ON C-HARMONIC FORMS IN A COMPACT SASAKIAN SPACE

Yôsuke Ogawa

(Received March 6, 1967)

Introduction. It is well known that in a $2 m$-dimensional compact Kählerian space, any harmonic p-form $(p \leqq m)$ can be written uniquely in terms of effective harmonic forms and the fundamental 2 -form of the space. When we consider the analogy in a compact Sasakian space, it is insignificant as far as we are concerned about harmonic forms, because any harmonic form is effective. S. Tachibana [1] has introduced the notion of C-harmonic forms in a compact Sasakian space, which is wider than that of harmonic forms, and succeeded to prove the analogy of the decomposition theorem for C-harmonic forms. In this paper we try to make the definition of C-harmonic forms a little looser than that of Tachibana's original one. On the other hand, S . Tanno has drawn the relation of Betti numbers between the base space and the bundle space in the fibering of a regular K-contact Riemannian space. It is shown that a p-form $(p \leqq m)$ on the bundle space is C-harmonic if and only if it is induced from a harmonic p-form on the base space. Thus we can obtain the theorem of Tanno again. Lastly we investigate the C^{*}-harmonic forms which are dual to the C-harmonic forms, and in connection with them, we observe Killing forms and give one of its example on a Sasakian space.

Manifolds are assumed to be connected and the differentiable structures on them are assumed to be of class C^{∞}.

I should like to express my hearty gratitude to Prof. S. Tachibana for his kind suggestions and many valuable advices.

Contentes are as follows:

1. Preliminaries
2. C-harmonic forms
3. Decomposition theorem
4. Regular Sasakian structure
5. C^{*}-harmonic forms
6. Preliminaries. An n-dimensional Riemannian space M^{n} is called a Sasakian space if it admits a unit Killing vector field η^{λ} such that

$$
\begin{equation*}
\nabla_{\lambda} \nabla_{\mu} \boldsymbol{\eta}_{\nu}=\boldsymbol{\eta}_{\mu} g_{\lambda_{\nu}}-\boldsymbol{\eta}_{\nu} g_{\lambda_{\mu}}, \tag{1.1}
\end{equation*}
$$

where $g_{\lambda \mu}$ is the metric tensor of M^{n}. Then n is necessarily odd ($=2 m+1$) and M^{n} is orientable. With respect to a local coordinates system $\left\{x^{\lambda}\right\}, \lambda=1$, \cdots, n, if we define a 2 -form $\boldsymbol{\varphi}=(1 / 2) \boldsymbol{\varphi}_{\lambda_{\mu}} d x^{\lambda} \wedge d x^{\mu}$ by

$$
\boldsymbol{\varphi}_{\lambda \mu}=\nabla_{\lambda} \boldsymbol{\eta}_{\mu},
$$

then we have $d \eta=2 \varphi$ and it holds

$$
\begin{equation*}
\nabla_{\lambda} \boldsymbol{\varphi}_{\mu \nu}=\eta_{\mu} g_{\lambda \nu}-\eta_{\nu} g_{\lambda \mu} . \tag{1.2}
\end{equation*}
$$

On a Sasakian space, the following identities are well known (cf. [2]):

$$
\begin{equation*}
\nabla^{\lambda} \boldsymbol{\varphi}_{\lambda \mu}=-(n-1) \boldsymbol{\eta}_{\mu} \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
R_{\lambda_{\mu \nu \omega}} \eta^{\omega}=\eta_{\lambda} g_{\mu \nu}-\eta_{\mu} g_{\lambda \nu}, \tag{1.4}
\end{equation*}
$$

$$
\begin{gather*}
\boldsymbol{\varphi}_{\lambda}^{\varepsilon} R_{\varepsilon \mu \nu \omega}=\boldsymbol{\varphi}_{\mu}^{\varepsilon} R_{\varepsilon \lambda \nu \omega}+\boldsymbol{\varphi}_{\nu \lambda} g_{\omega \mu}-\boldsymbol{\varphi}_{\nu \mu} g_{\omega \lambda}+\boldsymbol{\varphi}_{\omega \mu} g_{\nu \lambda}-\boldsymbol{\varphi}_{\omega \lambda} g_{\nu \mu}, \tag{1.5}\\
R_{\lambda \mu}{ }^{\rho \sigma} \boldsymbol{\varphi}_{\rho \alpha} \boldsymbol{\varphi}_{\sigma \beta}=R_{\lambda \mu \alpha \beta}+\boldsymbol{\varphi}_{\lambda \beta} \boldsymbol{\varphi}_{\mu \alpha}-\boldsymbol{\varphi}_{\lambda \alpha} \boldsymbol{\varphi}_{\mu \beta}+g_{\lambda \alpha} g_{\mu \beta}-g_{\lambda \beta} g_{\mu \alpha} \tag{1.6}
\end{gather*}
$$

$$
\begin{equation*}
(1 / 2) \varphi^{\alpha \beta} R_{\alpha \beta \lambda \mu}=R_{\lambda_{\varepsilon}} \Phi_{\mu}^{\varepsilon}+(n-2) \varphi_{\lambda \mu}, \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
R_{\mu \varepsilon} \varphi_{\lambda}{ }^{\varepsilon}=-R_{\lambda \varepsilon} \Phi_{\mu}{ }^{\varepsilon}, \quad R_{\mu}^{\varepsilon} \varphi_{\varepsilon}^{\lambda}=R_{\varepsilon}^{\lambda} \boldsymbol{\varphi}_{\mu}^{\varepsilon} . \tag{1.8}
\end{equation*}
$$

In the following, we consider always an $n(=2 m+1)$-dimensional Sasakian space M^{n}. If M^{n} is compact, then we denote the global inner product of any p-forms u and v by

$$
(u, v)=\int_{M}(u \wedge * v),
$$

where $* v$ is a dual form of v. The dual operator $*$ satisfies the relation

$$
\begin{equation*}
* * u=u \tag{1.9}
\end{equation*}
$$

for any p-form u. The adjoint operator δ of d is given by

$$
\begin{equation*}
\delta u=(-1)^{p} * d * u \tag{1.10}
\end{equation*}
$$

for a p-form u.

Next we define the operators $e(\eta), i(\eta)$ and L, Λ for any p-form u as follows:

$$
\begin{align*}
e(\eta) u & =\eta \wedge u, \quad i(\eta) u=(-1)^{p-1} * e(\eta) * u \tag{1.11}\\
L u & =d \eta \wedge u, \quad \Lambda u=i(d \eta) u=* L * u
\end{align*}
$$

and for 0 -form a and 1 -form b we define

$$
i(\eta) a=0, \quad \Lambda a=\Lambda b=0 .
$$

Then we have for any forms u and v

$$
\begin{gathered}
d \eta \wedge u_{p-2} \wedge * v_{p}=u_{p-2} \wedge *\left(* L * v_{p}\right) \\
\eta \wedge u_{p-1} \wedge * v_{p}=(-1)^{p-1} u_{p-1} \wedge *\left(* e(\eta) * v_{p}\right)
\end{gathered}
$$

where the subscripts of u and v denote the degree of them. Therefore if M^{n} is compact, then $e(\eta)$ (resp. L) and $i(\eta)$ (resp. Λ) are adjoint operators with respect to the global inner product. We shall call a form u to be effective if it satisfies $\Lambda u=0$.

Lemma 1.1. In a Sasakian space, the following relations hold (cf. [9]):

$$
\begin{align*}
L & =e(\eta) d+d e(\eta) \tag{1.13}\\
\Lambda & =i(\eta) \delta+\delta i(\eta) \tag{1.14}
\end{align*}
$$

PROOF. For any p-form u, we have

$$
\begin{aligned}
L u & =d \eta \wedge u=d(\eta \wedge u)-(-\eta \wedge d u) \\
& =d e(\eta) u+e(\eta) d u
\end{aligned}
$$

(1.14) is obtained easily from (1.10, 11, 12).

Lemma 1.2. In a Sasakian space, the operator L (resp. Λ) commutes with the operators $i(\eta), e(\eta)$ and d (resp. $i(\eta), e(\eta)$ and δ). (cf. [9]).

PROOF. As $i(\eta) d \eta=0$, we have for any form u

$$
\begin{aligned}
i(\eta)(d \eta \wedge u) & =(i(\eta) d \eta) \wedge u+d \eta \wedge(i(\eta) u) \\
& =L i(\eta) u
\end{aligned}
$$

From (1.11) and (1.12), we obtain $\Lambda e(\eta)=e(\eta) \Lambda$. The other relations are obtained by virtue of Lemma 1.1 and

$$
i(\eta)^{2}=e(\eta)^{2}=d^{2}=\delta^{2}=0
$$

We denote the Lie derivative with respect to η^{λ} by $\theta(\eta)$. It is well known that it holds

$$
\theta(\eta)=d i(\eta)+i(\eta) d
$$

Lemma 1.3. In a Sasakian space, we have (cf. [9])

$$
\begin{equation*}
* \theta(\eta)=\theta(\eta) * . \tag{1.15}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\theta(\eta)=-\delta e(\eta)-e(\eta) \delta . \tag{1.16}
\end{equation*}
$$

Proof. Since η is a Killing form, it satisfies $\theta(\eta) g=0, \delta \eta=0$, where g is the metric tensor of M^{n}. Then it follows that for a p-form u of coefficients $u_{\lambda_{1} \ldots \lambda_{p}}$

$$
\begin{aligned}
((\theta(\eta)-* \theta(\eta) *) u)_{\lambda_{1} \ldots \lambda_{p}} & =\delta \eta u_{\lambda_{1} \ldots \lambda_{p}}+(p!) \sum_{i=1}^{p} g^{\rho \sigma}(\theta(\eta) g)_{\sigma \lambda_{1}} u_{\lambda_{1}, \ldots \hat{\rho} \ldots \lambda_{p}}^{i} \\
& =0 .
\end{aligned}
$$

Therefore we have $\theta(\eta)=* \theta(\eta) *$. While from (1.10) and (1.11) it is shown that $\delta e(\eta)+e(\eta) \delta=-* \theta(\eta) *$, hence we have (1.16).

Next we introduce some operators on the graded algebra of differentiable forms on a Sasakian space. Let u be a p-form and its coefficients $u_{\lambda_{1} \ldots \lambda_{p}}$. Then the p-forms $\Phi u, \Psi u, \nabla_{\eta} u,(p-1)$-form $D u$, and $(p+1)$-form Γu are defined by the following forms with coefficients respectively:

$$
\begin{aligned}
& (\Phi u)_{\lambda_{1} \ldots \lambda_{p}}=\sum_{i=1}^{p} \dot{\phi}_{\lambda_{t}}{ }^{\sigma} u_{\lambda_{1} \ldots \hat{\sigma} \ldots \lambda_{p}}^{i} \quad(p \geqq 1) \\
& (\Psi u)_{\lambda_{1} \ldots \lambda_{p}}=\phi_{\lambda_{1}}{ }_{1}^{\sigma_{1}} \cdots \varphi_{\lambda_{p}}{ }^{\sigma_{p}} u_{\sigma_{1} \cdots \sigma_{p}} \quad(p \geqq 1) \\
& \left(\nabla_{\eta} u\right)_{\lambda_{2} \ldots \lambda_{p}}=\eta^{\sigma} \nabla_{\sigma} u_{\lambda_{1} \ldots \lambda_{p}} \quad(p \geqq 0) \\
& (D u)_{\lambda_{2} \ldots \lambda_{\rho}}=\phi^{\rho \sigma} \nabla_{\rho} u_{\sigma \lambda_{2} \ldots \lambda_{p}} \quad(p \geqq 1)
\end{aligned}
$$

$$
(\Gamma u)_{\lambda_{0} \ldots \lambda_{p}}=\sum_{\alpha=0}^{p}(-1)^{\alpha} \varphi_{\lambda_{\alpha}}{ }^{\sigma} \nabla_{\sigma} u_{\lambda_{0} \ldots \hat{\alpha} \ldots \lambda_{p}} \quad(p \geqq 1)
$$

where $u_{\lambda_{1} \ldots \hat{\sigma} \ldots \lambda_{p}}^{i}$ means that the subscript σ appears at the i-th position and $u_{\lambda_{0} \ldots \hat{\lambda} \alpha \ldots \lambda_{p}}$ means that the α-th subscript λ_{α} is omitted.

Lemma 1.4. For any p-form u in $a(2 m+1)$-dimensional Sasakian space, we haue

$$
\begin{equation*}
\left(\Lambda L^{k}-L^{k} \Lambda\right) u=4 k\left[(m-p-k+1) L^{k-1} u+e(\eta) i(\eta) L^{k-1} u\right] \tag{1.17}
\end{equation*}
$$

where k is a non-negative integer and $L^{-1} u=0$.
Proof. We take the induction with respect to the integer k. For $k=0$, (1.17) is trivially valid. Now suppose that it is true for all $k=0,1, \cdots, k$ and consider the $(k+1)$-case. Then we have

$$
\begin{aligned}
\left(\Lambda L^{k+1}-L^{k+1} \Lambda\right) u= & \left(\Lambda L^{k}-L^{k} \Lambda\right) L u+L^{k}(\Lambda L-L \Lambda) u \\
= & 4 k\left[(m-p-2-k+1) L^{k-1} \cdot L u+e(\eta) i(\eta) L^{k-1} \cdot L u\right] \\
& \quad+L^{k} \cdot 4[(m-p) u+e(\eta) i(\eta) u] \\
= & 4(k+1)\left[(m-p-k) L^{k} u+e(\eta) i(\eta) L^{k} u\right]
\end{aligned}
$$

for any p-form u, which asserts that the lemma is true for all non-negative integer k.
2. \boldsymbol{C}-harmonic forms. We consider an $n(=2 m+1)$-dimensional Sasakian space. A p-form u on the space is called to be C-harmonic if it satisfies

$$
\begin{equation*}
d \dot{u}=0, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\delta u=e(\eta) \Lambda u . \tag{ii}
\end{equation*}
$$

As a form of degree 1 or 0 is effective, a C-harmonic 1 - or 0 -form is harmonic. As a harmonic p-form ($p \leqq m$) is necessarily effective, in compact case, so it follows that a p-form ($p \leqq m$) is harmonic if and only if it is effective C-harmonic.

In defining the C-harmonic forms S. Tachibana [1] imposed the condition $i(\eta) u=0$ in addition to (i) and (ii). In the following we prove that this relation follows necessarily from (i) and (ii).

Lemma 2.1. In a Sasakian space, we have (cf. [9])

$$
\begin{align*}
& \Delta e(\eta)-e(\eta) \Delta=\delta L-L \delta \tag{2.1}\\
& \Delta i(\eta)-i(\eta) \Delta=d \Lambda-\Lambda d
\end{align*}
$$

Proof. By virtue of Lemma 1.1, we get

$$
\begin{aligned}
\Delta e(\eta)-e(\eta) \Delta= & \delta(d e(\eta)+e(\eta) d)-(e(\eta) d+d e(\eta)) \delta \\
& \quad-(\delta e(\eta) \oplus e(\eta) \delta) d+d(\delta e(\eta)+e(\eta) \delta) \\
= & \delta L-L \delta+\theta(\eta) d-d \theta(\eta) \\
= & \delta L-L \delta .
\end{aligned}
$$

(2.2) is obtained in the same way.

THEOREM 2.1. In a compact Sasakian space, we have for any C-harmonic form u

$$
\begin{equation*}
\theta(\eta) u=0 . \tag{2.3}
\end{equation*}
$$

Proof. We put $u^{\prime}=i(\eta) u$. Since

$$
\Delta u=d \delta u=L \Lambda u-e(\eta) d \Lambda u
$$

we have taking account of (2.2) and Lemma 1.2

$$
\begin{aligned}
\Delta u & =i(\eta) L \Lambda u-i(\eta) e(\eta) d \Lambda u+d \Lambda u \\
& =L \Lambda u+e(\eta) i(\eta) d \Lambda u
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\left(u^{\prime}, \Delta u^{\prime}\right) & =\left(u^{\prime}, L \Lambda u^{\prime}\right)+\left(u^{\prime}, e(\eta) i(\eta) d \Lambda u\right) \\
& =\left(\Lambda u^{\prime}, \Lambda u^{\prime}\right) .
\end{aligned}
$$

On the other hand, it holds that

$$
\delta u^{\prime}=\Lambda u-i(\eta) \delta u=e(\eta) i(\eta) \Lambda u,
$$

hence we obtain

$$
\left(\delta u^{\prime}, \delta u^{\prime}\right)=\left(e(\eta) \Lambda u^{\prime}, e(\eta) \Lambda u^{\prime}\right)=\left(\Lambda u^{\prime}, \Lambda u^{\prime}\right) .
$$

Therefore we get $\left(d u^{\prime}, d u^{\prime}\right)=0$, which means that $d u^{\prime}=0$. Then

$$
\theta(\eta) u=d i(\eta) u+i(\eta) d u=0,
$$

and the theorem is proved.

Lemma 2.2. In a compact Sasakian space, we have for any C-harmonic form u,

$$
\delta(e(\eta) u)=0 .
$$

Proof. From Lemma 1.3 and (2.3), we have

$$
\delta(e(\eta) u)=-\theta(\eta) u-e(\eta) \delta u=-e(\eta) e(\eta) \Lambda u=0 .
$$

Lemma 2.3. In a compact Sasakian space, $u^{\prime}=i(\eta) u$ is C-harmonic for any C-harmonic form u.

Proof. From (2.3), it is evident $d u^{\prime}=0$. Making use of (1.14) and Lemma 1.2 we have

$$
\delta u^{\prime}=\Lambda u-i(\eta) e(\eta) \Lambda u=e(\eta) i(\eta) \Lambda u=e(\eta) \Lambda u^{\prime} .
$$

Lemma 2.4. In a Sasakian space, we have for any p-form u(cf. [9])

$$
\begin{align*}
D u & =\delta \nabla_{\eta} u-\nabla_{\eta} \delta u+(n-p) i(\eta) u \tag{2.4}\\
& =(-1 / 2)(d \Lambda-\Lambda d) u+(p-1) i(\eta) u, \\
\Gamma u & =d \nabla_{\eta} u-\nabla_{\eta} d u-p e(\eta) u \tag{2.5}\\
& =(1 / 2)(\delta L-L \delta) u-(n-p-1) e(\eta) u .
\end{align*}
$$

PROOF. Let $u_{\lambda_{1} \ldots \lambda_{p}}$ be the coefficients of the p-form u. Then we have

$$
\begin{aligned}
& \left(\delta \nabla_{\eta} u\right)_{\lambda_{\rho} \ldots \lambda_{p}}=-\nabla^{\lambda_{1}}\left(\eta^{\rho} \nabla_{\rho} u_{\lambda_{1} \ldots \lambda_{p}}\right) \\
& \quad=\varphi^{\rho \lambda_{1}} \nabla_{\rho} u_{\lambda_{1} \ldots \lambda_{p}}-\eta^{\rho}\left(\nabla_{\rho} \nabla_{\lambda_{1}} u_{\lambda_{\lambda_{2}} \ldots \lambda_{p}}+R_{\lambda_{1} \rho \rho} \lambda_{1} u_{\lambda_{2} \ldots \lambda_{p}}^{\sigma}-\sum_{i=2}^{p} R_{\lambda_{1} \rho \lambda_{1}} u^{\lambda_{\lambda_{2}} \ldots \ldots \hat{\sigma} \ldots \lambda_{p}}\right) \\
& \quad=(D u)_{\lambda_{2} \ldots \lambda_{p}}+\left(\nabla_{\eta} \delta u\right)_{\lambda_{2} \ldots \lambda_{p}}+(1-n+p-1) \eta^{\rho} u_{\rho \lambda_{2} \ldots \lambda_{p}} .
\end{aligned}
$$

Next we have

$$
\begin{aligned}
& (d \Lambda u)_{\lambda_{2} \ldots \lambda_{p}}=\nabla_{\lambda_{2}}\left(\phi^{\alpha \beta} u_{\alpha \beta \lambda_{3} \ldots \lambda_{p}}\right)-\sum_{i=3}^{p} \nabla_{\lambda_{1}}\left(\phi^{\alpha \beta} u_{\alpha \beta \lambda_{3} \ldots} \stackrel{\hat{\lambda}_{2} \ldots \lambda_{p}}{i}\right) \\
& =2 \eta^{\alpha} u_{\alpha \lambda_{2} \ldots \lambda_{p}}-2 \sum_{i=3}^{p} \eta^{\alpha} u_{\alpha \lambda_{t} \lambda_{3} \ldots \hat{\lambda}_{2} \ldots \lambda_{p}}^{\stackrel{i}{i}}+\phi^{\alpha \beta}\left(\nabla_{\lambda_{2}} u_{\alpha \beta \lambda_{3} \ldots \lambda_{p}}-\sum_{i=3}^{p} \nabla_{\lambda_{1}} u_{\alpha \beta \lambda_{3} \ldots \hat{\lambda}_{2} \ldots \lambda_{p}}^{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (\Lambda d u)_{\lambda_{2} \ldots \lambda_{p}}=\boldsymbol{\varphi}^{\alpha \beta}\left(\nabla_{\alpha} u_{\beta \lambda_{2} \ldots \lambda_{p}}-\nabla_{\beta} u_{\alpha \lambda_{2} . \ldots \lambda_{p}}-\sum_{i=2}^{p} \nabla_{\lambda_{1}} u_{\beta \lambda_{\mathbf{p}} \ldots \ldots \lambda_{p}} \quad \stackrel{i}{i}{ }_{\alpha}\right) \\
& =2 \boldsymbol{\varphi}^{\alpha \beta} \nabla_{\alpha} u_{\beta \lambda_{2} \ldots \lambda_{p}}-\varphi^{\alpha \beta}\left(\nabla_{\lambda_{2}} u_{\beta \alpha \lambda_{\mathbf{2}} \ldots \lambda_{p}}-\sum_{i=3}^{p} \nabla_{\lambda_{1}} u_{\beta \alpha \lambda_{\mathbf{g}} \ldots \hat{\lambda}_{2} \ldots \lambda_{p}} \quad \stackrel{i}{1}\right) .
\end{aligned}
$$

Herce (2.4) ${ }_{2}$ is obtained. For (2.5) ${ }_{1}$, we have

$$
\begin{aligned}
& \left(d \nabla_{\eta} u\right)_{\lambda_{0} \ldots \lambda_{p}}=\sum_{\alpha=0}^{p}(-1)^{\alpha} \nabla_{\lambda_{\alpha}}\left(\eta^{\rho} \nabla_{\rho} u_{\lambda_{0} \ldots \hat{\alpha} \ldots \lambda_{p}}\right) \\
= & \sum_{\alpha=0}^{p}(-1)^{\alpha} \varphi_{\lambda_{\alpha}}{ }_{\alpha} \nabla_{\rho} u_{\lambda_{0} \ldots \hat{\alpha} \ldots \lambda_{p}}+\sum_{\alpha=0}^{p}(-1)^{\alpha} \eta^{\rho}\left[\nabla_{\rho} \nabla_{\lambda_{\alpha}} u_{\lambda_{0} \ldots \hat{\alpha} \ldots \lambda_{p}}-\sum_{\beta \neq \alpha} R_{\lambda_{\alpha} \rho} \lambda_{\beta}{ }^{\sigma} u_{\left.\lambda_{0} \ldots \hat{\alpha} \ldots \hat{\alpha} \ldots \lambda_{p}\right]}^{\beta}\right] \\
= & (\Gamma u)_{\lambda_{0} \ldots \lambda_{p}}+\left(\nabla_{\eta} d u\right)_{\lambda_{0} \ldots \lambda_{p}}+\sum_{\alpha \neq \beta}(-1)^{\alpha} \eta^{\rho} g_{\lambda_{\alpha} \lambda_{\beta}} u_{\lambda_{0} \ldots \ldots \hat{\rho}}{ }^{\beta} \ldots \hat{\alpha} \ldots \lambda_{p} \\
= & \left.(\Gamma u)_{\alpha \neq \beta} \ldots \lambda_{p}+(-1)^{\alpha} \eta_{\lambda_{\beta}} u_{\lambda_{0} \ldots \hat{\lambda_{\alpha}} \ldots \hat{\alpha} \ldots \lambda_{p}}^{\beta} d u\right)_{\lambda_{0} \ldots \lambda_{p}}+p(e(\eta) u)_{\lambda_{0} \ldots \lambda_{p}},
\end{aligned}
$$

and the last formula $(2.5)_{2}$ is the result of the following calculation;

$$
\begin{aligned}
& =2(n-p-1)\left(\eta_{\rho} u_{\lambda_{1} \ldots \lambda_{p}}-\sum_{i=1}^{p} \eta_{\lambda_{t}} u_{\lambda_{1} \ldots \hat{\rho}}^{i} \ldots \lambda_{p}\right)-2\left[\boldsymbol{\varphi}_{\sigma \rho} \nabla^{\sigma} u_{\lambda_{1}} . . \lambda_{p}-\sum_{i=1}^{p} \boldsymbol{\phi}_{\sigma \lambda_{t}} \nabla^{\sigma} u_{\lambda_{1}} \ldots \hat{\rho} \ldots \lambda_{p}\right. \\
& -\sum_{i=1}^{p} \boldsymbol{\varphi}_{\lambda_{\imath} \rho} \nabla^{\sigma} u_{\lambda_{1} \ldots \hat{\sigma} \ldots \lambda_{p}}^{i}+\sum_{i<j}^{i} \boldsymbol{\varphi}_{\lambda_{t} \lambda_{s}} \nabla^{\sigma} u_{\lambda_{1} \ldots \hat{\sigma} \ldots \hat{\rho} \ldots \lambda_{p}}^{i}, \\
& (L \delta u)_{\rho \lambda_{1} \ldots \lambda_{p}}=-2\left[\varphi_{\rho \lambda_{1}} \nabla^{\sigma} u_{\sigma \lambda_{2} \ldots \lambda_{p}}-\sum_{j=2}^{p} \varphi_{\rho \lambda_{j}} \nabla^{\sigma} u_{\sigma \lambda_{2} \ldots \hat{\lambda}_{1} \ldots \lambda_{p}}^{{ }^{j}}\right. \\
& -\sum_{j=2}^{p} \phi_{\lambda_{1} \lambda_{1}} \nabla^{\sigma} u_{\sigma \lambda_{2}, \ldots \hat{\rho} \ldots \lambda_{p}}^{j}+\sum_{2 \leqq i<j} \varphi_{\lambda_{s}, \lambda}, \nabla^{\sigma} u_{\left.\sigma \lambda_{2} \ldots \hat{\rho} \ldots \ldots \hat{\lambda}_{1} \ldots \lambda_{p}\right]}^{\stackrel{i}{\hat{2}}]}
\end{aligned}
$$

Thus the lemma 2.4 is proved.
Lemma 2.5. In a Sasakian space, the operator ∇_{η} commutes with the operators $i(\eta), e(\eta), L$ and Λ.

Proof. For the forms η_{λ} and $\boldsymbol{\varphi}_{\lambda_{\mu}}$, we have

$$
\left(\nabla_{\eta} \eta\right)_{\lambda}=0, \quad\left(\nabla_{\eta} \boldsymbol{\varphi}\right)_{\lambda \mu}=0,
$$

and hence the lemma follows easily.
THEOREM 2.2. In a compact ($2 m+1$)-dimensional Sasakian space, any C-harmonic p-form $(p \leqq m)$ is orthogonal to η, that is

$$
i(\eta) u=0
$$

Proof. If we set $u^{\prime}=i(\eta) u, \alpha=e(\eta) u^{\prime}$ and $\beta=u-\alpha$, then it holds $i(\eta) \beta=0$. According to Lemmas 2.2 and 2.3, we have $\delta \alpha=0$, hence

$$
\delta \beta=\delta u
$$

holds good. As u and u^{\prime} are C-harmonic, we have

$$
\begin{aligned}
d \beta & =-d e(\eta) u^{\prime}=-(L-e(\eta) d) u^{\prime} \\
& =-L u^{\prime} .
\end{aligned}
$$

Furthermore we have from (2.1) and (2.5)

$$
\Delta \alpha=e(\eta)\left(\Delta u^{\prime}+4(m-p+1) u^{\prime}\right)+2 d \nabla_{\eta} u^{\prime}
$$

therefore using Lemma 2.5 we get

$$
\begin{aligned}
(\beta, \Delta \alpha) & =\left(\beta, 2 d \nabla_{\eta} u^{\prime}\right)=2\left(\delta \beta, \nabla_{\eta} u^{\prime}\right) \\
& =2\left(\delta u, \nabla_{\eta} u^{\prime}\right)=2\left(e(\eta) \Lambda u^{\prime}, \nabla_{\eta} u^{\prime}\right)=0 .
\end{aligned}
$$

Thus we have

$$
(\beta, \Delta \beta)=(\beta, \Delta u)=(\delta \beta, \delta \beta),
$$

and conseqently we get $(d \beta, d \beta)=0$, which shows $d \beta=0$. Therefore we have $L u^{\prime}=0$. Applying Lemma 1.4 for the case $k=1$, we have

$$
-L \Lambda u^{\prime}=4(m-p+1) u^{\prime}
$$

because $i(\eta) u^{\prime}=0$, and hence

$$
\left(u^{\prime},-L \Lambda u^{\prime}\right)=-\left(\Lambda u^{\prime}, \Lambda u^{\prime}\right)=4(m-p+1)\left(u^{\prime}, u^{\prime}\right)
$$

Therefore if u is of degree $p \leqq m$, both sides of this equation must be zero, and we have $u^{\prime}=0$. This proves the theorem.

Corollary 2.2.1. In a compact $(2 m+1)$-dimensional Sasakian space, we have

$$
i(\eta) L u=0, \quad i(\eta) \Lambda u=0
$$

for any C-harmonic $(m+1)$-form u.
Next we study some properties of C-harmonic forms.
Lemma 2.6. In a ($2 m+1$-dimensional Sasakian space, for any p-form u we have (cf. [9])

$$
\begin{align*}
(\Delta L-L \Delta) u & =4(m-p-1) L u+4 d e(\eta) u \tag{2.6}\\
(\Delta \Lambda-\Lambda \Delta) u & =-4(m-p+2) \Lambda u+4 \delta i(\eta) u \tag{2.7}
\end{align*}
$$

Proof. First we verify the formula for any p-form $u(p \geqq 2)$

$$
\begin{equation*}
\delta D u+D \delta u=(n-p+1) \Lambda u-\delta i(\eta) u \tag{2.8}
\end{equation*}
$$

In fact, making use of (2.4) ${ }_{1}$, we have

$$
\begin{aligned}
& \delta D u=-\delta \nabla_{\eta} \delta u+(n-p) \delta i(\eta) u \\
& D \delta u=\delta \nabla_{\eta} \delta u+(n-p+1) i(\eta) \delta u
\end{aligned}
$$

and hence we get

$$
\delta D u+D \delta u=(n-p+1)(i(\eta) \delta+\delta i(\eta)) u-\delta i(\eta) u .
$$

On the other hand, by virtue of $(2.4)_{2}$ we see that

$$
\begin{aligned}
\delta D u+D \delta u & =(-1 / 2)(\Delta \Lambda-\Lambda \Delta) u+(p-1) \delta i(\eta) u+(p-2) i(\eta) \delta u \\
& =(-1 / 2)(\Delta \Lambda-\Lambda \Delta) u+(p-2) \Lambda u+\delta i(\eta) u
\end{aligned}
$$

Comparing the above two relations, we have

$$
(-1 / 2)(\Delta \Lambda-\Lambda \Delta) u=(n-2 p+3) \Lambda u-2 \delta i(\eta) u
$$

which shows (2:7). The formula (2.6) is only dual to (2.7).
THEOREM 2.3. ([1]) In a compact ($2 m+1$)-dimensional Sasakian space, if a p-form u is C-harmonic and $p \leqq m$, then Λu is C-harmonic, too.

Proof. As the operator Λ commutes with δ and $e(\eta)$, we have

$$
\delta \Lambda u=\Lambda e(\eta) \Lambda u=e(\eta) \Lambda \Lambda u,
$$

hence we have only to show that $d \Lambda u=0$. Since C-harmonic form u satisfies

$$
\Delta u=L \Lambda u-e(\eta) d \Lambda u
$$

with the aid of Lemma 2.6, 1.4, and Theorem 2.2, we have

$$
\begin{aligned}
\Delta \Lambda u & =\Lambda \Delta u-4(m-p+2) \Lambda u \\
& =L \Lambda^{2} u-e(\eta) \Lambda d \Lambda u
\end{aligned}
$$

if $p \leqq m$. Hence we obatain

$$
(\Lambda u, \Delta \Lambda u)=\left(\Lambda u, L \Lambda^{2} u-e(\eta) \Lambda d \Lambda u\right)=\left(\Lambda^{2} u, \Lambda^{2} u\right) .
$$

From $\delta \Lambda u=e(\eta) \Lambda^{2} u$, we again have

$$
(\delta \Lambda u, \delta \Lambda u)=\left(\Lambda^{2} u, \Lambda^{2} u\right)
$$

These equations show that $(d \Lambda u, d \Lambda u)=0$, and hence we have $d \Lambda u=0$.
From this proof of the theorem, we see that $d \Lambda u=0$ for a C-harmonic $p(\leqq m)$-form u. Thus we have

$$
\begin{gather*}
\Delta u=L \Lambda u \tag{2.9}\\
D u=0 \tag{2.10}
\end{gather*}
$$

by taking account of (2.4) ${ }_{2}$. Regarding to (2.9), we can give the following necessary and sufficient condition for a form to be C-harmonic.

THEOREM 2.4. In a compact ($2 m+1$)-dimensional Sasakian space, a p-form $u(p \leqq m)$ is C-harmonic if and only if it satisfies $i(\eta) u=0$ and $\Delta u=L \Lambda u$.

Proof. Let u be a C-harmonic $p(\leqq m)$-form. Then Theorem 2.2 and (2.9) imply the necessary condition of the theorem. Conversely let u be a p-form satisfying $i(\eta) u=0$. Then we have

$$
\begin{aligned}
(u, \Delta u-L \Lambda u)=(d u, d u)+ & (\delta u, \delta u)-(\Lambda u, \Lambda u) \\
(\delta u-e(\eta) \Lambda u, \delta u-e(\eta) \Lambda u) & =(\delta u, \delta u)-2(\delta u, e(\eta) \Lambda u)+(e(\eta) \Lambda u, e(\eta) \Lambda u) \\
& =(\delta u, \delta u)-2(\Lambda u-\delta i(\eta) u, \Lambda u)+(\Lambda u, \Lambda u) \\
& =(\delta u, \delta u)-(\Lambda u, \Lambda u)
\end{aligned}
$$

Hence we have the following integral formula for a p-form u orthogonal to η :

$$
\begin{equation*}
(u, \Delta u-L \Lambda u)=(d u, d u)+(\delta u-e(\eta) \Lambda u, \delta u-e(\eta) \Lambda u) \tag{2.11}
\end{equation*}
$$

Therefore if $\Delta u-L \Lambda u=0$, then we have $d u=0, \delta u=e(\eta) \Lambda u$, which proves our theorem.

THEOREM 2.5. In a compact ($2 m+1$)-dimensional Sasakian space, if a p-form u is C-harmonic and $p \leqq m$, then $L u$ is also C-harmonic.

Proof. As L commutes with $i(\eta)$, we know that $L u$ is orthogonal to η. As we have from (2.6)

$$
\begin{aligned}
\Delta L u & =L \Delta u+4(m-p) L u \\
& =L L \Lambda u+4(m-p) L u=L \Lambda L u
\end{aligned}
$$

$L u$ is also C-harmonic, because of Theorem 2.4.
Corollary 2.5.1. In a compact ($2 m+1$)-dimensional Sasakian space, if a p-form u is C-harmonic and $p \leqq m$, then Δu is also C-harmonic.

This is a consequence of (2.9). Next we consider the operators Φ, Ψ and ∇_{η} for a C-harmonic form. For this purpose we give some lemmas.

Lemma 2.7. In a Sasakian space, the operator Φ commutes with the operators $i(\eta), e(\eta), L$ and Λ, and the operator Ψ commutes with the operators L and Λ. (cf. [9])

Proof. Since it is easily shown that the Lie derivative $\theta(\eta)$ commutes with $i(\eta), e(\eta), L$ and Λ, the first part of the lemma comes from Lemma 2.5 and the formula

$$
\begin{equation*}
\Phi u=\theta(\eta) u-\nabla_{\eta} u \tag{2.12}
\end{equation*}
$$

For the second part, we calculate directly, for any p-form u

$$
\begin{aligned}
& (\Lambda \Psi u)_{\lambda_{s} \cdots \lambda_{p}}=\boldsymbol{\varphi}^{\alpha \beta}\left(\boldsymbol{\varphi}_{\alpha}^{\sigma_{1}} \boldsymbol{\varphi}_{\beta}^{\sigma_{2}} \boldsymbol{\varphi}_{\lambda_{s}}^{\sigma_{2}} \boldsymbol{\varphi} \cdots \lambda_{\lambda_{p}}^{\sigma_{p}}\right) u_{\sigma_{1} \cdots \sigma_{p}}=\boldsymbol{\varphi}^{\sigma_{1} \sigma_{2}} \boldsymbol{\varphi}_{\lambda_{s}}^{\sigma_{s}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}^{\sigma_{p}} u_{\sigma_{1} \cdots \sigma_{p}} \\
& (\Psi \Lambda u)_{\lambda_{3} \cdots \lambda_{p}}=\left(\boldsymbol{\varphi}_{\lambda_{s}}^{\sigma_{s}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}^{\sigma_{p}}\right)\left(\boldsymbol{\varphi}^{\sigma_{1} \sigma} u_{\sigma_{1} \sigma_{2} \cdots \sigma_{p}}\right) .
\end{aligned}
$$

Hence we obtain $\Lambda \Psi=\Psi \Lambda$. Next

$$
\begin{aligned}
& (1 / 2)(\Psi L u)_{\alpha \beta \lambda_{1} \ldots \lambda_{p}}=\boldsymbol{\varphi}_{\alpha}^{\rho} \boldsymbol{\varphi}_{\beta}^{\sigma} \varphi_{\lambda_{1}}^{\sigma_{1}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}^{\sigma_{p}}\left[\varphi_{\rho \sigma} u_{\sigma_{1} \ldots \sigma_{p}}-\sum_{i=1}^{p} \boldsymbol{\varphi}_{\rho \sigma_{1}} u_{\sigma_{1} \ldots \hat{\sigma} \ldots \sigma_{p}}^{i}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =(1 / 2)(L \Psi u)_{\alpha \beta \lambda_{1} \ldots \lambda_{p}},
\end{aligned}
$$

which proves our lemma.
Lemma 2.8. In a Sasakian space we have for any p-form u (cf. [9])

$$
\begin{equation*}
(\Delta \Phi-\Phi \Delta) u=2(e(\eta) \delta u+d i(\eta) u) . \tag{2.13}
\end{equation*}
$$

Proof. By virtue of Lemma 2.4 and (2.12), we have the following four relations operating to any p-form u

$$
\begin{aligned}
d D u & =d \Phi \delta u-d \delta \Phi u+(n-p) d i(\eta) u=(-1 / 2)(-d \Lambda d u)+(p-1) d i(\eta) u, \\
D d u & =\Phi \delta d u-\delta \Phi d u+(n-p-1) i(\eta) d u=(-1 / 2)(d \Lambda d u)+p i(\eta) d u, \\
\delta \Gamma u & =\delta \Phi d u-\delta d \Phi u-p \delta e(\eta) u=(1 / 2)(-\delta L \delta u)-(n-p-1) \delta e(\eta) u, \\
\Gamma \delta u & =\Phi d \delta u-d \Phi \delta u-(p-1) e(\eta) \delta u=(1 / 2)(\delta L \delta u)-(n-p) e(\eta) \delta u .
\end{aligned}
$$

Adding sides by sides of these relations it follows that

$$
(\Phi \Delta-\Delta \Phi) u=2(\theta(\eta)+\delta e(\eta)-d i(\eta)) u
$$

from which our lemma is easily deduced.
Corollary 2.8.1. ([2]) In a compact ($2 m+1$)-dimensional Sasakian space, Φu is harmonic for any harmonic p-form $u(p \leqq m)$.

Lemma 2.9. In a Sasakian space we have for any p-form u

$$
\begin{align*}
\Psi^{2} u & =(-1)^{p}(i(\eta) e(\eta) u), \tag{2.14}\\
(\Delta \Psi-\Psi \Delta) u & =2(d \Psi i(\eta) u+e(\eta) \Psi \delta u) . \tag{2.15}
\end{align*}
$$

Proof. Let $u_{\lambda_{1} \ldots \lambda_{p}}$ be the coefficients of the p-form u. Then

$$
\begin{aligned}
\left(\Psi^{2} u\right)_{\lambda_{1} \ldots \lambda_{p}} & =\varphi_{\lambda_{1}}^{\sigma_{1}} \cdots \varphi_{\lambda_{p}}{ }^{\sigma_{p}} \varphi_{\sigma_{1}}{ }^{\rho_{1}} \cdots \boldsymbol{\varphi}_{\sigma_{p}}^{\rho_{p}} u_{\rho_{1} \ldots \rho_{p}} \\
& =(-1)^{p} u_{\lambda_{1} \ldots \lambda_{p}}+\sum_{i=1}^{p}(-1)^{p-1} \eta_{\lambda_{1}} \eta^{\rho} u_{\lambda_{1} \ldots \hat{\rho} \ldots \lambda_{p}}^{i} \\
& =(-1)^{p}\left(u_{\lambda_{1} \ldots \lambda_{p}}-(e(\eta) i(\eta) u)_{\lambda_{1} \ldots \lambda_{p}}\right),
\end{aligned}
$$

which shows (2.14). The second formula is obtained by a little complicated and straightforward computation, so we only point out the outline. At first we have

$$
(\Delta \Psi u)_{\lambda_{1} \ldots \lambda_{p}}=-\nabla^{\rho} \nabla_{\rho}(\Psi u)_{\lambda_{1} \ldots \lambda_{p}}+\sum_{i=1}^{p} R_{\lambda_{1}^{\rho}}^{\rho}(\Psi u)_{\lambda_{1} \ldots \hat{\rho} \ldots \lambda_{p}}^{i}+\sum_{i<j} R_{\lambda_{1} \lambda_{j}^{\rho \sigma}}(\Psi u)_{\lambda_{1} \ldots \hat{\rho} \ldots \hat{\sigma} \ldots \lambda_{p}}^{i}
$$

and we put A_{1}, A_{2}, A_{3} the three terms of the right hand side respectively. Then

$$
\begin{aligned}
& A_{1}=-\boldsymbol{\varphi}_{\lambda_{1}}^{\sigma_{1}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}{ }^{\sigma_{D}} \nabla^{\boldsymbol{\rho}} \nabla_{\rho} u_{\boldsymbol{\sigma}_{1} \cdots \sigma_{p}} \\
& +2\left[p \boldsymbol{\varphi}_{\lambda_{1}}^{\sigma_{1}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}{ }^{\sigma_{p}} u_{\sigma_{1} \cdots \sigma_{p}}+\sum_{i=1}^{p} \boldsymbol{\varphi}_{\lambda_{1}}{ }^{\sigma_{1}} \cdots \hat{i} \cdots \boldsymbol{\varphi}_{\lambda_{p}}{ }^{\sigma_{p}} \eta^{\sigma_{t}} \nabla_{\lambda_{t}} u_{\sigma_{1} \cdots \sigma_{1} \cdots \sigma_{p}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\varphi_{\lambda_{1}}^{\sigma_{1}} \cdots \varphi_{\lambda_{\rho}}{ }^{\sigma_{\mu}} \nabla^{\rho} \nabla_{\rho} u_{\sigma_{1} \cdots \sigma_{p}}-2 \sum_{i=1}^{p}(-1)^{i} \eta_{\lambda_{t}}(\Psi \delta u)_{\lambda_{1} \ldots \hat{i} \ldots \lambda_{p}}
\end{aligned}
$$

$$
\begin{aligned}
& +2 \sum_{i=1}^{p}(-1)^{i-1} \boldsymbol{\varphi}_{\lambda_{1}}^{\sigma_{1}} \cdots \hat{i} \cdots \boldsymbol{\varphi}_{\lambda_{p}}^{\sigma_{p}} \nabla_{\lambda_{1}}(i(\eta) u)_{\sigma_{1} \ldots \hat{i} \cdots \sigma_{p}} \\
& \\
& \quad+2 \sum_{i \neq j}(-1)^{j} \boldsymbol{\varphi}_{\lambda_{1}}^{\sigma_{1}} \cdots \hat{j} \cdots \hat{i} \cdots \boldsymbol{\varphi}_{\lambda_{p}}^{\sigma_{p}} \eta_{\lambda_{\rho}}(i(\eta) u)_{\sigma_{1} \ldots \hat{i_{i}} \cdots \hat{j} \cdots \sigma_{p}}^{i} \\
& =-\boldsymbol{\varphi}_{\lambda_{1}}{ }^{\sigma_{1}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}{ }^{\sigma_{p}} \nabla^{\boldsymbol{\sigma}} \nabla_{\rho} u_{\sigma_{1} \cdots \sigma_{p}}+2\left[(e(\eta) \Psi \delta u)_{\lambda_{1} \cdots \lambda_{p}}+(d \Psi i(\eta) u)_{\lambda_{1} \ldots \lambda_{p}}\right] .
\end{aligned}
$$

Next we calculate

$$
\begin{gathered}
(\Psi \Delta u)_{\lambda_{1} \ldots \lambda_{p}}=-\varphi_{\lambda_{1}}^{\sigma_{1}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}^{\sigma_{p}} \nabla^{\rho} \nabla_{\rho} u_{\sigma_{1} \cdots \sigma_{p}}+\sum_{i=1}^{p} \boldsymbol{\varphi}_{\lambda_{1}}{ }^{\sigma_{1}} \cdots \boldsymbol{\varphi}_{\lambda_{p}}^{\sigma_{p}} R_{\sigma_{j}^{\rho}}{ }^{\rho} u_{\sigma_{1} \ldots \hat{\rho} \ldots \sigma_{p}}^{i} \\
\\
+\sum_{i<j} \varphi_{\lambda_{1}}{ }_{1}^{\sigma_{1}} \cdots \varphi_{\lambda_{p}}^{\sigma_{p}} R_{\sigma_{t} \sigma_{j}^{\rho}} u_{\sigma_{1} \ldots \hat{\rho} \ldots \hat{\sigma} \cdots \sigma_{p}}^{i},
\end{gathered}
$$

and we see by virtue of (1.7) and (1.8) the latter two terms of the right hand side are equal to A_{2}, A_{3} respectively. Therefore we have (2.15).

Corollary 2.9.1. In a compact ($2 m+1$)-dimensional Sasakian space, Ψu is harmonic for any harmonic p-form $u(p \leqq m)$.

THEOREM 2.6. In a compact $(2 m+1)$-dimensional Sasakian space, if a p-form u is C-harmonic and $p \leqq m$, then $\Phi u, \Psi u$ and $\nabla_{\eta} u$ are C-harmonic, too.

Proof. Since $p \leqq m$, it holds that $i(\eta) \Phi u=0$, using Theorem 2.2 and Lemma 2.7. Then we have

$$
\begin{aligned}
\Delta \Phi u & =\Phi \Delta u+2(e(\eta) \delta u+d i(\eta) u) \\
& =\Phi L \Lambda u=L \Lambda \Phi u,
\end{aligned}
$$

hence we see that Φu is also C-harmonic by virtue of Theorem 2.4. Next for Ψu, it is evident from the definition of the operator Ψ that $i(\eta) \Psi u$ and $\Psi e(\eta) u$ are zero. From (2.15) we have also

$$
\begin{aligned}
\Delta \Psi u & =\Psi \Delta u+2(d \Psi i(\eta) u+e(\eta) \Psi e(\eta) \Lambda u) \\
& =\Psi L \Lambda u=L \Lambda \Psi u,
\end{aligned}
$$

and Ψu is again C-harmonic. As $\theta(\eta) u=0$ for a C-harmonic form u, we know that $\Phi u=-\nabla_{\eta} u$. Therefore if u is a C-harmonic form, then so is $\nabla_{\eta} u$.

Owing to the relation (2.14), it follows that if $p(\leqq m)$ is odd, then Ψ is a complex structure of the vector space of all C-harmonic (or harmonic) p forms, hence we have

THEOREM 2.7. In a compact ($2 m+1$)-dimensional Sasakian space, if $p(\leqq m)$ is odd, then the dimension of the vector space of all C-harmonic (or harmonic) p-forms is even.
3. The decomposition theorem. S. Tachibana has showed the following theorem for a C-harmonic p-form analogous to the Kählerian space.

ThEOREM 3.1. ([1]) In a compact ($2 m+1$)-dimensional Sasakian space, any C-harmonic p-form $u_{p}(p \leqq m)$ can be written uniquely in the form:

$$
u_{p}=\sum_{k=0}^{r} L^{k} \phi_{p-2 k}
$$

where $\phi_{p-2 k}$ is a harmonic $(p-2 k)$-form and r is the integral part of $p / 2$. Conversely any p-form written as in the right hand side is C-harmonic.

The assumption of p in Tachibana's original theorem is $p \leqq m+1$. This difference is due to the definition of C-harmonic forms. Our theorem 2.3 and 2.5 require the assumption $p \leqq m$, and the theorem can be proved with the aid of these theorems. If p satisfies $p \leqq m$, then our definition of C-harmonic p-forms coincides with that of [1], therefore the proof of Theorem 3.1 is completely the same as [1], and we omit it.

Let C_{p} and H_{p} be the vector space of C-hamonic p-forms and harmonic p-forms, and put $c_{p}=\operatorname{dim} C_{p}, b_{p}=\operatorname{dim} B_{p}(=p$-th Betti number). As any 0- or 1 -form is effective, and a C-harmonic form is harmonic if and only if it is effective, we have $b_{0}=c_{0}(=1), b_{1}=c_{1}$. Next we show that the forms $(d \eta)^{k}=L^{k} \cdot 1$ $(0 \leqq k \leqq m)$ are C-harmonic. Since d commutes with L, we see easily that $d L^{k} \cdot 1=0$. We want to calculate $\delta\left(L^{k} \cdot 1\right)$. Making use of Lemma 2.5 we have $\nabla_{\eta}\left(L^{k} \cdot 1\right)=0$. Therefore by virtue of (2.5) it holds

$$
\delta L^{k} \cdot 1-L \delta L^{k-1} \cdot 1=4(m-2 k+2) e(\eta) L^{k-1} \cdot 1
$$

and hence we can obtain

$$
\delta L^{k} \cdot 1=4 k(m-k+1) e(\eta) L^{k-1} \cdot 1
$$

On the other hand we have by virtue of (1.17)

$$
\begin{aligned}
e(\eta) \Lambda\left(L^{k} \cdot 1\right) & =e(\eta)\left(L^{k} \Lambda \cdot 1+4 k(m-k+1) L^{k-1} \cdot 1+e(\eta) i(\eta) L^{k-1} \cdot 1\right) \\
& =4 k(m-k+1) e(\eta) L^{k-1} \cdot 1
\end{aligned}
$$

hence it holds

$$
\delta L^{k} \cdot 1=e(\eta) \Lambda\left(L^{k} \cdot 1\right)
$$

This shows that $L^{k} \cdot 1$ is C-harmonic for $k=0, \cdots, m$. Hence we have $c_{2 k} \geqq 1$ for all $k=0, \cdots, m$. Thus

ThFOREM 3.2. In a $(2 m+1)$-dimensional Sasakian space, we have

$$
\begin{gathered}
c_{2 k} \geqq 1, \quad k=0, \cdots, m, \\
c_{0}=b_{0}=1, \quad c_{1}=b_{1} .
\end{gathered}
$$

As a corollary of Theorem 3.1, we have the following
THEOREM 3.3. ([1]) In a compact (2m+1)-dimensional Sasakian space, we have

$$
\begin{gathered}
b_{p}=c_{p}-c_{p-2} \\
c_{p}=b_{p}+b_{p-2}+\cdots+b_{p-2 r}
\end{gathered}
$$

where r denotes the integral part of $p / 2$, and $p \leqq m$.
Proof. From Theorem 3.1, the vector space C_{p} and H_{p} satisfy the relation

$$
C_{p}=H_{p} \oplus L H_{p-2} \oplus \cdots \oplus L^{r} H_{p-2 r}
$$

where \oplus denotes the direct sum and $p \leqq m$. We assume $p \leqq m-2$. Then for $p+2(\leqq m)$ we have

$$
C_{p+2}=H_{p+2} \oplus L H_{p} \oplus \cdots \oplus L^{r+1} H_{p+2-2(r+1)}
$$

Since $L: C_{p} \rightarrow C_{p+2}$ is into isomorphic, we have

$$
L C_{p}=L H_{p} \oplus L^{2} H_{p-2} \oplus \cdots \oplus L^{r+1} H_{p-2 r}
$$

and comparing these two relations we have

$$
C_{p+2}=H_{p+2} \oplus L C_{p}
$$

this proves the theorem.
4. Regular Sasakian structure. Suppose that a compact n-dimensional Sasakian space M^{n} has regular structure. Then we have a principal circle bundle (M^{n}, p, B^{n-1}) over the Kählerian space $B^{n-1}=M^{n} / \eta$, and $p: M^{n} \rightarrow B^{n-1}$ is the projection. S. Tanno has showed that (in the case of regular K-contact space M^{n}) the Betti numbers of M^{n} and B^{n-1} have the relation

$$
b_{p}(M)=b_{p}(B)-b_{p-2}(B), \quad(p \leqq m)
$$

and if $p=1$, then the vector space $H_{1}(B)$ of harmonic 1 -forms on B^{n-1} is isomorphic to the vector space $H_{1}(M)$. We shall show that in a Sasakian space the vector space $H_{p}(B)$ is isomorphic to the vector space $C_{p}(M)$ for $p \leqq m$.

As the 1 -form η on M^{n} is an infinitesimal connection of (M, p, B), there exists a lift $L: T(B) \rightarrow T(M)$ with respect to this connection. $\quad(T(B)$ and $T(M)$ denote the tangent bundles of the spaces B^{n-1} and M^{n}.) Let $g=\left(g_{\lambda_{\mu}}\right)$ be the metric tensor of M^{n}, then the metric g^{\prime} of B^{n-1} is defined by

$$
\begin{equation*}
g^{\prime}=L^{*} g \tag{4.1}
\end{equation*}
$$

We investigate the relation between Riemannian connections of these metrics g and g^{\prime}. We fix a point x_{0} in M^{n} and $u_{0}=p\left(x_{0}\right)$ in B^{n-1}, and take local coordinate systems $\left(x^{\lambda}\right)$ at x_{0} and $\left(u^{a}\right)$ at u_{0}. We denote the right translation $M^{n} \rightarrow M^{n}$ of the structural group by

$$
\left(x^{1}, \cdots, x^{n}, t\right) \rightarrow \phi^{\lambda}\left(x^{1}, \cdots, x^{n}, t\right)
$$

for sufficiently small t with respect to the local coordinates system. Since each fibre of M^{n} is a trajectory of the vector field η^{λ}, we get

$$
\begin{equation*}
\eta^{\lambda}(x)=\left(\frac{\partial \varphi^{\lambda}}{\partial t}\right)_{t=0} \tag{4.2}
\end{equation*}
$$

Next we construct some local cross-section over the neighbourhood of u_{0} as follows: let X be a vector at u_{0} and $u(s)$ be the geodesic starting at u_{0} and having the tangent vector X. Take a lift $L X$ at x_{0}, and the geodesic $\bar{x}(\bar{s})$ starting at x_{0} and having the tangent vector $L X$. The curve $\bar{x}(\bar{s})$ is projected to the curve $u(s)$. Thus there exists a local cross-section over a sufficiently small neighbourhood of u_{0} as every point can be united to the original
point u_{0} by a unique geodesic. In the local coordinate systems, we represent it by

$$
x^{\lambda}=l^{\lambda}\left(u^{1}, \cdots, u^{n-1}\right), \quad x_{0}^{\lambda}=l^{\lambda}\left(u_{0}\right),
$$

and we call this local cross-section an adapted one at x_{0}. Then the equation $x_{t}^{\lambda}=l_{t}^{\lambda}\left(u^{1}, \cdots, u^{n-1}\right)$ of the adapted local cross-section at $x^{\lambda}=\varphi^{\lambda}\left(x_{0}, t\right)$ can be written by

$$
l_{l}^{\lambda}(u)=\phi^{\lambda}(l(u), t),
$$

because the right translation of the group on M^{n} is an isometry. Hence we have

$$
\begin{equation*}
\frac{\partial l_{t}(u)}{\partial u^{a}}=\frac{\partial \varphi^{\lambda}(x, t)}{\partial x^{\mu}} \frac{\partial l^{\mu}(u)}{\partial u^{a}}, \quad x=l(u) \tag{4.3}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\left(\frac{\partial \varphi^{\lambda}}{\partial x^{\mu}}\right)_{t=0}=\delta_{\mu}^{\lambda} \tag{4.4}
\end{equation*}
$$

We express the projection $p: M^{n} \rightarrow B^{n-1}$ by

$$
u^{a}=p^{a}\left(x^{1}, \cdots, x^{n}\right)
$$

Then for sufficiently small t, we have

$$
\begin{equation*}
u^{a}=p^{a}\left(\boldsymbol{\varphi}^{1}(l(u), t), \cdots, \phi^{n}(l(u), t)\right), \tag{4.5}
\end{equation*}
$$

and therefore we get differentiating it

$$
\begin{gather*}
\frac{\partial p^{a}(x)}{\partial x^{\lambda}} \frac{\partial l^{\lambda}(u)}{\partial u^{b}}=\delta_{b}^{a}, \quad x=l(u), \tag{4.6}\\
\frac{\partial p^{a}}{\partial x^{\lambda}} \eta^{\lambda}=0 \tag{4.7}
\end{gather*}
$$

where the latter equation is nothing but the projection of the vector η^{λ} to the base space and it holds good at every point in the neighbourhood of x_{0}. We denote $\partial l^{\lambda}(u) / \partial u^{a}$ (resp. $\partial p^{a}(x) / \partial x^{\lambda}$) by $l_{a}^{\lambda}(u)$ (resp. $p_{\lambda}^{a}(x)$).

The lift $L: T(B) \rightarrow T(M)$ is a differentiable distribution in M^{n} and a linear mapping at each point of B^{n-1}. We denote it by

$$
L_{a}^{\lambda}: T_{u}(B) \rightarrow T_{l(u)}(M)
$$

with respect to the local coordinates systems. Then from the construction of the adapted local cross-section, we have

$$
\begin{equation*}
L_{a}^{\lambda}\left(u_{o}\right)=l_{a}^{\lambda}\left(u_{o}\right) . \tag{4.8}
\end{equation*}
$$

The lift at the point $\phi^{\lambda}(l(u), t)$ is given by $\left(\partial \varphi^{\lambda}(l(u), t) / \partial x^{\mu}\right) L_{a}^{\mu}(u)$, hence it holds

$$
\begin{equation*}
\eta_{\lambda}(\boldsymbol{\phi}(l(u), t)) \frac{\partial \boldsymbol{\phi}^{\lambda}(l(u), t)}{\partial x^{\mu}} L_{a}^{\mu}(u)=0 . \tag{4.9}
\end{equation*}
$$

Corresponding to (4.6), we have

$$
\begin{equation*}
p_{\lambda}^{\alpha}(l(u)) L_{b}^{\lambda}(u)=\delta^{a}{ }_{b} . \tag{4.10}
\end{equation*}
$$

Let X^{λ} be any vector at the point $\phi^{\lambda}(l(u), t)$, then we see that the vector $X^{\lambda}-\eta_{\mu} X^{\mu} \eta^{\lambda}$ is horizontal and has the projection $p_{\lambda}^{a} X^{\lambda}$. Thus we have

$$
\frac{\partial \varphi^{\lambda}(l(u), t)}{\partial x^{\mu}} L_{a}^{\mu}(u) p_{v}^{a}(\boldsymbol{\varphi}(l(u), t)) X^{\nu}=X^{\lambda}-\eta_{\mu} X^{\mu} \eta^{\lambda}
$$

and especially,

$$
\begin{equation*}
L_{a}^{\lambda}(u) p_{\mu}^{a}(l(u))=\delta_{\mu}^{\lambda}-\eta^{\lambda}(l(u)) \eta_{\mu}(l(u)) \tag{4.11}
\end{equation*}
$$

holds good. Differentiating (4.9) at $t=0$, we have

$$
\partial_{\mu} \eta_{\lambda} \frac{\partial l^{\mu}}{\partial u^{b}} L_{a}^{\lambda}+\eta_{\lambda} L_{a, b}^{\lambda}=0
$$

where $L_{a, b}^{\lambda}=\partial L_{a}^{\lambda} / \partial u^{b}$. Hence the following equation

$$
\begin{equation*}
\eta_{\lambda}\left(L_{a, b}^{\lambda}-L_{b, a}^{\lambda}\right)=\partial_{\mu} \eta_{\lambda}\left(\frac{\partial l^{\mu}}{\partial u^{a}} L_{b}^{\lambda}-\frac{\partial l^{\mu}}{\partial u^{b}} L_{a}^{\lambda}\right) \tag{4.12}
\end{equation*}
$$

is valid at the point $x=l(u)$. Similarly we have from (4.11)

$$
p_{\lambda}^{a}\left(L_{n, c}^{\lambda}-L_{c, b}^{\lambda,}\right)=p_{\lambda, \mu}^{a}\left(l_{b}^{\mu} L_{c}^{\lambda}-l_{c}^{\mu} L_{b}^{\lambda}\right)
$$

and therefore we get by virtue of (4.11) and (4.12)

$$
\begin{equation*}
L_{a, b}^{\lambda}-L_{b, a}^{\lambda}=\left(\eta^{\lambda} \partial_{\mu} \eta_{v}+L_{c}^{\lambda} p_{\mu, \nu}^{c}\right)\left(l_{a}^{\mu} L_{b}^{v}-l_{b}^{\mu} L_{a}^{\nu}\right) . \tag{4.13}
\end{equation*}
$$

In particular, at the points u_{0} and x_{0}, it follows

$$
\begin{equation*}
L_{a, b}^{\lambda}\left(u_{0}\right)=L_{b, a}^{\lambda}\left(u_{0}\right)+\eta^{\lambda}(d \eta)_{\mu \nu}\left(x_{0}\right) L_{a}^{\mu} L_{b}^{\nu}\left(u_{0}\right) . \tag{4.14}
\end{equation*}
$$

Now the metric tensor $g^{\prime}{ }_{a b}$ is, by definition, given by

$$
\begin{equation*}
g^{\prime}{ }_{a b}(u)=L_{a}^{\lambda}(u) L_{b}^{\mu}(u) g_{\lambda_{\mu}}(l(u)) . \tag{4.15}
\end{equation*}
$$

As the metric g and the 1 -form η are invariant on the trajectory of η, we have at an arbitrary point $x^{\lambda}=\phi^{\lambda}(l(u), t)$

$$
\begin{align*}
g_{\lambda \mu}(x) & =p_{\lambda}^{a}(x) p_{\mu}^{b}(x) g_{a b}^{\prime}{ }_{a b}(p(x))+\eta_{\lambda}(x) \eta_{\mu}(x) \tag{4.16}\\
g^{\lambda_{\mu}}(x) & =L_{a}^{\lambda}(p(x)) L_{b}^{\mu}(p(x)) g^{\prime a b}(p(x))+\eta^{\lambda}(x) \eta^{u}(x) \tag{4.17}
\end{align*}
$$

From them we can investigate the relation between the Christoffel symbol $\left\{\begin{array}{c}\lambda \\ \mu \nu\end{array}\right\}_{x_{0}}$ at the point x_{0} with respect to the metric $g_{\lambda_{\mu}}$ and that $\left\{\begin{array}{l}a \\ b c\end{array}\right\}_{u_{0}}^{\prime}$ at the point $u_{0}=p\left(x_{0}\right)$ with respect to the metric $g^{\prime}{ }_{a b}$. From (4.15), we have at the points x_{0} and u_{0}

$$
\left\{\begin{array}{l}
a \tag{4.18}\\
b c
\end{array}\right\}_{u_{0}}^{\prime}=p_{\lambda}^{a}\left(x_{0}\right) L_{b}^{\mu}\left(u_{0}\right) L_{\mathrm{c}}^{\nu}\left(u_{0}\right)\left\{\begin{array}{l}
\lambda \\
\mu \nu
\end{array}\right\}_{x_{0}}+p_{\lambda}^{a}\left(x_{0}\right) L_{b, c}^{\lambda}\left(u_{0}\right) .
$$

While we have $\eta^{\lambda} p_{\lambda}^{a}=0$ at every point on M^{n}, hence it follows that

$$
p_{\rho}^{a}\left\{\begin{array}{c}
\rho \\
\lambda_{\sigma}
\end{array}\right\} \eta^{\sigma}=\nabla_{\lambda} \eta^{\rho} p_{\rho}^{a}+p_{\lambda, \mathrm{\rho}}^{a} \eta^{\rho} .
$$

If we differentiate $p_{\rho}^{a}(l(u)) L \xi(u)=\delta^{a}{ }_{b}$ and consider it at $u=u_{0}$, then we get

$$
p_{\rho}^{a} L_{b, c}^{p}=-p_{\rho, \sigma}^{a} L_{b}^{\rho} L_{c}^{\sigma} .
$$

Thus we have at the points x_{0} and $u_{0}=p\left(x_{0}\right)$

$$
p_{\rho}^{a}\left\{\begin{array}{c}
\rho \tag{4.19}\\
\lambda \mu
\end{array}\right\}_{x_{0}}=p_{\lambda}^{b} p_{\mu}^{c}\left\{\begin{array}{l}
a \\
b c
\end{array}\right\}_{u_{0}}^{\prime}+p_{\lambda, \mu}^{a}+\left(\nabla_{\lambda} \eta^{\rho} \eta_{\mu}+\nabla_{\mu} \gamma^{\rho} \eta_{\lambda}\right) p_{\rho}^{a} .
$$

Let $u=\left(u_{a_{1} \ldots a_{p}}\right)$ be a p-form on the base space B^{n-1}, and put $\bar{u}=p^{*} u$. Then the p-form \bar{u} on M^{n} has the coefficients

$$
\begin{equation*}
\bar{u}_{\lambda_{1} \ldots \lambda_{p}}=p_{\lambda_{1}}^{a_{1}} \cdots p_{\lambda_{p}^{p}}^{a_{p}} u_{a_{1} \ldots a_{p}} . \tag{4.20}
\end{equation*}
$$

It is well known that \bar{u} satisfies

$$
\begin{equation*}
\mathrm{i}(\eta) \bar{u}=0, \quad d \bar{u}=p^{*} d u . \tag{4.21}
\end{equation*}
$$

We calculate $\delta \bar{u}$ in the following. At the points x_{0} and u_{0}, we see

$$
\begin{aligned}
& \left.\nabla_{\mu} \bar{u}_{\lambda_{1} \ldots \mu_{p}}\left(x_{0}\right)=\partial_{\mu} \overline{\boldsymbol{u}}_{\lambda_{1} \ldots \lambda_{p}}-\sum_{i=1}^{p}\left\{\begin{array}{c}
\boldsymbol{\sigma} \\
\mu \lambda_{i}
\end{array}\right\}\right\}_{x_{0}} \bar{u}_{\lambda_{1} \ldots \hat{\sigma} \ldots \lambda_{p}}^{i} \\
& =\sum_{i=1}^{p}\left(p_{\lambda_{1}}^{a_{1}} \cdots p_{\lambda_{i}, \mu}^{a_{1}} \cdots p_{\lambda_{p}}^{a}\right) u_{a_{1} \cdots a_{p}}\left(u_{0}\right)+\left(p_{\lambda_{1}}^{a_{1}} \cdots p_{\lambda_{p}}^{a_{p}}\right) p_{\mu}^{b} \partial_{b} u_{a_{1} \cdots a_{p}}\left(u_{0}\right) \\
& -\sum_{i=1}^{p}\left\{\begin{array}{c}
\sigma \\
\mu \lambda_{i}
\end{array}\right\}_{x_{0}} p_{\sigma}^{a_{s}}\left(p_{\Lambda_{1}}^{a_{1}} \cdots \widehat{i} \cdots p_{\lambda_{p}}^{a_{p}}\right) u_{a_{1} \cdots a_{p}} \\
& =p_{\lambda_{1}}^{a_{1}} \cdots p_{\lambda_{p}}^{a_{p}} p_{\mu}^{a} \nabla_{a}^{\prime} u_{a_{1} \cdots a_{p}}\left(u_{0}\right)-\sum_{i=1}^{p}\left(\nabla_{\mu} \eta^{\rho} \eta_{\lambda_{t}}+\nabla_{\lambda_{t}} \eta^{n} \eta_{\mu}\right) \bar{u}_{\lambda_{1}} .{\hat{\hat{\rho}} \ldots \lambda_{p}}_{i}\left(x_{0}\right) \text {. }
\end{aligned}
$$

Contracting this by $g^{\mu \lambda \lambda_{1}}$, we have

$$
\begin{aligned}
& (\delta \bar{u})_{\lambda_{2} \ldots \lambda_{p}}=\left(p^{*} \delta u\right)_{\lambda_{2} \ldots \lambda_{p}}+\sum_{i=1}^{p} g^{\mu \lambda_{1}}\left(\boldsymbol{\varphi}_{\mu}^{\rho} \eta_{\lambda_{t}}+\boldsymbol{\varphi}_{\lambda_{t}{ }^{\rho}} \eta_{\mu}\right) \bar{u}_{\lambda_{1} \ldots \hat{\rho} \ldots \lambda_{p}}^{i} \\
& =\left(p^{*} \delta u\right)_{\lambda_{2} \ldots \lambda_{p}}+g^{\mu \lambda} \boldsymbol{\varphi}_{\mu}^{\rho} \eta_{\lambda} \bar{u}_{\rho \lambda_{2} \ldots \lambda_{p}}+\sum_{i=2}^{p} g^{\mu \lambda} \boldsymbol{\varphi}_{\mu}^{\rho} \eta_{\lambda_{i}} \bar{u}_{\lambda \lambda_{2}} \ldots \ldots \hat{\hat{\rho}} \ldots \lambda_{p} \\
& +g^{\mu \lambda} \boldsymbol{\varphi}_{\lambda}{ }^{\rho} \boldsymbol{\eta}_{\mu} \bar{u}_{\rho \lambda_{2} \ldots \lambda_{p}}+\sum_{i=2}^{p} g^{\mu \lambda} \boldsymbol{\varphi}_{\lambda_{t}{ }^{\rho} \eta_{\mu} \bar{u}_{\lambda \lambda_{2}} \ldots \hat{\rho} \ldots \lambda_{p}}^{i} \\
& =\left(p^{*} \delta u\right)_{\lambda_{2} \ldots \lambda_{p}}+(e(\eta) \Lambda \bar{u})_{\lambda_{2} \ldots \lambda_{\rho}} .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\delta \bar{u}=p^{*} \delta u+e(\eta) \Lambda u . \tag{4.22}
\end{equation*}
$$

at every points x in M^{n} and $p(x)$ in B^{n-1}.
For any harmonic p-form u on the base space, we see from (4.21) and (4.22) that the p-form $\bar{u}=p^{*} u$ satisfies

$$
d \bar{u}=0, \quad \delta \bar{u}=e(\eta) \Lambda \bar{u},
$$

and hence \bar{u} is a C-harmonic p-form. Conversely, for any C-harmonic p-form w on $M^{n}, i(\eta) w=0$ and $\theta(\eta) w=0$ are valid if $p \leqq m$. Therefore there
exists a p-form w^{\prime} on B^{n-1} such that $w=p^{*} w^{\prime}$. Then from (4.21) and (4.22) again we see that w must be harmonic. Consequently we have proved

THEOREM 4.1. In a compact regular Sasakian space $M^{2 m+1}$, let $B^{2 m}$ be the base space of the fibering of Boothby-Wang. Then the vector space of C-harmonic p-forms on $M^{2 m+1}$ is isomorphic to the vector space of harmonic p-forms on $B^{2 m}$ if $p \leqq m$.

Thus we have $\operatorname{dim} H_{p}(B)\left(=b_{p}(B)\right)=\operatorname{dim} C_{p}(M)$, if $p \leqq m$. Taking account of Theorem 3.3, we can obtain Tanno's theorems again.

Corollary 4.1.1. In the same condition as Theorem 4.1, we have

$$
b_{p}(M)=b_{p}(B)-b_{p-2}(B), \quad 2 \leqq p \leqq m .
$$

Corollary 4.1.2. In the same condition as Theorem 4.1, the vector space of harmonic 1 -forms of $M^{2 m+1}$ and that of $B^{2 m}$ is isomorphic.
5. \boldsymbol{C}^{*}-harmonic forms. Let M^{n} be an $n(=2 m+1)$-dimensional compact Sasakian space. As a dual form of a harmonic form in a Riemannian space is also harmonic, it is natural to ask for the properties of a dual form of a C-harmonic form in a Sasakian space.

We shall call a form u to be C^{*}-harmonic if it satisfies

$$
\begin{aligned}
& d u=i(\eta) L u, \\
& \delta u=0 .
\end{aligned}
$$

From the definition, the following theorem is evident.
ThEOREM 5.1. In a Sasakian space, a p-form u is C-harmonic if and only if the $(n-p)$-form ${ }^{*} u$ is C^{*}-harmonic.

Therefore the dual form $c e(\eta) L^{m-k} \cdot 1$ (where c is a constant) of $L^{k} \cdot 1$ is a C^{*}-harmonic form. By virtue of Theorem 2.2 we see that for any C^{*}-harmonic p-form $u(p \geqq m+1)$ it holds

$$
e(\eta) u=0 .
$$

Moreover we see from Theorem 2.1 and Lemma 1.3,

$$
\begin{equation*}
\theta(\eta) u=0, \tag{5.1}
\end{equation*}
$$

for any C^{*}-harmonic p-form u (p is arbitrary). In the proof of Theorem 2.2 we have $L i(\eta) u=0$ for any C-harmonic p-form u, and therefore we have $\Lambda e(\eta) u=0$ for any C^{*}-harmonic form u. We denote by $C^{*}{ }_{p}$ the vector space of all C^{*}-harmonic p-forms.

Lemma 5.1. In a compact Sasakian space, we have

$$
H_{p}=C_{p} \cap C_{p}^{*}
$$

for an arbitrary p.
PROOF. It is evident from the definition that $C_{p} \cap C_{p}^{*}$ is included in H_{p}. Conversely let u be a harmonic p-form. If $p \leqq m$, then we have $i(\eta) u=0$, and $\Lambda u=0$. Therefore

$$
\begin{equation*}
e(\eta) \Lambda u=0, \quad i(\eta) L u=0 \tag{5.2}
\end{equation*}
$$

hold good. Hence u is both C-harmonic and C^{*}-harmonic. If $p \geqq m+1$, then we have $e(\eta) u=0$, from which (5.2) follows too, and $H_{p} \subset C_{p} \cap C_{p}^{*}$ is proved.

Lemma 5.2. Let u be a p-form in $C_{p} \cup C_{p}^{*}$. Then $e(\eta) u$ is a C^{*}-harmonic form, and $i(\eta) u$ is a C-harmonic form. The mapping $e(\eta) \mid C_{p}$ is an into isomorphism and $i(\eta) \mid C_{p+1}^{*}$ is a homomorphism onto C_{p}, if $p \leqq m$.

PROOF. Let u be a C-harmonic p-form, then we have by virtue of Lemma $2.2 \delta(e(\eta) u)=0$. We have $L i(\eta) u=0$. As $d u=0$ we get $d\left(e\left(r_{1}\right) u\right)=L u$, and we have

$$
L u=L i(\eta) e(\eta) u=i(r) L(e(\eta) u)
$$

Hence $e(\eta) u$ is C^{*}-harmonic. If v is C^{*}-harmonic, then we have

$$
\begin{gathered}
\delta(e(\eta) v)=-e(\eta) \delta v=0, \\
d(e(\eta) v)=L v-e(\boldsymbol{\eta}) d v=L v-e(\eta)(i(\eta) L v) \\
=i(\eta) L(e(\eta) v),
\end{gathered}
$$

which shows that $e(\eta) v$ is also C^{*}-harmonic. Moreover if $e(\eta) u=0$ for a C-harmonic p-form $u(p \leqq m)$, then we have

$$
u=e(\eta) i(\eta) u+i(\eta) e(\eta) u=0
$$

Therefore $e(\eta)$ is an isomorphism of C_{p} into $C^{*}{ }_{p+1}(p \leqq m)$. In the same way, we can prove the statement with respect to $i(\eta)$.

THEOREM 5.2. In a compact $(2 m+1)$-dimensional Sasakian space, it holds

$$
C_{p}^{*}=H_{p} \oplus e(\eta) C_{p-1}
$$

if $p \leqq m$.
Proof. The vector space H_{p}, and $e(\eta) C_{p-1}$ are the subspaces of C_{p}^{*} and $H_{p} \cap e(\eta) C_{p-1}=(0)$ if $p \leqq m$. For any C^{*}-harmonic form u we decompose it as

$$
u=i(\eta)(e(\eta) u)+e(\eta)(i(\eta) u)
$$

Then $e(\eta) u$ is a C^{*}-harmonic $(p+1)$-form, and we see $i(\eta) e(\eta) u$ belongs to C_{p}. Similarly, as $i(\eta) u$ is a C-harmonic ($p-1$)-form, $e(\eta) i(\eta) u$ is C^{*}-harmonic. Therefore $i(\eta) e(\eta) u=u-e(\eta) i(\eta) u$ is at the same time C-harmonic and C^{*}-harmonic, hence belongs to H_{p}. Thus the theorem is proved.

Corollary 5.2.1. In a compact ($2 m+1$)-dimensional Sasakian space, the relation

$$
H_{p}=i(\eta) e(\eta) C_{p}^{*}
$$

is valid for $p \leqq m$. Hence $b_{p}=0$ if and only if $e(\eta) C_{p}^{*}=0$ for $p \leqq m$.
Corollary 5.2.2. In a compact ($2 m+1$)-dimensional Sasakian space, if u is a C-harmonic form $(p \leqq m)$, then δu is C^{*}-harmonic. If u is a C^{*}-harmonic p-form ($p \leqq m$), then $d u$ is C-harmonic.

Proof. The first half is an easy result from Theorem 2.3 and Lemma 4.2. Let u be a C^{*}-harmonic p-form $(p \leqq m)$, then there exsits a harmonic p-form ψ and a C-harmonic ($p-1$)-form w such that $u=\psi+e(\eta) w$. Hence we have $d u=d e(\eta) w=L w$, which is C-harmonic.

Corollary 5.2.3. In a compact $(2 m+1)$-dimensional Sasakian space, if a p-form $u(p \leqq m+1)$ is C^{*}-harmonic, then Λu is also C^{*}-harmonic.

Corollary 5.2.4. In a compact $(2 m+1)$-dimensional Sasakian space,
we suppose that a p-form $u(p \leqq m-2)$ is C^{*}-harmonic. Then $L u$ is also C^{*}-harmonic if and only if $e(\eta) u=0$.

Proof. Let u be a C^{*}-harmonic p-form $(p \leqq m-2)$. If $e(\eta) u=0$, then $L u=e(\eta) d u$ is also C^{*}-harmonic by virtue of Corollary 5.2.2 and Lemma 5.2. Conversely we assume that $L u$ is a C^{*}-harmonic form. There exist a harmonic p-form ψ and a C-harmonic $(p-1)$-form w such that $u=\psi+e(\eta) w$. Hence we have $L \psi=L u-e(\eta) L w$ is C^{*}-harmonic. Since a harmonic form ψ is C-harmonic, $L \psi$ is also C-harmonic. Therefore $L \psi$ is again a harmonic $(p+2)$-form. As $p+2 \leqq m$, we have $\Lambda L \psi=0$. Now ΛL is an automorphism of the vector space which consists of the p-forms v such that $i(\eta) v=0$ if $p \leqq m-1$ (see [1]). Consequently we have $\psi=0$. This shows that $u=e(\eta) w$ and hence $e(\eta) u=0$.

By virtue of Theorem 3.1 and Theorem 4.2, we can set the following decomposition theorem for the C^{*}-harmonic form.

ThEOREM 5.3. In a compact ($2 m+1$)-dimensional Sasakian space, any C^{*}-harmonic p-form $u_{p}(p \leqq m)$ can be written uniquely in the form:

$$
u_{p}=\psi_{p}+\sum_{k=0}^{r} e(\eta) L^{k} \psi_{p-1-2 k}
$$

where ψ_{p} and $\psi_{p-1-2 k}$ are harmonic forms and r is the integral part of ($p-1$)/2. Conversely any form written as in the right hand side is C^{*}-harmonic.

Yano-Bochner [8] has defined the Killing p-form which can be considered as a natural extension of Killing 1 -form. We show in the following an example of a Killing p-form where p is odd and ask for some relations between Killing forms and C^{*}-harmonic forms in a Sasakian space.

A p-form $v_{\lambda_{1} \ldots \lambda_{p}}$ in a Riemannian space is called to be Killing if its covariant derivative $\nabla_{\mu} v_{\lambda_{1} \ldots \lambda_{p}}$ is skew-symmetric in the indices $\left(\mu, \lambda_{1}, \cdots, \lambda_{p}\right)$. Therefore a p-form $v_{\lambda_{1} \ldots \lambda_{p}}$ is a Killing form if and only if it satisfies

$$
\begin{equation*}
(d v)_{\lambda_{0} \cdots \lambda_{p}}=(p+1) \nabla_{\lambda_{0}} v_{\lambda_{1} \cdots \lambda_{p}} . \tag{5.3}
\end{equation*}
$$

In the first place we show the following
THEOREM 5.4. In a Sasakian space, the ($2 k+1$)-form

$$
u^{(k)}=e(\eta) L^{k} \cdot 1
$$

are Killing forms, where $k=0,1, \cdots, m$.
To prove this we prepare some lemmas.
Lemma 5.3. In a Sasakian space, the ($p+2$)-tensor $(p=2 k, k \geqq 1)$

$$
A_{\sigma \rho \lambda_{1} \ldots \lambda_{p}}^{(k)}=\sum_{i=1}^{p} \phi_{\sigma \lambda_{i}} \boldsymbol{\varphi}_{\lambda_{1} \ldots \hat{\rho} \ldots \lambda_{p}}^{\stackrel{i}{n}}
$$

is skew-symmetric in the indices (σ, ρ), where $\phi_{\lambda_{1}}^{k} \ldots \lambda_{p}$ is the coefficients of the $2 k$-form $\varphi \stackrel{\lambda_{\wedge}}{\wedge \cdots \wedge} \varphi$.

PROOF. For $k=1, \varphi_{\sigma \lambda_{1}} \varphi_{\rho \lambda_{2}}+\varphi_{\sigma \lambda_{2}} \varphi_{\lambda_{1} \rho}$ is clearly skew-symmetric in (σ, ρ). We assume that the lemma is true for $k=1, \cdots, k-1$, then

$$
\begin{aligned}
& A_{\sigma \rho \rho_{s} \cdots \lambda_{p}}^{(k-1)}=\sum_{j=3}^{p} \phi_{\sigma \lambda_{j}} \boldsymbol{\varphi}_{\lambda_{2} \ldots \ldots \ldots \lambda_{p}}^{k-1}, \\
& B_{\sigma \rho \lambda \lambda_{s} \ldots \lambda_{p}}^{(h)}=\sum_{3 \leqq j \neq h} \varphi_{\sigma \lambda,} \varphi_{\lambda_{s} \ldots \hat{\lambda} \ldots \hat{\rho} \ldots \lambda_{p}}^{k-1}+\varphi_{\sigma \lambda} \varphi_{\lambda_{s} \ldots \ldots \ldots \lambda_{p}}^{k-1} \quad \text { for } \quad h \geqq 3,
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } h, l \quad(3 \leqq h<l)
\end{aligned}
$$

are all skew-symmetric in (σ, ρ). Calculating $A^{(k)}$ directly we have

$$
\begin{aligned}
& A_{\sigma \rho \lambda_{1} \ldots \lambda_{p}}^{(k)}=\boldsymbol{\varphi}_{\sigma \lambda_{1}} \boldsymbol{\varphi}_{\rho \lambda_{2} \ldots \lambda_{p}}^{k}-\boldsymbol{\varphi}_{\sigma \lambda_{2}} \boldsymbol{\varphi}_{\rho \lambda_{1} \ldots \lambda_{p}}^{k}+\sum_{j=3}^{p} \boldsymbol{\varphi}_{\sigma \lambda_{j}} \boldsymbol{\varphi}_{\lambda_{1} \ldots \hat{\rho} \ldots \lambda_{p}}^{j}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=3}^{p}\left(\boldsymbol{\varphi}_{\sigma \lambda_{2}} \boldsymbol{\varphi}_{\rho \lambda_{s}}-\boldsymbol{\varphi}_{\rho \lambda_{2}} \boldsymbol{\varphi}_{\sigma \lambda_{j}}\right) \boldsymbol{\varphi}_{\lambda_{s} \ldots \lambda_{1} \ldots \lambda_{p}}^{k-1}-\sum_{3 \leqq j<h}^{j}\left(\boldsymbol{\varphi}_{\sigma \lambda_{j}} \boldsymbol{\varphi}_{\rho \lambda_{h}}-\boldsymbol{\varphi}_{\sigma \lambda_{h}} \boldsymbol{\varphi}_{\rho \lambda_{j}}\right) \boldsymbol{\varphi}_{\lambda_{s} \ldots \ldots \lambda_{1} \ldots \hat{\lambda}_{2}^{k} \ldots \lambda_{p}}^{k} .
\end{aligned}
$$

The latter four terms are clearly skew-symmetric in (σ, ρ), hence so is $A_{\sigma \rho \lambda_{1} \ldots \lambda_{p}}^{(k)}$.

Lemma 5.4. In a Sasakian space, we have

$$
\nabla_{\rho}\left(L u^{(k)}\right)=L\left(\nabla_{\rho} u^{(k)}\right),
$$

where the form $\nabla_{f} u$ is defined by $\left(\nabla_{\rho} u\right)_{\lambda_{1} \cdots \lambda_{p}}=\nabla_{\rho} u_{\lambda_{1} \ldots \lambda_{p}}$ for a p-form u.
Proof. Put $\varphi=(1 / 2) d \eta$. For $p(=2 k+1)$-form $u^{(k)}$, we have $e(\eta) u^{(k)}=0$. Hence it follows that

$$
\begin{aligned}
& \nabla_{\rho}\left(\boldsymbol{\varphi} \wedge u^{(k)}\right)_{\sigma \tau \lambda_{1} \ldots \lambda_{p}}=\left(\boldsymbol{\varphi} \wedge \nabla_{\rho} u^{(k)}\right)_{\sigma \tau \lambda_{1} \ldots \lambda_{p}}+\nabla_{\rho} \varphi_{\sigma \tau} u_{\lambda_{2} \ldots \lambda_{p}}^{(k)}-\sum_{i=1}^{p} \nabla_{\rho} \varphi_{\sigma \lambda_{1}} u_{\lambda_{1} \ldots \hat{\uparrow} \cdot \lambda_{p}}^{i k)} \\
& -\sum_{i=1}^{p} \nabla_{\rho} \varphi_{\lambda_{1} \tau} u_{\lambda_{1} \ldots \ldots}^{(k)} \stackrel{i}{i} \ldots \lambda_{p}+\sum_{i<j} \nabla_{\rho} \varphi_{\lambda_{1} \lambda_{1}} u_{\lambda_{1} \ldots \ldots \hat{\sigma} \ldots \hat{\kappa} \ldots \lambda_{p}}^{i(i)} \\
& =g_{\rho \tau}\left(e(\eta) u^{(k)}\right)_{\sigma \lambda_{1} \ldots \lambda_{p}}-g_{\rho \sigma}\left(e(\eta) u^{(k)}\right)_{\tau \lambda_{1} \ldots \lambda_{\rho}} \\
& -\sum_{i=1}^{p} g_{\rho}\left(e(\eta) u^{(k)}\right)_{\sigma \lambda_{1} \ldots \hat{\tau} \ldots \lambda_{p}}^{i}+\left(\varphi \wedge \nabla_{\rho} u^{(k)}\right)_{\sigma \tau \lambda_{1} \ldots \lambda_{p}} \\
& =\left(\boldsymbol{\varphi} \wedge \nabla_{\rho} u^{(k)}\right)_{\sigma \tau \lambda_{1} \ldots \lambda_{p}} .
\end{aligned}
$$

PROOF OF THEOREM 5.4. We prove it by the induction again. In case $k=0, u^{(0)}=\eta$ is a Killing form. Assuming that the theorem is true for $k=0,1, \cdots, k$, we set $p=2 k+1$. Then the p-form $u^{(k)}$ satisfies

$$
\begin{equation*}
\left(d u^{(k)}\right){\lambda_{0} \cdots \lambda_{p}}=(p+1) \nabla_{\lambda_{0}} u_{\lambda_{1} \cdots \lambda_{p}}^{(k)}=2 \varphi_{\lambda_{0} \cdots \lambda_{p}}^{k+1} . \tag{5.4}
\end{equation*}
$$

We have by virtue of Lemma 5.4

$$
\begin{aligned}
& \nabla_{\boldsymbol{\rho}}\left(\boldsymbol{\varphi} \wedge \boldsymbol{u}^{(k)}\right)_{\sigma \tau \lambda_{1} \ldots \lambda_{\boldsymbol{p}}}=\boldsymbol{\phi}_{\sigma \tau} \nabla_{\boldsymbol{\rho}} \boldsymbol{u}_{\lambda_{1} \ldots \lambda_{\boldsymbol{p}}}^{(k)}-\sum_{i=1}^{p} \boldsymbol{\varphi}_{\sigma \lambda_{i}} \nabla_{\boldsymbol{\rho}} \boldsymbol{u}_{\lambda_{1}^{(k)} \ldots \hat{\tau}^{(k)} \lambda_{\boldsymbol{p}}}^{\boldsymbol{i}}
\end{aligned}
$$

then the latter two terms in the right hand side is skew-symmetric in (σ, ρ) by the assumpticn. Considering (5.4), we have

$$
\begin{aligned}
& \boldsymbol{\varphi}_{\sigma \tau} \nabla_{\boldsymbol{\rho}} \boldsymbol{u}_{\lambda_{1} \ldots \lambda_{\boldsymbol{\rho}}}^{(k)}-\sum_{i=1}^{p} \boldsymbol{\phi}_{\sigma \lambda_{i}} \nabla_{\boldsymbol{\rho}} \boldsymbol{u}_{\lambda_{1} \ldots \ldots \hat{\tau}}^{(k) \lambda_{\boldsymbol{\rho}}} \\
& =\frac{2}{p+1}\left[\boldsymbol{\varphi}_{\sigma \tau} \boldsymbol{\varphi}_{f \lambda_{1} \ldots \lambda_{s}}^{k+1}-\sum_{i=1}^{p} \boldsymbol{\varphi}_{\sigma \lambda_{1}} \boldsymbol{\varphi}_{\rho \lambda_{1} \ldots \ldots \lambda_{p}}^{k+1}\right] \\
& =\frac{2}{p+1} \sum_{\alpha=0}^{p} \varphi_{\sigma \lambda_{\alpha}} \varphi_{\lambda_{0} \ldots \hat{\rho} \ldots \lambda_{p}}^{\substack{k+1}},
\end{aligned}
$$

where we set $\lambda_{0}=\tau$. This is skew-symmetric in (σ, ρ) from Lemma 5.3. Hence we see that $\nabla_{\rho}\left(u^{(k+1)}\right)_{\sigma \lambda_{0} \ldots \lambda_{p}}$ is also skew-symmetric in the indices (ρ, σ), and the theorem is proved.

Now the Killing form $u^{(k)}=e(\eta) L^{(k)} \cdot 1$ satisfies $e(\eta) u^{(k)}=0$. Though how many of the Killing forms satisfy this condition is not clear, we next only concern about such Killing forms in a Sasakian space. Then we can see that there exists a relation between Killing forms and C^{*}-harmonic forms.

Let u be a Killing form and assume that it satisfies $e(\eta) u=0$. From the definition of Killing form, we have easily

$$
\begin{gathered}
\delta u=0 \\
i(\eta) d u=(p+1) \nabla_{\eta} u .
\end{gathered}
$$

We get

$$
\begin{equation*}
\theta(\eta) u=0 \tag{5.5}
\end{equation*}
$$

for such a Killing form from (1.18). Then we see

THEOREM 5.5. In a Sasakian space, if a Killing p-form u satisfies $e(\eta) u=0$, then u is C^{*}-harmonic and $i(\eta) u$ is C-harmonic for all p.

Proof. We have from (5.5)

$$
d i(\eta) u=-i(\eta) d u=-(p+1) \nabla_{\eta} u
$$

As $e(\eta) u=0$, it holds $u=e(\eta) i(\eta) u$. Then

$$
d u=L i(\eta) u-e(\eta)\left(-(p+1) \nabla_{\eta} u\right)=L i(\eta) u .
$$

This shows with $\delta u=0$ that u is $a C^{*}$-harmonic p-form. We have, therefore, $-i(\eta) d u=d i(\eta) u=0$. Moreover we get $\delta(i(\eta) u)=\Lambda u$ and $e(\eta) \Lambda(i(\eta) u)=\Lambda u$, hence $i(\eta) u$ is a C-barmonic $(p-1)$-form.

Corollary 5.5.1. In a Sasakian space, if a Killing form u satisfies $e(\eta) u=0$, then

$$
\nabla_{\eta} u=0, \quad \Phi u=0
$$

are valid.

Corollary 5.5.2. In a Sasakian space, we assume that a Killing form u satisfies $e(\eta) u=0$. Then u is effective if and only if $i(\eta) u$ is harmonic.

Bibliography

[1] S. Tachibana, On a decomposition of C-harmonic forms in a compact Sasakian space, Tôhohu Math. Journ., 19(1967), 198-212.
[2] S. Tachibana, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. Journ., 17(1965), 271-284.
[3] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian manifolds, Journ. of Math. Soc. Japan, 19(1967), 308-316.
[4] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tôhoku Math. Journ., 12(1960), 459-476.
[5] Y. Hatakeyama, Some notes on differentiable manifold with almost contact structures, Tôhoku Math. Journ., 15(1963), 176-181.
[6] W. M. Boothby and H. C. Wang, On contact manifolds. Ann. of Math. 68(1958), 721-734.
[7] S. I. Goldberg, Curvature and Homology, Academic Press, New York, 1962.
[8] K. Yano and S. bochner, Curvature and Betti numbers, Ann. Math. Studies, 32, Princeton, 1953.
[9] T. Fujitani, Complex valued differential forms on normal contact Riemannian manifolds, Tôhoku Math. Journ., 18(1966), 349-361.

Ochanomizu University
TOKYo, Japan.

