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In this paper, we shall investigate some relations between the class number,

the absolute ideal class group of a finite algebraic number field and that of its

Galois extension of finite degree.

It is well known that the class number of the cyclotomic field is divisible

by the class number of its subfield. In §1 we shall show that the class

number of a finite algebraic number field is a divisor of the class number of

its finite extension if the class number of the finite algebraic number field is

prime to the degree of the extension field. In §2 we shall give main results

of this paper which contain, as a special case, theorems of H. Weber, K.

Iwasawa and others. In §3 we shall give a note on prime factors of the

class number of the splitting field of a binomial equation with respect to the

rational number field.
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Throughout this paper the following notations will be used.

fixed rational prime numbers. p : any rational prime number.

k<

the smallest positive integer/ such that q\pf—l.

the rational number field.

the cyclotomic field generated by the primitive ln+1-th root of unity

over P.

the ground field which is a finite algebraic number field.

the class number of k. hk p : the p-paxt of hk.

the least number of generators of the ^-class group of k.

k

hk

[K: k]: the relative degree of an extension K/k.

the intermediate field of k and the absolute class field of k such that

[*<») '• *] = hk,P>
G(K/k): the Galois group of a Galois extension K/k.

1. Let p be any prime number. The Sylow ^-subgroup of the absolute

ideal class group of k will be called the p-clαss group of k. Let K/k be a

Galois extension with the Galois group 9 = G(K/k). The Galois group g acts

on the ideal group of K and the ^>-class group of K in an obvious way.

They may be considered as 9-groups.

Let id be the subgroup of all ideals α in the ideal group 2) of K such
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that for an integer n prime to p, dn is a principal ideal. Then the factor

group 2)/9£ is 9-isomorphic with the ^>-class group of K. By class field theory,

the class field K^ corresponds to the ideal group 5/i and the relative degree

of the extension K^/K is hKiV. As K is a Galois extension over k, K^ is

also a Galois extension over k. Therefore the Galois group G(K^/K) may be

considered as a g-group. By Artin's reciprocity law, G(KW/K) is 9-isomorphic

with the factor group ®/9£ and so the ^>-class group of K.
Now, the subgroup of all ideal classes in the ^>-class group of K which

are left invariant under g will be called the ambiguous p-class group of K
with respect to k whose order will be denoted by av(K/k).

We now prove the following

PROPOSITION 1. Let K be a finite extension of degree m over k and p
be any prime number prime to m. If the class number of k is divisible by
pa, then the class number of K is divisible by pa. Furthermore, the p-class
group of k is isomorphic with a subgroup of the p-class group of K. In
particular, if hk is prime to m, then hκ is divisible by hk.

PROOF. Let (£# and (£fc be the ^-class groups of K and k respectively.
Let C be any ideal class in (&k and let α be an ideal in C different from a
princical ideal. Suppose that α is principal in K. Then NE/ka = am is principal
in k which contradicts the fact that α is contained in C. Therefore, no non-
principal ideal class in (£fc becomes a principal ideal class in (&κ and hence,
the mapping φ : (&k —> (&κ induced by the injection of the ideal group of k
into the ideal group of K is an isomorphism. The class number of K is
therefore divisible by pa.

Applying this to k = Pw, we have

COROLLARY. Let K be any finite algebraic number field of degree ?n
over P(o), where m is prime to I. If the class number of K is not divisible
by I, then I is a regular prime, that is, the class number of P(0> is prime
to I

We now quote the following known lemma which shall be used later, (cf. [1])

LEMMA. Let K/k be a finite extension. If there exists no obeli an
unramified extension of k in K, then hκ is divisible by hk.

Let K be a Galois extension of degree m over k and p be any prime

number prime to m. Then the Galois group G(K^/k) splits over the Galois
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group G(K(P)/K). (cf. [2]) Hence we can find an intermediate field F of k
and KCpy such that [F: k] = hκ<v, Kw = KF and KΓιF= k. Now suppose that
the />-class group of K coincides with the ambiguous ^>-class group of K with
respect to k. Then, from Artin's reciprocity law, it can easily be seen that
the Galois group G(K^/K) is contained in the center of G{K^/k). Therefore, it
follows that the extension F/k is a Galois extension and so an abelian extension.
As the ramification exponent of any prime divisor of K^ is a divisor of m
and so prime to p, F is an unramified extension over k and hence, is contained
in &(p). We see further that F=k^ holds by Proposition 1 the ^-class group
of K is isomorphic with that of k. If, in particular, hκ is prime to m, it is
easy to show that the absolute ideal class group of K is isomorphic with a
subgroup of that of k. Assume further that there exists no abelian unramified
extension of k in K. Then from Lemma, it follows that the absolute ideal
class group of K is isomorphic with that of k.

Conversely, assume that the />-class group of K is isomorphic with that
of k. It is then easily verified that the centralizer of G{K^/K) in G(K^/k)
is equal to G(K^/k). Therefore, the ^>-class group of K coincides with the
ambiguous ^>-class group of K with respect to k.

Thus the following proposition is proved:

PROPOSITION 2. Let K be a Galois extension of degree m over k and
p be a prime number prime to m. Then the p-class group of K is isomorphic
with that of k if and only if the Galois group G(K/k) leaves the p-class
group of K fixed elementvυise.

In particular, if, further, there exists no abelian unramified extension
of k in K and the class number of K is prime to m, then the absolute ideal
class group of K is isomorphic with that of k if and only if the absolute
ideal class group of K is left invariant elementwise under the Galois group
G(K/k).

In the case K/k is cyclic, the result of Proposition 2 can be obtained more
simply in the following manner: the number a of ambiguous classes of K/k
is given by the well-known formula:

**- [K:k](6:N(θ))

where £ stands for units in k, θ for elments in K whose norms N(θ) = NK/hβ

are units in k and e$ is the ramification exponent of any prime divisor p of

k and the product J[ e$ is taken over all prime divisors of k including infinite
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prime divisors.
As p is prime to m, we can see that the p-pa.rt of α coincides with the

p-pa.rt of hk and that the />-class group of K is isomorphic with that of k if
and only if the />-part of hκ is equal to the p-part of hk. Furthermore, the
ambiguous ^>-class group of K with respect to k is the Sylow ^-subgroup of
the ambiguous class group of K with respect to k, i.e. the subgroup of all
ideal classes in the absolute ideal class group of K which are left invariant
under the Galois group of K/k. The result of Proposition 2 then follows
immediately from these facts.

2. As a partial converse to Proposition 1 we have the following

THEOREM 1. Let K be α Galois extension of degree m over k and p
be any prime number prime to m\ let qu ,qr be all the different prime
factors of m and let f be the minimal number of all fQitP. If VPtK <f,
then the p-class group of K is isomorphic with that of k.

PROOF. If ^,^==0, that is, hKtP=l, then hKp—\ by Proposition 1. Hence

this theorem is true in this case. Now, suppose VPtK ^ 1. Since m and p are

relatively prime, the Galois group G(K(P)/k) splits over the Galois group

G{K^/K). Hence we can find an intermediate field F of k and K^ such

that [F: k] = hEtP, K^ = KF and KnF=k. Then each element of the Galois

group G(K(P)/F) induces an automorphism of G{K^/K). It is known that

the order of the group of automorphisms of G{K^/K) divides

v(p) = p^-»\f-\){f-p)... (/?- f )

where VpK — v and n denotes the exponent of p in hKyP. (cf. [2]) m is relatively
prime to η(p) under the assumption VPjK <f Therefore, these m automor-
phisms of G(K^/K) coincide with identity. We see then that the extension
F/k is a Galois extension and so an abelian extension of degree hKiP. As the
ramification exponent of any prime divisor of K^ is a divisor of m and so
prime to p, F is an unramified extension over k. We see further F = k^
from Proposition 1. This completes our proof.

REMARK. This theorem is also valid under the assumption hκ>p < pf

instead of the assumption Vp,κ <f
Particularly, as to an abelian extension we have the following

COROLLARY, i) Let K be an abelian extension of degree m over k,
m = qp... q«r be tfe decomposition of m as a product of primes and Lt be
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a subfield of K such that [Lt: k] = qf\ If VPtK <fQi)P, then the p-class group
of Li is isomorphic with that of k.

ii) Assume further that p is any prime number such that p φ 0, 1
mod qt for all i and that the extension K^/K is cyclic. Then the p-class
group of any subfield of K is isomorphic with that of k.

This follows immediately from Proposition 1 and Theorem 1.
Let K/k be again a Galois extension of finite degree. When a subgroup

of an ideal class group of K is left invariant under any element of G(K/k),
the subgroup will be called a G(K/ k)-invariant subgroup (of the ideal class
group of K).

We shall now prove a complementary theorem of Theorem 1 as follows:

THEOREM 2. Let K be a Galois extension of degree m over k, qu

z —1, ,r be all the different prime factors of m and p be any prime
number such that />Φ0, 1 modqt for all i and let f be the minimal number
of all fQιyV. If hκ,vΦ\ and the p-class group of K has a G(K/k)-invariant
subgroup of index pa (1 :g a <f) in it, then the class number of k is divisible
by p\

PROOF. In the case m is even, there exists no prime number p which
satisfies the condition p Φ 0, 1 mod 2. Therefore we assume that m is odd.
Let E be the intermediate field of K and K^ corresponding to the G(K/k)~
invariant subgroup above. E/k is then a Galois extension of degree mpa

over k. Putting E in the place of the field K^ in the proof of Theorem 1,
the remaining part can then be proved in the same way as in the proof of
Theorem 1.

REMARK. When the Galois group GiK^/k) is supersolvable, the >̂-class
group of K has always a G(K/£)-invariant subgroup of index pa in it. (cf. [2])

We now prove the following

THEOREM 3. Let Kbe a Galois extension over k of degree pa. If ap(K/k)
= 1, then hκ is prime to p. If, further, there exists no abelian unramified
extension of k in K, then hκ and hk are both prime to p.

PROOF. Suppose that hκ is divisible by p. Then the Galois group
G(K^/K) is not trivial and the Galois group G(K^/k) is a ^>-group. Put
© = G(K^/k) and $ — G(KW/K) respectively. Since the group ® is super-
solvable and ξ> is a normal subgroup of @, we can find a principal chain
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through § such that

in which every ©^/©i, ©*/«£) and £)/©*+1 are o£ order />. As the group ®s_j

is a normal subgroup of order p in ©, ®s_χ is contained in the center of ©.

(cf. [2]) From Artin's reciprocity law, we see that the group ®s^1 corresponds

to a subgroup (£ of the ^>-class group of K and, further, the subgroup (£ is

contained in the ambiguous p-class group of K with respect to k; this implies

av(K/k) Φ1 which contradicts the assumption. Hence hκ is prime to p.

Furthermore, it follows from Lemma that the latter part of this theorem is

also true.

Concerning subfields of cyclotomic fields P<n) we have

COROLLARY. Let I be any prime number and K be any sub field of P ( w)

such that [K: P] is a power of 2. Then the class number of K is odd. If

I is of the form 2rp*-t-l, then the class number of P«» is prime to p if and

only if the class number of K is prime to p.

PROOF. Applying (*) in the remark of Proposition 2 to the extension

K/P, we have a=l and hence, it follows from Theorem 3 that the first part

of this corollary is true.

On the other hand, applying (V) to the extension P^/K, we have a~hκ.

If hκ is prime to p, then we have Λ 3 , (P ( O )/^ ') = 1. Therefore the class number

of P(o) is prime to p, as we see from Theorem 3. The Only if part follows

immediately from Lemma.

REMARK. The following results are known:

The class number of a quadratic field P(V p*) is odd, where />* = (—1) 2 p.

In the case where I = 2, the class number of P ( 0 ) is odd. In the case where

Z = 2 r + 1 , the class number of the maximal real subfield of P ( o ) is odd. (cf. [4],

[5], [6])

When ap(K/k) Φ 1 we have the following theorem which is a generalization

of a theorem of K. Iwasawa. (cf. [5])

THEOREM 4. Let Kbe a Galois extension of degree pa over k. Assume

that there exists exactly one prime divisor of k which is ramified for the

extension K/k. If the class number of K is divisible by p, then the class

number of k is divisible by p.
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PROOF. Let p be a prime divisor of K^ dividing the ramified prime

divisor of k and T% be the inertia group of p in K^. Then there exists a

maximal normal subgroup ξ) of G(K^/k) containing Tφ, as the Galois group

G(K(p )/k) is a />-group. It is easy to see that all the inertia groups of the

other prime divisors of K^ are also contained in the subgroup ξ>. Now, let

F be the intermediate field of k and K ( p ) corresponding to the subgroup ξ).

F is then an abelian unramified extension of degree p over k and hence, is

contained in k^. Therefore the class number of k is divisible by p.

REMARK. When K/k is cyclic and there exists exactly one ramified prime

divisor of k which is, further, fully ramified for K/k, this theorem is proved

by K. Iwasawa [5].

PROPOSITION 3. Let K be a Galois extension of degree m over k and p

be a prime factor ofm. Assume that there exists a prime divisor p ofk which

is fully ramified by the extension K/k and no ramified prime divisor other

than p. Then the p-class group of K is isomorphic -with that ofk if and only

if the Galois group G(K/k) leaves the p-class group of K fixed elementwise.

PROOF. We first prove the 'only if part. From the assumptions it follows

that KΠk^ = k and Kk^ = K^. Therefore the Galois group G(K^/k) is

the direct product of G(K^/K) and G(K^/kipy). This proves what we

wanted. We prove the converse. Let $ be a prime divisor of p in iC (p) and

Tφ be the inertia field of 5)3 in K^. It can then be readily verified that

[X(p): Tφ] = m, K(p) = KT% and KΠT% = k. As we have seen, it is clear that

T%/k is normal and hence, abelian. Furthermore, we have T^ = k^p-> by Lemma.

This proposition is thus completely proved.

Combining Proposition 2 and Proposition 3 we obtain

PROPOSITION 4. Let K be a Galois extension over k and assume that

there exists exactly one ramified prime divisor of k -which is further fully

ramified by the extension K/k. Then the absolute ideal class group of K is

isomorphic with that of k if and only if the Galois group G(K/k) leaves the

absolute ideal class group of K fixed elementwise.

3. We consider the case where the ground field is the rational number

field P.

We shall consider the splitting field Ln>a of a binomial equation
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with respect to P, where I is an odd prime number.
Let ql9 , qr be all the different odd prime factors of I— 1. In the case

L n α = P ( 0 ) , we let p be any prime number such that ^ Φ θ , l mod qt for all i.
In the other cases, Ln>a Φ P ( 0), we let p be any prime number such that p Ψ 0,
1 mod I and mod qt for all z\ Furthermore, let f be the minimal number of
sΆ fQitP and let K be a subfield of P ( 0) such that [K:P] is the highest power
of 2 dividing / — I . iC is also a subfield of Ln,a. Suppose that hκ is prime
to p. Applying Theorem 1 to the extension Ln>a/K, we then see that the
class number of Ln>a is prime to p or divisible by pf.

Let P(ζ) be the maximal real subfield of P(w). If / is of the form 8m +5,
then the real quadratic field P(Λ/~Γ~) is a subfield of P(n) and the relative
degree of the extension P+n)/^(VT") is odd. If the class number of P(V / )
is prime to />, it follows from Theorem 1 that the class number of P+n) is
prime to p or divisible by pf. With these notations, we summarize our results
in the following

THEOREM 5. i) If the class number of K is prime to p, then the class
number of Ln>a is prime to p or divisible by pf.

ii) The case I is of the form Am + 3. Then the class number of P^n) is
prime to p or divisible by pf.

iii) The case I is of the for?n 8w + 5. If the class number of the
quadratic field P(V I ) is prime to p, then that of P£n) is prime to p or
divisible by pf.

REMARK. This result is a generalization of Theorem 3 in my previous
paper [7].

From Proposition 1 and Theorem 1 we obtain immediately the following

PROPOSITION 5. Let E be an abelian extension of degree m over P, Lt

be a subfield of E such that [Lt: P] is the qt-part ofm and f be the maximal
number of all fQitP. If the class number of E is divisible by p, then that of
E is at least divisible by pf.
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