ON HARMONIC TENSORS IN COMPACT SASAKIAN SPACES

SHUN-ICHI TACHIBANA

(Received June 28, 1965)

A Riemannian space with a contact form \(\eta = \eta_\lambda dx^\lambda \) is called Sasakian if the contact structure satisfies certain conditions (Cf. § 3). In § 4 and § 5 of this paper we shall discuss harmonic vectors in compact Sasakian spaces and obtain some analogous results to compact Kählerian spaces (Cf. Theorem 4.2, 4.3, 5.1). In § 7 we shall prove that any harmonic \(p \)-form in \(n \) dimensional compact Sasakian spaces is orthogonal to \(\eta^\lambda = g^{\lambda\mu} \eta_{\mu} \) if \(p < (1/2)(n+1) \). In § 8, we shall introduce an operator \(\Phi \) and prove that \(\Phi u \) is harmonic for a harmonic \(p \)-form \(u \) if \(p < (1/2)(n+1) \). Preliminary facts and lemmas are given in the other sections.

1. Preliminaries.\(^1\) Consider an \(n \) dimensional Riemannian space \(M \) whose positive definite metric tensor is given by \(g_{\mu\nu} \). We denote by \(R_{\lambda\mu\nu}^\rho \) the Riemannian curvature tensor

\[
R_{\lambda\mu\nu}^\rho = \partial_\lambda \left\{ \frac{\rho}{\mu\nu} \right\} - \partial_\mu \left\{ \frac{\rho}{\lambda\nu} \right\} + \left\{ \frac{\rho}{\lambda\mu} \right\} \left(\frac{\lambda}{\mu\nu} \right) - \left\{ \frac{\rho}{\mu\nu} \right\} \left(\frac{\alpha}{\lambda\nu} \right), \quad \partial_\lambda = \partial/\partial x^\lambda,
\]

and by \(R_{\mu\nu} = R_{\lambda\mu}^\lambda \) the Ricci tensor, where \(\left\{ \frac{\lambda}{\mu\nu} \right\} \) are the Christoffel’s symbols. The operator of covariant derivation with respect to \(\left\{ \frac{\lambda}{\mu\nu} \right\} \) is denoted by \(\nabla_\lambda \).

It is easy to have

\[
R_{\lambda\mu\nu}^\rho u^{\lambda\mu\nu} = 0
\]

for any skew-symmetric tensor \(u^{\lambda\mu\nu} \), by virtue of the first Bianchi’s identity.

If a vector field \(\eta^\lambda \) satisfies

\[
\theta(\eta) g_{\lambda\mu} \equiv \nabla_\lambda \eta_\mu + \nabla_\mu \eta_\lambda = 0, \quad (\eta_\lambda \equiv g_{\lambda\mu} \eta^\mu),
\]

then it is called a Killing vector, where \(\theta(\eta) \) is the operator of Lie derivation with respect to \(\eta^\lambda \). It is well known that the equations

\(^1\) As to the notations we follow Yano, K., [5].
\[\nabla^a \nabla_a \eta_\lambda + R^a_{\lambda a} = 0, \quad \nabla^3 \eta_\lambda = 0 \]

are valid for any Killing vector \(\eta_\lambda \).

We shall recall various operators on differential forms. A skew-symmetric tensor \(u_{\lambda_1 \ldots \lambda_p} \) may be regarded as the coefficients of a differential \(p \)-form

\[u = \frac{1}{p!} u_{\lambda_1 \ldots \lambda_p} dx^{\lambda_1} \wedge \cdots \wedge dx^{\lambda_p}. \]

We represent this fact by

\[u : u_{\lambda_1 \ldots \lambda_p}. \]

If \(p = 0 \), then a \(p \)-form \(u \) is nothing but a scalar function which we shall usually denote by \(f \).

The exterior differential \(du \) and the codifferential \(\delta u \) of \(u \) are given by

\[
\begin{align*}
\text{du :} & \quad \left\{ \begin{array}{ll}
\nabla^a u_{\lambda_1 \ldots \lambda_p} - \sum_{i=1}^{p} \nabla^a \eta_{\lambda_1 \ldots \lambda_{i-1} \lambda_{i+1} \ldots \lambda_p}, & p \geq 1, \\
\nabla^a f, & p = 0,
\end{array} \right. \\
\delta u : & \quad \left\{ \begin{array}{ll}
\nabla^a u_{\lambda_1 \ldots \lambda_p}, & p \geq 1, \\
0, & p = 0.
\end{array} \right.
\end{align*}
\]

The Laplacian operator \(\Delta \) is given by \(\Delta = d \delta + \delta d \). For a \(p \)-form \(u \) we have explicitly

\[
(\Delta u)_{\lambda_1 \ldots \lambda_p} = \nabla^a \nabla_a u_{\lambda_1 \ldots \lambda_p} - \sum_{i=1}^{p} R^a_{\lambda_1 a} u_{\lambda_{i+1} \ldots \lambda_p} \]

\[
- \sum_{j<i} R_{\lambda_j \lambda_i} u_{\lambda_1 \ldots \lambda_j \ldots \lambda_p}, \quad p \geq 2,
\]

where the subscripts \(\sigma \) appears at the \(i \)-th position and \(\rho \) at the \(j \)-th position, and

\[
(\Delta u)_\lambda = \nabla^a \nabla_a u_\lambda - R^a_\lambda u_a, \quad p = 1,
\]

\[
\Delta f = \nabla^a \nabla_a f, \quad p = 0.
\]

A \(p \)-form \(u \) is called to be harmonic if \(du = 0 \) and \(\delta u = 0 \) are satisfied. Thus if \(u \) is harmonic, then we have \(\Delta u = 0 \).
Let \(\eta = \eta_\lambda \, dx^\lambda \) be a 1-form, then we shall naturally identify \(\eta \) with the contravariant vector field \(\eta^\lambda = \eta_\mu g^{\lambda \mu} \). Hence, for instance, if \(\eta \) is closed or \(\eta^\lambda \) is a Killing vector, then we shall say that \(\eta^\lambda \) is closed or the 1-form \(\eta = \eta_\lambda \, dx^\lambda \) is a Killing form, respectively.

For a Killing form \(\eta \) we have

\[
(\Delta \eta)_\lambda = -2R^i \xi^\eta, \quad \delta \eta = 0.
\]

For a 1-form \(\eta \) the operator \(i(\eta) \) is defined by

\[
(i(\eta) u)_{\lambda_1 \ldots \lambda_p} = \eta^a u_{a \lambda_1 \ldots \lambda_p}, \quad i(\eta) f = 0
\]
for any \(p \)-form \(u \) and any scalar function \(f \).

The Lie derivation with respect to \(\eta \) satisfies

\[
\theta(\eta) u = (di(\eta) + i(\eta)d) u
\]
for any \(p \)-form \(u \), \((p \geq 0) \). For a \(p \)-form \(u \), \(\theta(\eta) u \) is given explicitly by

\[
(\theta(\eta) u)_{\lambda_1 \ldots \lambda_p} = \eta^a \nabla_a u_{\lambda_1 \ldots \lambda_p} + \sum_{i=1}^p u_{\lambda_i \ldots \alpha \ldots \lambda_p} \nabla_{\lambda_i} \eta^\alpha,
\]

\[
\theta(\eta) f = \eta^a \nabla_a f, \quad p = 0.
\]

The exterior product of a 1-form \(\eta \) or a 2-form \(\varphi \) with a \(p \)-form \(u \), \((p \geq 2) \), is given respectively by

\[
\eta \wedge u : \eta_a u_{\lambda_1 \ldots \lambda_p} = \sum_{j=1}^p \eta_{\lambda_j} u_{\lambda_1 \ldots \alpha \ldots \lambda_p},
\]

\[
\varphi \wedge u : \varphi_{a \beta} u_{\lambda_1 \ldots \lambda_p} = \sum_{i} \varphi_{a \lambda_i \ldots \beta \ldots \lambda_p} - \sum_{j} \varphi_{\lambda_j \alpha} u_{\lambda_1 \ldots \alpha \ldots \lambda_p} + \sum_{j<i} \varphi_{\lambda_j \lambda_i} u_{\lambda_1 \ldots \alpha \ldots \beta \ldots \lambda_p},
\]

where the subscripts \(\alpha \) appears at the \(j \)-th position and \(\beta \) at the \(i \)-th position.

2. Harmonic tensors in a compact orientable Riemannian space. In this section we shall always consider a compact orientable Riemannian space \(M \). For any \(p \)-forms \(u \) and \(v \) the global inner product \((u, v) \) is defined by
(u, v) = \frac{1}{p!} \int_M u_{\lambda_1 \ldots \lambda_p} v^{\lambda_1 \ldots \lambda_p} \, d\sigma,

where \(d\sigma \) means the volume element of \(M \).

For any \(p \)-form \(u \) and \((p+1) \)-form \(v \) the following integral formulae are well known

(2.1) \[(du, v) + (u, \delta v) = 0, \]

(2.2) \[(\Delta u, u) + (du, du) + (\delta u, \delta u) = 0. \]

If a \(p \)-form \(u \) satisfies \((\Delta u, u) \geq 0\), then \(u \) is harmonic, by virtue of (2.2).

The following lemma is also well known.

Lemma 2.1. In a compact orientable Riemannian space

\[\theta(\eta) u = 0 \]

is valid for any Killing vector \(\eta^\lambda \) and any harmonic \(p \)-form \(u \).

From this lemma and (1.3) we have easily the following

Lemma 2.2. In a compact orientable Riemannian space,

\[i(\eta) u \]

is closed

for any Killing vector \(\eta^\lambda \) and any harmonic \(p \)-form \(u \).

Now let \(\eta \) be a Killing form and \(u \) be a harmonic \(p \)-form, then we have

\[(\delta(\eta \wedge u))_{\lambda_1 \ldots \lambda_p} = \nabla^\alpha(\eta \wedge u)_{\alpha \lambda_1 \ldots \lambda_p} \]
\[= \nabla^\alpha(\eta_\alpha u_{\lambda_1 \ldots \lambda_p} - \sum \eta_\alpha u_{\lambda_1 \ldots \alpha \ldots \lambda_p}) \]
\[= \eta^\alpha \nabla_\alpha u_{\lambda_1 \ldots \lambda_p} - \sum u_{\lambda_1 \ldots \alpha \ldots \lambda_p} \nabla^\alpha \eta_\alpha \]
\[= (\theta(\eta) u)_{\lambda_1 \ldots \lambda_p}. \]

Thus taking account of Lemma 2.1 we get

Lemma 2.3. In a compact orientable Riemannian space,
for any Killing form \(\eta \) and any harmonic \(p \)-form \(u \).

By Lemma 2.2 and Lemma 2.3 we can obtain

Lemma 2.4. In a compact orientable Riemannian space, if

\[
i(\eta) u \quad \text{is coclosed}
\]

for a Killing form \(\eta \) and a harmonic \(p \)-form \(u \), then the \(p \)-form

\[
\eta \wedge i(\eta) u \quad \text{is coclosed .}
\]

3. **Identities in a Sasakian space.**

An \(n \) dimensional Sasakian space (or normal contact metric space) is a Riemannian space which admits a unit Killing vector field \(\eta^\lambda \) satisfying

\[
(3.1) \quad \nabla_\lambda \nabla_\mu \eta_\nu = \eta_\nu g_{\lambda \mu} - \eta_\mu g_{\lambda \nu}.
\]

It is well known that a Sasakian space is orientable and odd dimensional.

In this section we prepare identities in an \(n \) dimensional Sasakian space.

Now if we define \(\varphi^\mu_\nu \) by

\[
(3.1) \quad \varphi^\mu_\nu = \nabla_\mu \eta^\nu,
\]

then we have

\[
(3.2) \quad \varphi^\lambda_\mu \varphi^\mu_\nu = -\delta^\lambda_\nu + \eta^\nu \eta^\lambda, \quad \varphi^\lambda_\nu \eta^\mu = 0,
\]

\[
(3.3) \quad \varphi_{\mu \nu} = -\varphi_{\nu \mu}, \quad (\varphi_{\mu \nu} \equiv \varphi^\sigma_\mu g_{\sigma \nu}).
\]

(3.1) is then written as

\[
(3.2) \quad \nabla_\lambda \varphi_{\mu \nu} = \eta_\mu g_{\lambda \nu} - \eta_\nu g_{\lambda \mu}
\]

and we have easily

\[
(3.3) \quad \nabla^\lambda \varphi_{\lambda \mu} = -(n-1)\eta_\mu,
\]

2) Okumura, M., \[1\], Sasaki, S and Y. Hatakeyama, \[2\]. Examples of Sasakian space have been given in \[2\] and \[4\].
Applying the Ricci’s identity to η, we have

$$\nabla_\nu \nabla_\mu \eta_\lambda - \nabla_\mu \nabla_\nu \eta_\lambda = - R_{\nu\lambda\mu} \eta_\nu,$$

from which we can get

$$R_{\nu\lambda\mu} \eta_\nu = \eta_\nu g_{\lambda\mu} - \eta_\mu g_{\nu\lambda}, \quad (3.5)$$

$$R_{\nu} \eta_\nu = (n-1) \eta_\nu \cdot \quad (3.6)$$

Next, applying the Ricci’s identity to ϕ^z we have

$$\nabla_\rho \nabla_\sigma \phi^z - \nabla_\sigma \nabla_\rho \phi^z = R_{\rho\sigma\xi} \phi^z - R_{\rho\xi} \phi^z - \phi^z g_{\rho\sigma}, \quad (3.7)$$

Substituting (3.2) into the left hand member of the last equation we get

$$R_{\rho\sigma\xi} \phi^z - R_{\rho\xi} \phi^z = \phi^z \delta_\sigma - \phi^z g_{\rho\sigma} - \phi^z g_{\rho\xi} + \phi^z g_{\rho\sigma} g_{\rho\xi}, \quad (3.8)$$

from which it follows that

$$\phi^z R_{\rho\sigma\pi} = - R_{\rho\sigma\xi} \phi^z + \phi^z g_{\rho\sigma} g_{\rho\xi} - \phi^z g_{\rho\sigma} g_{\rho\xi} + \phi^z g_{\rho\sigma} g_{\rho\xi}. \quad (3.9)$$

Contracting (3.7) with respect to ρ and α we can get

$$\frac{1}{2} \phi_{\rho\beta} R_{\alpha\rho\beta} = R_{\rho\alpha} \phi^z + (n-2) \phi^z \rho, \quad (3.10)$$

For ϕ^z we have

$$R_{\rho\sigma} \phi^z = - R_{\rho\sigma} \phi^z, \quad R_{\rho} \phi^z = R_{\alpha} \phi^z. \quad (3.11)$$

for any vector u_μ.

4. Harmonic vectors in a compact Sasakian space.\(^3\)) Let u be a harmonic 1-form in a compact Sasakian space, then we have $df = 0$ for the scalar f defined by $f = i(\eta) u$, by virtue of Lemma 2.2.

\(^3\) Throughout the paper we assume that $n = \dim M > 1$.
Hence f is constant. If we define β by

\[(4.1)\quad u = f \eta + \beta,\]

then β is a 1-form orthogonal to η, i.e., $i(\eta)\beta = 0$. Operating Δ to (4.1) we get $\Delta\beta = -f\Delta\eta$ and as η is Killing we have

\[(\Delta\beta)_\lambda = -f(\Delta\eta)_\lambda = 2f R^i_\lambda \eta_i = 2(n-1)f \eta_i\]

by virtue of (1.2) and (3.6). Hence β is harmonic, because we have $(\Delta\beta, \beta) = 0$. Thus we have $f=0$ and obtain the following

Theorem 4.1. Any harmonic 1-form u in a compact Sasakian space is orthogonal to η, i.e., $i(\eta)u = 0$.

Next we introduce an operator $J : p$-form $u \rightarrow$ tensor of type $(0, p)$, $\tilde{u} = J u$ by

\[
\tilde{u}_{\lambda_1 \ldots \lambda_p} = \varphi_{\lambda_1}^a u_{a \lambda_2 \ldots \lambda_p}
\]

and we shall compute $\Delta \tilde{u}$ for a harmonic 1-form u in a compact Sasakian space.

Taking account of $i(\eta)u = 0$, $\Delta u = 0$, (3.4) and (3.10) we can get

\[
\nabla^a \nabla_a \tilde{u}_\lambda = -2 \nabla_\lambda (\eta^a u_a) + \varphi_\lambda^a \nabla^a \nabla_a u_a = \varphi_\lambda^a R^a_s u_s = R^a_s \tilde{u}_a.
\]

Thus we have $\Delta \tilde{u} = 0$ and hence we get

Theorem 4.2. In a compact Sasakian space, $\tilde{u} = J u$ is a harmonic 1-form for any harmonic 1-form u.

As a corollary to this theorem we have

Theorem 4.3. The first Betti number of a compact Sasakian space is zero or even.

5. **C-analytic 1-form.** It is known that in a compact Kählerian space a harmonic 1-form is holomorphic (i.e., covariant analytic) and vice versa. In this section we shall consider an analogous fact.
Now, in a Sasakian space, let \(u \) be a 1-form satisfying

\[(5.1)\quad Jdu - dJu = 0,\]

which is written explicitly as follows

\[(5.2)\quad \phi^\alpha_{\lambda}(\nabla_\alpha u_\mu - \nabla_\mu u_\alpha) - [\nabla_\lambda(\phi^\alpha_{\mu} u_\alpha) - \nabla_\mu(\phi^\alpha_{\lambda} u_\alpha)] = 0.\]

It is easy to see that (5.2) is equivalent to the following equation

\[(5.3)\quad \phi^\alpha_{\lambda} \nabla_\alpha u_\mu - \phi^\alpha_{\mu} \nabla_\lambda u_\alpha + \eta_\lambda u_\mu - \eta_\mu u_\lambda = 0.\]

If we transvect \(\eta^1 \) to (5.2), we have

\[(5.4)\quad u_\lambda = (u_\alpha \eta^\alpha)\eta_\lambda + \phi^\alpha_{\lambda} \eta^\alpha \nabla_\alpha u_\alpha\]

and transvecting (5.2) with \(g^{\lambda\mu} \) we obtain

\[(5.5)\quad \phi^\alpha_{\beta} \nabla_\alpha u_\beta = 0.\]

Now we define a \textit{C-analytic} 1-form\(^4\) as a 1-form \(u \) satisfying (5.1) and \(i(\eta)u = 0 \). Then we have

\textbf{THEOREM 5.1.} \textit{A necessary and sufficient condition for a 1-form in a compact Sasakian space to be harmonic is that it is C-analytic.}

\textbf{PROOF.} For a harmonic 1-form \(u \), we have \(du = 0, dJu = 0 \) and \(i(\eta)u = 0 \) by virtue of Theorem 4.1 and Theorem 4.2. Hence it is C-analytic.

Conversely let \(u \) be C-analytic, then we have \(i(\eta)u = \eta^\alpha u_\alpha = 0 \). Taking account of (3.3) and (5.5) we can get

\[(5.6)\quad \eta^\alpha \nabla^\lambda \nabla_\lambda u_\alpha = 0.\]

Next, transvecting (5.3) with \(\phi^\alpha_{\mu} \) we have

\[\nabla_\lambda u_\alpha + \phi^\alpha_{\beta} \nabla_\beta u_\alpha - \eta_\mu \eta^\alpha \nabla_\lambda u_\alpha + \eta_\lambda \phi^\alpha_{\mu} u_\alpha = 0.\]

Operating \(\nabla^\lambda = g^{\lambda\mu} \nabla_\mu \) to the last equation we get \(\Delta u = 0 \), by virtue of (5.6) and (3.11). Thus \(u \) is harmonic.

Q.E.D.

\(^4\) For an almost complex space, see Tachibana, S., [3].
6. A lemma. Consider a harmonic \(p \)-form \(u \), \((p \geq 2)\), in an \(n \) dimensional Sasakian space and define a \((p-2)\)-form \(v \) by

\[
v : \quad v_{\lambda_1, \ldots, \lambda_p} = \varphi^{\lambda_1 \lambda_2} u_{\lambda_1, \ldots, \lambda_p}.
\]

In the following we shall compute \(\Delta v \) and obtain a lemma.

First as we have

\[
\nabla^\varphi \nabla^\varphi v_{\lambda_1, \ldots, \lambda_p} = \nabla^\varphi \nabla^\varphi \varphi^{\lambda_1 \lambda_2} u_{\lambda_1, \ldots, \lambda_p} + 2 \nabla^\varphi \varphi^{\lambda_1 \lambda_2} \nabla^\varphi u_{\lambda_1, \ldots, \lambda_p} + \varphi^{\lambda_1 \lambda_2} \nabla^\varphi \nabla^\varphi u_{\lambda_1, \ldots, \lambda_p},
\]

if we take account of (3.2) and (3.4) we can get

\[
(6.1) \quad \nabla^\varphi \nabla^\varphi v_{\lambda_1, \ldots, \lambda_p} = -2v_{\lambda_1, \ldots, \lambda_p} + \varphi^{\lambda_1 \lambda_2} \nabla^\varphi \nabla^\varphi u_{\lambda_1, \ldots, \lambda_p}.
\]

As \(u \) satisfies \(\Delta u = 0 \), the last term becomes as follows:

\[
(6.2) \quad \varphi^{\lambda_1 \lambda_2} \nabla^\varphi \nabla^\varphi u_{\lambda_1, \ldots, \lambda_p} = \varphi^{\lambda_1 \lambda_2} \left(\sum_{i=1}^{p} R_{\lambda_1} \omega_{\lambda_1, \ldots, \lambda_p} + \sum_{j<\ell} R_{\lambda_1 \lambda_j} \omega_{\lambda_1, \ldots, \lambda_p} \right)
\]

\[
= \sum_{i=1}^{p} R_{\lambda_1} \omega_{\lambda_1, \ldots, \lambda_p} + \sum_{2<j<\ell} R_{\lambda_1 \lambda_j} \omega_{\lambda_1, \ldots, \lambda_p}
\]

\[
+ 2\varphi^{\lambda_1 \lambda_2} R_{\lambda_1} \omega_{\lambda_1, \ldots, \lambda_p} + \varphi^{\lambda_1 \lambda_2} \omega_{\lambda_1, \ldots, \lambda_p} + 2\varphi^{\lambda_1 \lambda_2} \sum_{2<j<\ell} R_{\lambda_1 \lambda_j} \omega_{\lambda_1, \ldots, \lambda_p}.
\]

On the other hand we have

\[
(6.3) \quad \varphi^{\lambda_1 \lambda_2} R_{\lambda_1 \lambda_j} \omega_{\lambda_1, \ldots, \lambda_p} = \varphi^{\lambda_1 \lambda_2} R_{\lambda_1 \lambda_j} \omega_{\lambda_1, \ldots, \lambda_p}
\]

\[
= 2[R_{\lambda_1} \varphi^{\lambda_1} + (n-2)\varphi_{\lambda_1}] \omega_{\lambda_1, \ldots, \lambda_p}
\]

\[
= -2\varphi^{\lambda_1 \lambda_2} R_{\lambda_1} \omega_{\lambda_1, \ldots, \lambda_p} + 2(n-2)v_{\lambda_1, \ldots, \lambda_p}
\]

by virtue of (3.9) and (3.10) and taking account of (3.8) and (1.1) we have

\[
(6.4) \quad \varphi^{\lambda_1 \lambda_2} R_{\lambda_1 \lambda_j} \omega_{\lambda_1, \ldots, \lambda_p} = \varphi^{\lambda_1 \lambda_2} R_{\lambda_1 \lambda_j} \omega_{\lambda_1, \ldots, \lambda_p}
\]

\[
= -R_{\lambda_1 \lambda_j} \varphi_{\lambda_1} \omega_{\lambda_1, \ldots, \lambda_p}
\]

\[
+ (\varphi_{\lambda_1} g_{\lambda_1} - \varphi_{\lambda_1} g_{\lambda_1} - \varphi_{\lambda_1} g_{\lambda_1} + \varphi_{\lambda_1} g_{\lambda_1}) \omega_{\lambda_1, \ldots, \lambda_p}
\]

\[
= -2v_{\lambda_1, \ldots, \lambda_p}.
\]
Substituting (6.3) and (6.4) into (6.2) we have
\[\varphi^{i_{1} \cdots i_{s}} \nabla_{i_{1}} \cdots \nabla_{i_{s}} u_{\lambda_{1} \cdots \lambda_{s}} = \sum_{i=3}^{p} R_{\lambda_{1} \cdots \lambda_{s}}^{i_{1} \cdots i_{s}} v_{\lambda_{1} \cdots \lambda_{s}} + \sum_{i<j<l} R_{\lambda_{1} \lambda_{2} \lambda_{3}}^{i_{1} i_{2} i_{3}} v_{\lambda_{1} \lambda_{2} \lambda_{3}} + 2(n-2p+2)v_{\lambda_{1} \cdots \lambda_{s}} \]
and from (6.1) we get
\[\Delta v = 2(n+1-2p)v. \]
Hence if our space is compact, we have an integral formula
\[2(n+1-2p)(v, v) + (dv, dv) + (\delta v, \delta v) = 0. \]
Thus we have \(v=0 \) if \(2p<n+1 \) and \(v \) is harmonic if \(2p=n+1 \). Now if we define \(w \) by
\[w = i(\eta)u : \eta^{a}u_{a_{\lambda_{1} \cdots \lambda_{s}}}, \]
then we have \(\delta w = \delta i(\eta)u = -v \). Hence when \(2p=n+1 \), \(v \) being harmonic, we have \(v=0 \), too. Consequently we obtain

Lemma 6.1. Let \(u \) be a harmonic \(p \)-form, \(p \geq 2 \), in an \(n \)-dimensional compact Sasakian space. If \(p \leq (1/2)(n+1) \), then
\[i(\eta)u \quad \text{is coclosed.} \]

7. **Harmonic tensors in a compact Sasakian space.** In this section we shall prove the following

Theorem 7.1. In an \(n \)-dimensional compact Sasakian space, any harmonic \(p \)-form \(u \) is orthogonal to \(\eta \), i.e., \(i(\eta)u = 0 \), provided that \(p < (1/2)(n+1) \).

If \(p = 1 \), this is nothing but Theorem 4.1, so we shall assume \(p \geq 2 \). To prove this theorem we introduce \(w, \alpha \) and \(\beta \) by
\[w = i(\eta)u : \quad w_{\lambda_{1} \cdots \lambda_{s}} = \eta^{a}u_{a_{\lambda_{1} \cdots \lambda_{s}}}, \]
\[\alpha = \eta \wedge w : \quad \alpha_{\lambda_{1} \cdots \lambda_{s}} = \sum_{i=1}^{p} (-1)^{i-1} \eta_{i} \omega_{\lambda_{1} \cdots \lambda_{s}}^{i}, \]
\[\beta = u - \alpha : \quad u_{\lambda_{1} \cdots \lambda_{s}} = \alpha_{\lambda_{1} \cdots \lambda_{s}} + \beta_{\lambda_{1} \cdots \lambda_{s}}. \]
ON HARMONIC TENSORS IN COMPACT SASAKIAN SPACES

where \(\hat{\lambda}_i \) means that \(\lambda_i \) is omitted.

We can easily see that \(\beta \) is orthogonal to \(\eta \), \(i(\eta)\beta = 0 \), and \(\alpha \) being coclosed by Lemma 2.4 and Lemma 6.1 \(\beta \) is coclosed, too.

We shall need the following

Lemma 7.2. In an \(n \) dimensional compact Sasakian space, \(p \)-form \(\alpha = \eta \wedge i(\eta)u \) and \(\beta = u - \alpha \) are harmonic for any harmonic \(p \)-form \(u \), provided that \(p \leq (1/2)(n+1) \).

Proof. As we have \(\Delta \beta = -\Delta \alpha \), it holds that

\[
\beta^{i_1 \cdots i_p}(\Delta \beta)_{\lambda_1 \cdots \lambda_p} = -\beta^{i_1 \cdots i_p}(\Delta \alpha)_{\lambda_1 \cdots \lambda_p},
\]

On the other hand we have, taking account of (3.5), (3.6) and \(i(\eta)\beta = 0 \),

\[
\beta^{i_1 \cdots i_p} R_{i_1} \alpha_{i_1 \cdots i_p} = \beta^{i_1 \cdots i_p} R_{i_1} \left[\sum_{k \neq i} (-1)^{i-1} \eta_{i_1} w_{i_1 \cdots i_p} + (-1)^{i-1} \eta_\epsilon w_{i_1 \cdots i_p} \right]
\]

\[
= (-1)^{i-1} \beta^{i_1 \cdots i_p} R_{i_1} \eta_i w_{i_1 \cdots i_p} = 0,
\]

\[
\beta^{i_1 \cdots i_p} R_{i_1} \alpha_{i_1 \cdots i_p} = \beta^{i_1 \cdots i_p} R_{i_1} \left[\sum_{k \neq i} (-1)^{i-1} \eta_{i_1} \alpha_{i_1 \cdots i_p} + (-1)^{i-1} \eta_\epsilon \alpha_{i_1 \cdots i_p} \right]
\]

\[
+ (-1)^{i-1} \eta_\epsilon \alpha_{i_1 \cdots i_p} = 0.
\]

Thus we can get

\[
(7.1) \quad \beta^{i_1 \cdots i_p}(\Delta \beta)_{\lambda_1 \cdots \lambda_p} = -\beta^{i_1 \cdots i_p} \nabla^k \nabla_\epsilon \alpha_{\lambda_1 \cdots \lambda_p}
\]

\[
= 2 \beta^{i_1 \cdots i_p} \sum_{i=1}^p (-1)^{i+1} \varphi_{i}^\epsilon \nabla_\epsilon w_{\lambda_1 \cdots \lambda_p}.
\]

As \(w \) is closed by Lemma 2.2, we have for a fixed \(i \),

\[
\nabla_\epsilon w_{\lambda_1 \cdots \lambda_p} = \sum_{i=1}^p \nabla_{\lambda_i} w_{\lambda_1 \cdots \lambda_p},
\]

where the subscript \(\epsilon \) appears at the \(j \)-th position if \(j < i \) and at the \((j-1) \)-th position if \(j > i \). Hence if, for fixed \(i \) and \(j(i \neq j) \), we define \(A_{i_1}^{i} \) by

\[
A_{i_1}^{i} = \beta^{i_1 \cdots i_p} \varphi_{i}^\epsilon w_{\lambda_1 \cdots \lambda_p},
\]

then it follows that
Substituting the last equation into (7.1) we get \((\Delta \beta, \beta) = 0\), from which it follows that \(\beta\) and hence \(\alpha\) are harmonic. Q.E.D.

PROOF OF THEOREM 7.1. As \(\alpha = \eta \wedge \omega\) is harmonic, we have \(d \eta \wedge \omega = 0\). Hence it follows that

\[\varphi_{\lambda_1 \lambda_2 \ldots \lambda_{p+n}} - \sum_{i=1}^{p+1} \varphi_{\lambda_1 \lambda_i \ldots \lambda_{p+n}} - \sum_{j=3}^{p+1} \varphi_{\lambda_1 \lambda_j \ldots \lambda_{p+n}} + \sum_{j<k} \varphi_{\lambda_1 \lambda_j \ldots \lambda_k \ldots \lambda_{p+n}} = 0.\]

Transvecting the last equation with \(\varphi^{\lambda_1}_{\lambda_2}\) we can get \((n + 1 - 2p) \omega = 0\), so if \(n + 1 > 2p\), we have \(\omega = 0\). Q.E.D.

In the case when \(2p = n + 1\), we have from Lemma 2.2, 6.1 and 7.2 the following

THEOREM 7.3. In an \(n\) dimensional compact Sasakian space, if \(u\) is a harmonic \((1/2)(n + 1)\)-form, then \(i(\eta)u\) and \(\eta \wedge i(\eta)u\) are harmonic.

8. **An operator** \(\Phi\). In an \(n\) dimensional compact Sasakian space we shall introduce an operator

\[\Phi : u \longrightarrow \Phi u = u\]

which is defined by

\[\Phi u : u_{\lambda_1 \ldots \lambda_p} = \sum_{i=1}^{p} \varphi_{\lambda_i} u_{\lambda_1 \ldots \lambda_{i-1} \lambda_{i+1} \ldots \lambda_p},\]

where \(u\) is a \(p\)-form and the subscript \(\alpha\) appears at the \(i\)-th position.

The purpose of this section is to prove the following

THEOREM 8.1. In an \(n\) dimensional compact Sasakian space, if \(u\) is a harmonic \(p\)-form and \(p < (1/2)(n + 1)\), then \(\Phi u\) is harmonic too.
PROOF. If \(p = 1 \), this is nothing but Theorem 4.2, so we shall assume \(p \geq 2 \). Let \(u \) be harmonic and assume that \(p < (1/2)(n+1) \), then we have \(\Delta u = 0 \) and \(i(\eta)u = 0 \).

We shall show in the following that \((\Delta u)^{\lambda_1, \ldots, \lambda_p} u^{\lambda_1, \ldots, \lambda_p} = 0\). At first on taking account of \(\varphi_\alpha = \nabla_\alpha \eta^*, (3.2), (3.4) \) and \(i(\eta)u = 0 \) we can get easily

\[
\nabla^\varepsilon \nabla^*_\varepsilon u_{\lambda_1, \ldots, \lambda_p} = \sum_{i=1}^{p} \varphi_{\lambda_i}^* \nabla^\varepsilon \nabla^*_\varepsilon u_{\lambda_1, \ldots, \lambda_p}
\]

and by virtue of \(\Delta u = 0 \) we have

\[
\nabla^\varepsilon \nabla^*_\varepsilon u_{\lambda_1, \ldots, \lambda_p} = \sum_{i=1}^{p} \varphi_{\lambda_i}^* \left[R_{\alpha}^\sigma u_{\lambda_1, \ldots, \lambda_p} + \sum_{j=i}^{p} R_{\lambda_j}^\sigma u_{\lambda_1, \ldots, \lambda_p} \right]
\]

\[
+ \sum_{k<i} R_{\lambda_i \lambda_k}^{\rho \sigma} u_{\lambda_1, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_p} + \sum_{k>i} R_{\lambda_i \lambda_k}^{\rho \sigma} u_{\lambda_1, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_p} + \sum_{k<i, j>i} R_{\lambda_i \lambda_j}^{\rho \sigma} u_{\lambda_1, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_p}.
\]

If we take account of (3.10), then the last equation is written as the following form,

\[
(8.1) \quad \nabla^\varepsilon \nabla^*_\varepsilon u_{\lambda_1, \ldots, \lambda_p} - \sum_{i=1}^{p} R_{\lambda_i}^\sigma u_{\lambda_1, \ldots, \lambda_p} = \sum_{i=1}^{p} T_{\lambda_i}^{(i)} u_{\lambda_1, \ldots, \lambda_p},
\]

where we have put

\[
T_{\lambda_i}^{(i)} = - \sum_{k<i} \varphi_{\lambda_i}^* R_{\lambda_k \lambda_\rho} u_{\lambda_1, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_p} + \sum_{k=i}^{p} \varphi_{\lambda_i}^* R_{\lambda_k}^{\rho \sigma} u_{\lambda_1, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_p} + \sum_{k<i, j>i} \varphi_{\lambda_i}^* R_{\lambda_i \lambda_j}^{\rho \sigma} u_{\lambda_1, \ldots, \lambda_{k-1}, \lambda_{k+1}, \ldots, \lambda_p}.
\]

where scripts \(\rho, \alpha \) and \(\sigma \) of \(u \) are at the \(k \)-th, \(i \)-th and \(j \)-th positions respectively.

Next we shall compute \(T_{\lambda_i}^{(i)} u_{\lambda_1, \ldots, \lambda_p} \). By virtue of the first Bianchi's identity, (3.8) and the skew-symmetric property of \(u \) and \(\nabla u \), we have

\[
\varphi_{\lambda_i}^* R_{\lambda_\rho \lambda_\sigma} u_{\lambda_1, \ldots, \lambda_{\rho-1}, \lambda_{\sigma+1}, \ldots, \lambda_{\lambda_1, \ldots, \lambda_p}}
\]

\[
= \varphi_{\lambda_i}^* (- R_{\lambda_\sigma \lambda_\rho} - R_{\lambda_\rho \lambda_\sigma}) u_{\lambda_1, \ldots, \lambda_{\rho-1}, \lambda_{\sigma+1}, \ldots, \lambda_{\lambda_1, \ldots, \lambda_p}}
\]

\[
= -2 \varphi_{\lambda_i}^* R_{\rho \sigma} u_{\lambda_1, \ldots, \lambda_{\rho-1}, \lambda_{\sigma+1}, \ldots, \lambda_{\lambda_1, \ldots, \lambda_p}}
\]

\[
= -2 [R_{\lambda_\rho \lambda_\sigma} \varphi_{\lambda_i}^* + \varphi_{\lambda_\rho} \varphi_{\lambda_\sigma} - \varphi_{\lambda_\rho} \varphi_{\lambda_\sigma} - \varphi_{\lambda_\rho} \varphi_{\lambda_\sigma} + \varphi_{\lambda_\rho} \varphi_{\lambda_\sigma}] u_{\lambda_1, \ldots, \lambda_{\rho-1}, \lambda_{\sigma+1}, \ldots, \lambda_{\lambda_1, \ldots, \lambda_p}}
\]

\[
= \varphi_{\lambda_i}^* \varphi_{\lambda_\rho} \varphi_{\lambda_\sigma} u_{\lambda_1, \ldots, \lambda_{\rho-1}, \lambda_{\sigma+1}, \ldots, \lambda_{\lambda_1, \ldots, \lambda_p}}
\]
Thus we can get

\[
\sum_{i=1}^{p} T^{\lambda_1\ldots\lambda_p}_{\lambda_1\ldots\lambda_p} = -\sum_{i} \sum_{k \neq i} R_{\lambda_i \lambda_i} \varphi_{\lambda_i} u_{\lambda_i} \ldots u_{\lambda_k} u^{\lambda_1\ldots\lambda_k} + \sum_{i} \sum_{k < j} R_{\lambda_i \lambda_j} \varphi_{\lambda_i} u_{\lambda_i} \ldots u_{\lambda_j} u^{\lambda_1\ldots\lambda_k} = 0 \]

Hence, from (8.1) and (8.2), we have \((\Delta u)^{\lambda_1\ldots\lambda_p}_{\lambda_1\ldots\lambda_p} = 0\) and this completes the proof. \(Q.E.D.\)

Let \(u\) be a harmonic \(p\)-form, \(p < (1/2)(n+1)\), in an \(n\) dimensional compact Sasakian space, then we know that \(\Phi u, \Phi^2 u, \ldots\) are harmonic \(p\)-forms and hence the following \(p\) \(p\)-forms

\[
\sum_{i=1}^{p} \varphi_{\lambda_i} u_{\lambda_i} \ldots u_{\lambda_k} + \sum_{j=1}^{p} \varphi_{\lambda_j} \varphi_{\lambda_j} u_{\lambda_j} \ldots u_{\lambda_k} + \ldots + \varphi_{\lambda_k} \varphi_{\lambda_k} \ldots u_{\lambda_k} = 0
\]

are harmonic.

BIBLIOGRAPHY

OCHANOMIZU UNIVERSITY, TOKYO.