»
—a
+ exp{m E T,%(t)} —e a0 O/%

OleN

al 1 ..,
= Z‘,T<t) + 1l Dy ST - g0 2

LEMMA 3. We have, for any M =1 and real number A,

1
lim
N—oo V0

MM —20(0) /30
€xp 2Dz ZTk(t)Pk 1N(t AI) — eXp (e —1) ’dtzO.

PrROOF. The integrand of the above integral is not greater than

"I"N(L M) =

-1 2 2 M, _ ;
5D% ; Tt)Piy v(t, M) — T (e W”*l)'.
By (4.4) and (4.5), we have

4‘I’N(t M) = ANér + 7\,2M| PN N(t M) — e‘2ﬂ(t)/’*1|

2 9 2N ey ul 2 2
=NMer + D THe)+2A
N k=1

15, & THO — 9(0).

1
Therefore, (4.1) and Lemma 2 imply that f Vu(t, M)dt = o(1), as N— +oo,
0
LEMMA 4. For any real number N and M =1, we have
1
I

*) From (1.6) and Lemma 2 it is seen that g(¢) € L(0,1) and g(¢)=0.

exp{—%; Tk<t)} - exp{%z T(t) Pk-l,N<t,M)} | = 1M @y,
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where
0, T y
Sy = 161\7 + 2]; l D}vETk(t) —_ g(t)ldt} ’
1 1/2
Ny = {f g(t)dt + f g1 — e—a(t)/m) dt]r
o >u} 0 P

PROOF. Since | — €®| =< |a — B|, it is sufficient to show that

1
I
From the definitions of T',(¢), (2.3) and (1.3) it is seen that the maximum
frequency z; and minimum frequency z; of terms of 7',(t) satisfy

Di S T(@) (1= Pooy w2, M)}‘ dt = (8w + 7).

N k=1

4. 6) 2r =2, and =z2p, /2, >6.

By (4.2) and (4.6) the frequency x, of any term of P, x(¢, M) satisfies the
conditions ;
k k
T =232 <22, 3640 < 122,/5 < 2241/5 = 22441/5.
=1 =1
Hence it is easily seen that
4.7 (frequencies of terms of T, (¢)Pi_, »(¢, M)) € (32:/5, 72x/5).

Since (4.6) implies that the intervals (32:/5, 72:/5), k=1, are disjoint,
[T (#&){1—Pi_1,x()}] is othogonal and we have

([

1 N 1 N
_ f A S THO 1 Peoae, M = [ S TH0 (L= Punte, M) dt
0 MWy 0 Mg

Ly ’
E Fk(t){l—Pk—l,N(t’ M)} dt
k=1

1 & 2o
—ELTk(t){l_Pk—l,N(t, M)}‘dt) §j;

N k=1

= f ({1 —Pyox(t, M)} dt + f 1‘ g9t — —é—v ki T}i(t)‘ dt

= [ g@yi1—e=©™)dt + M [Py (e, M) — |t

lo)=n}
1
+ f g@®)dt + fo

{o()>M}

o) — 5 3 THO|dr.
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By (4.5) we have

Mf|PN,N(t, M) — e—o(t)/.u"dt

fo(t)=n}

1 1 N 1 1 N
éeﬁvfo E;T%(t)dwﬁ E};T}i(t)—g(t) dt

2
N je=1

=g+ f;{g iT;xt)—g(t)}dt.

From the above inequalities it is seen that
1
i

5. In this paragraph let A and M, M =1, be any fixed real numbers.
We put, for these numbers A and M,

DLN,% Tk(t){l—Pk_l,zv(t, M)}’ dt) = (8%—{—773!,) = (8N+,’7M)2 )

G.1) Qu®)=1, and Qur(® = I[ {1+ %T,,,(t) P2, M)} ,for k=1.

)
N
LEMMA 5. For any f(¢t) € L(0,1), we have

tim [ 10) Quattyde = [ f0ya.

PROOF. Since (4.3) and (5.1) imply that |Qxy »(#)|? = €™, it is sufficient
to show that for any measurable set E C [0, 1]

};—{EL {Qu,n() — 1}dt = 0.

From (5.1) it is easily seen that
N <
QN,N(t) —-1= F Z Tk(t)Pk—l,N(t’ M) Qk—l,N(t) .
N p=1

k

By (4.7) and (5.1) the frequency of any term of Q () is less than > 72,/5.
m=1

Thus by (4.7) the frequencies of terms of T, (¢) Pi_1 »(¢, M) Qi1 »(¢) belong to
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k-1 k-1
the interval[Bz,’c/S — 2 T2a/5, T2:/5 + Z7zm/5]. Since (4.6) implies that
m=1 m=1

k-1

> T2n/5 < 72:/25 = Tz,/25, the frequencies of T'x(£)P_; »(t, M)Qy_1.»(t) belong

m=1

to the interval [82;/25, 422,/25] and these intervals are disjoint. Therefore
k

> T () Proay(t, M) Qnyx(t) is a trigonometric sum whose order is not
m=1

greater than 42z,/25 and not less than 82;/25, If we put, for the indicator
function xz(¢) of the set E

k=1

Xe(t) ~ |E| + 3 ercos2mk(t+By),
and

Qunt) — 1~ 3" (P + igt™) cos 2 kt,
k=1

then ¢f™ and p{™ are zero for sufficiently large £ and

422,/25

. k
% S TPy t, M) Oy w(8) = 5 (P2 + iq47) cos 27 mit .
N m=1 .

m=1

Hence we have, by the Parseval’s relation,
[(Qesty -1y a2

. N7
= %"—— LZ T (8)Pe-y, (2, 1M)Q,C_LN(t) dt + % Z e(P+ igi™) cos 2 kB, ,
NUE g

k>N’

where
N =[e*] and N = 42z,/25.

Since IPk—l,N(t> M)Qk—l,N(t, M)[ é lQNyN(t)| < e@ and llém NN = +OO, we have

g: T ()P, v(t, M)Qyoy v(8)| = & | Qu,(8)] = 0(1), as N— +oo,

k=

1
b

*) For simplicity of writing the formulas we assume that Sy () contains cosine terms only.
Hence {Quw,~(¢) —1} contains cosine terms only. The general case follows in the same

way.
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and
1/2

1/2 oo
mewwwﬂz@(ﬁwwwﬂ
k=1

k>N’ k>N’

1/2 1 1/2
__<:(Z e}i) (2]; IQN,N(t)-1|2dt) =o0(1), as N —+oo.

k>N’

By the above relations we can prove the lemma.

LEMMA 6. We have, for any measurable set E C [0,1],

N—ooo JE
f {MM
= | exp
‘ E

PrROOF. If we put €% = (1+iz) P , for a real number 2, then we
have |A(z)| <|z|® if |2z|<1/2. Therefore for any sequence of real numbers
2x, B=1,2,--+ N, |2:] < 1/2, we have

lim | exp {%ﬂ S™ T(8) Peos (s M)} dt
N k=1

(=) dr.

1
e — [ (1+iz)e 2~ —1<ex® —1,

Thus we have, by (4. 3",
5. 2)
’exp {JDLN Z T (t) Py o, M)} — Qu,x(t) exp { 2D5 Z Tit)Pi-,x(2, M)H

< exp{|M*eyxM} —1 =0(1), as N— +oo,

Since |Qu »(t)| = """, we have, by Lemma 3,

0f e

{ D; i "(t)Pi-l'N(t’M>} - exP{VM

N

N

f&ﬂﬂwﬁZ M (o — 1)} | ar|

k=1

PM

H/\

(e~ — 1)} l dt

=0(1), as N— +oo,
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Further we have, by Lemma 5,

lim f Q. (2) exp{”'M (e~ 1)}611:
Nooo VE L

- o2

By (5.2) and the above two relations we can prove the lemma.

(e~ _ 1)} dt .

6. In this paragraph let A denote any fixed real number and EC[O0,1]
any fixed set of positive measure. Further let e be an arbitrary positive
number. Since g(¢) € L(0,1) and g(#) =0, we can take a positive integer M,
such that

[ |24 mom—plae = [exol 5 g0} at] < o1,
and

Mg+ a [ aoa-comal” <.

{0(t)>M}

By Lemma 6 an integer N(M,) exists such that N> N(M,) implies that
7\'2]\/[0 ~2g(t)/Mo
| exp sz(t) Py (2, M) jexp Ao (emmonm — 1) Ld | < e/a,

and by (4.1) and Lemma 2 an integer N, exists such that N> N, implies
that

1 N 1/2
—1.N— > TiHe) — g(t)f dt} < /4.

Y {eﬁv
Therefore, by Lemma 4, N > Max(N(M,), N,) implies that
iN - A2
‘fEexp{D—Ng Tk(t)} dt — Lexp{—_z—g(t)} dti < €.
This is (3.6) and our theorem is proved.

7. In this paragraph let f(¢) be a function of L,(0,1) and Ruy(¢) the N-th
remainder of the Fourier series of f(¢). Further let us put
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1/2

{j: Rfv(t) dt} = Ey and Ak(t) = Rm(t) - an(t) ,

where {n,} is a lacunary sequence of positive integers. Then we can prove
the following

THEOREM 2. Suppose that
SgPIAk(t)l = o(E,), as k— +oo,

and, for some function g(t)

1 oo
lim | |5 & (AK0) + 28,080 (@) — gO)|dt =0,
N m=k

then the function §(t) is non-negative and we have, for any set E C [0,1] of
positive measure and any real number o0

' 1 1 o/ /g(t) ul
- . < = - - "o
lim 165 ¢ B2 R0/En S0l | = [ | exp( 2 )d”’

—o0

where ©/0 denotes +co or —oo according as >0 or ©<<0.
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