Tôhoku Math. Journ. Vol. 18, No. 4, 1966

ON A CLASS OF OPERATORS

VASILE ISTRĂȚESCU, TEISHIRÔ SAITÔ AND TAKASHI YOSHINO

(Received September 20, 1966)

1. We consider bounded linear operators on a Hilbert space H. Denote by $\sigma(T)$ the spectrum, by $\sigma_p(T)$ the point spectrum and by $\pi(T)$ the approximate point spectrum of an operator T. As in [3], an operator T is said to be of class (N) in case $||T^2x|| \ge ||Tx||^2$ for all unit vectors $x \in H$. A. Wintner [8] calls an operator T normaloid if $||T|| = \sup\{|(Tx, x)| : x \in H, ||x|| = 1\}$. It is known that T is normaloid if and only if $||T|| = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ or equivalently, $||T^n|| = ||T||^n$ for $n = 1, 2, \cdots$. If T is a hyponormal operator, that is $||Tx|| \ge ||T^*x||$ for all $x \in H$, then T is of class (N). In fact, if Tis a hyponormal operator, we have

$$||Tx||^{2} = (T^{*}Tx, x) \leq ||T^{*}(Tx)|| \leq ||T^{2}x||,$$

for any unit vector $x \in H$.

2. In this section we prove some theorems on an operator of class (N). The following theorem is suggested by [6] and [7].

THEOREM 1. For an operator T of class (N),

(i) T is normaloid,

and

(ii) T^{-1} is also of class (N) if T is invertible.

PROOF. To prove (i), it is sufficient to show that $||T^nx|| \ge ||Tx||^n$ for each unit vector $x \in H$ and $n=1, 2, \cdots$. If $n \le 2$, the inequality is obvious by the definition of class (N). Suppose that $||T^kx|| \ge ||Tx||^k$ for $k=1, 2, \cdots, n$ and $x \in H$, ||x||=1. Then

$$\|T^{n+1}x\| = \|Tx\| \left\| T^n \frac{Tx}{\|Tx\|} \right\| \ge \|Tx\| \left\| T \frac{Tx}{\|Tx\|} \right\|^n$$
$$= \|Tx\|^{1-n} \|T^2x\|^n \ge \|Tx\|^{1-n} \|Tx\|^{2n} = \|Tx\|^{n+1}$$

for $x \in H$, ||x|| = 1 and the induction is completed.

To prove (ii), let $y \in H$ be an arbitrary unit vector. Then there is an $x \in H$ such as $y=T^2x$. As T is of class (N), we have

$$\|T^{-1}y\|^{2} = \|Tx\|^{2} = \|x\|^{2} \left\|T\frac{x}{\|x\|}\right\|^{2} \leq \|x\|^{2} \left\|T^{2}\frac{x}{\|x\|}\right\|$$
$$= \|x\|\|T^{2}x\| = \|x\|\|y\| = \|x\| = \|T^{-2}y\|.$$

and T^{-1} is of class (N).

As an immediate consequence of Theorem 1 we have the following corollary.

COROLLARY. If T is an operator of class (N) and $\sigma(T)$ lies on the unit circle, T is a unitary operator.

In the case of hyponormal operator this is nothing but a reshlt of [6] and [7].

PROOF. If $\sigma(T)$ lies on the unit circle, then $||T|| = ||T^{-1}|| = 1$ by Theorem 1. Hence we have

$$\begin{split} \|x\| &\ge \|Tx\| = \|T^{-1}x\| \left\| T^2 \frac{T^{-1}x}{\|T^{-1}x\|} \right\| &\ge \|T^{-1}x\| \left\| T \frac{T^{-1}x}{\|T^{-1}x\|} \right\|^2 \\ &= \frac{\|x\|^2}{\|T^{-1}x\|} &\ge \|x\| \;, \end{split}$$

and ||Tx|| = ||x|| for $x \in H$ and T is a unitary operator.

In [1] T. Andô has proved that every completely continuous hyponormal operator is necessarily normal. The following theorem is a slight generalization of it.

THEOREM 2. Let T be an operator of class (N) such that $T^{*p_1}T^{q_1}\cdots T^{*p_m}T^{q_m}$ is completely continuous for some non-negative integers $p_1, q_1, \cdots, p_m, q_m$. Then T is necessarily a normal operator.

To prove the theorem, we shall need some preliminary lemmas. The following lemma is well-known (see [5]), but we cite here for convenience.

LEMMA 1. For any operator T, $\sigma(T) \cap \{\lambda : |\lambda| = ||T||\} \subset \pi(T)$, and if $\mu \in \sigma(T) \cap \{\lambda : |\lambda| = ||T||\}$, $Tx_n - \mu x_n \to 0$ $(n \to \infty)$ is equivalent to $T^*x_n - \overline{\mu}x_n \to 0$ $(n \to \infty)$ for any sequence $\{x_n\}$ of unit vectors in H.

412 V. ISTRĂȚESCU, T. SAITÔ AND T. YOSHINO

The essential part of our proof is the following lemma.

LEMMA 2. Let T be an operator such that $T^{*p_1}T^{q_1}\cdots T^{*p_m}T^{q_m}$ is completely continuous for some non-negative integers $p_1, q_1, \cdots, p_m, q_m$. Then the condition $\mu \in \sigma(T) \cap \{\lambda : |\lambda| = ||T||\}$ implies $\mu \in \sigma_p(T)$ and $\overline{\mu} \in \sigma_p(T^*)$.

PROOF. To simplify the notations, we shall treat the case where $T^{*p}T^q$ is completely continuous for some non-negative integers p and q. Since $\mu \in \sigma(T) \cap \{\lambda : |\lambda| = \|T\|\}$, there is a sequence $\{x_n\}$ of unit vectors in H such as $\|Tx_n - \mu x_n\| \to 0$ and $\|T^{*p}T^q x_n - \overline{\mu}^p \mu^q x_n\| \to 0$ $(n \to \infty)$ by Lemma 1. As $T^{*p}T^q$ is completely continuous, we may assume that (if necessary, by choosing a suitable subsequence) the sequence $\{T^{*p}T^q x_n\}$ converges to a certain vector $x \in H$. Let x_0 be $x/\overline{\mu}^p \mu^q$, then $\|x_n - x_0\| \to 0$ $(n \to \infty)$. Therefore $Tx_0 = \mu x_0$ and so $T^*x_0 = \overline{\mu}x_0$ by Lemma 1, i.e., $\mu \in \sigma_p(T)$ and $\overline{\mu} \in \sigma_p(T^*)$.

PROOF OF THEOREM 2. Throughout the proof, $\mathfrak{N}_{T}(\lambda)$ means the λ -th proper subspace of an operator T, that is $\mathfrak{N}_{T}(\lambda) = \{x \in H : Tx = \lambda x\}$. At first, we notice that there is at least one $\lambda \in \sigma_{p}(T)$ such as $\mathfrak{N}_{T}(\lambda) \cap \mathfrak{N}_{T^{*}}(\overline{\lambda}) \neq (0)$. In fact, since T is normaloid by Theorem 1, there is a $\lambda_{0} \in \sigma(T)$ such as $|\lambda_{0}| = ||T||$. Thus $\lambda_{0} \in \sigma_{p}(T)$ and $\overline{\lambda}_{0} \in \sigma_{p}(T^{*})$ by Lemma 2 and $\mathfrak{N}_{T}(\lambda_{0}) \cap \mathfrak{N}_{T^{*}}(\overline{\lambda}_{0}) \neq (0)$ by the proof of Lemma 2. Now it is easy to see that $\{\mathfrak{N}_{T}(\lambda) \cap \mathfrak{N}_{T^{*}}(\overline{\lambda}) : \lambda \in \sigma_{p}(T)\}$ is a mutually orthogonal family. Let H_{0} be $\sum_{\lambda \in \sigma_{p}(T)} \bigoplus (\mathfrak{N}_{T}(\lambda) \cap \mathfrak{N}_{T^{*}}(\overline{\lambda}))$, then H_{0} reduces T and the restriction of T onto H_{0} is normal. To complete the proof of the theorem, we have only to prove that the restriction T_{1} of T onto $H_{1}=H_{0}^{\perp}$ is 0. Suppose the contrary. Then T_{1} is a non-zero operator of class (N) and $T^{*p}_{1}T_{1}^{q}$ is also completely continuous. By Theorem 1, T_{1} is normaloid and there exists a $\mu \in \sigma(T_{1})$ such as $|\mu| = ||T_{1}||$. Hence $T_{1}x = \mu x$ for some non-zero vector $x \in H_{1}$ and then $T_{1}^{*}x = \overline{\mu}x$ by the proof of Lemma 2. Therefore $\mathfrak{N}_{T}(\mu) \cap \mathfrak{N}_{T^{*}}(\overline{\mu}) \neq (0)$ and this is orthogonal to H_{0} . This is a contradiction.

References

- [1] T. ANDÔ, On hyponormal operators, Proc. Amer. Math. Soc., 14(1963), 290-291.
- [2] S. K. BERBERIAN, Introduction to Hilbert space, Oxford Univ. Press, New York, 1961.
- [3] V. ISTRATESCU, On some hyponormal operators, to appear in Pacific Journ. Math.
- [4] G. H. ORLAND, On a class of operators, Proc. Amer. Math. Soc., 15(1964), 75-79.
- [5] M. SCHREIBER, On the spectrum of a contraction, Proc. Amer. Math. Soc., 12(1961), 709-713.
- [6] J. G. STAMPFLI, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117(1965), 469-476.

- [7] T. YOSHINO, On the spectrum of a hyponormal operator, Tôhoku Math. Journ., 17 (1965), 305-309.
- [8] A. WINTNER, Zur Theorie der beschrankten Bilineärformen, Math. Zeit., 30(1929), 228-282.

Institute of Mathematics, Rumanian Academy, and Tôhoku University.