STRONGLY CURVATURE-PRESERVING TRANSFORMATIONS OF PSEUDO-RIEMANNIAN MANIFOLDS

Shûkichi Tanno

(Received January 26, 1967)

Introduction. Let (M, g) and $\left(M^{\prime}, g^{\prime}\right)$ be two (pseudo-) Riemannian manifolds with metric tensors g and g^{\prime} respectively. A diffeomorphism φ of M to M^{\prime} is called a strongly curvature-preserving transformation if φ maps $\nabla^{k} R$ into $\nabla^{\prime k} R^{\prime}$ for $k=0,1, \cdots$, where $\nabla^{k} R(k \geqq 1)$ denotes the k-th covariant derivative of the Riemannian curvature tensor R of g and $\nabla^{\circ} R=R$.

As a different version of the equivalence problem in Riemannian geometry, K. Nomizu and K. Yano [4, 5] have obtained the following result :

Theorem A. If M and M^{\prime} are both irreducible and analytic Riemannian manifolds, and if φ is a strongly curvature-preserving transformation of M to M^{\prime}, then φ is a homothety.

However this kind of problem is important also in pseudo-Riemannian geometry. When g is an indefinite Riemannian metric, at any point it is reducible to

$$
\left(d x^{1}\right)^{2}+\cdots+\left(d x^{p}\right)^{2}-\left(d x^{p+1}\right)^{2}-\cdots-\left(d x^{m}\right)^{2}
$$

with respect to some local coordinates $\left(x^{1}, \cdots, x^{m}\right)$, where $m=\operatorname{dim} M$ and the integer $2 p-m$ is called the signature of g. We may assume that the signature is not smaller than 0 . Of course the signature m implies that the metric is positive definite. Then the purpose of this note is to show the following

Theorem 1. Let M and M^{\prime} be both irreducible and analytic pseudoRiemannian manifolds, and assume that the signature of g is not zero in the case where $\operatorname{dim} M$ is even $\geqq 4$, then any strongly curvature-preserving transformation of M to M^{\prime} is a homothety.

The proof of Theorem 1 gives the proof also to the following Theorem which is a generalization of a result in [3] to pseudo-Riemannian manifolds:

THEOREM 2. Let M and M^{\prime} be irreducible pseudo-Riemannian manifolds, if the signature of g is not zero in the case where $\operatorname{dim} M$ is even $\geqq 4$, then any affine transformation of M to M^{\prime} is a homothety.

1. The linear transformation A. Let $g^{*}=\phi^{*} g^{\prime}$ be the metric in M induced by φ from g^{\prime}. We take an arbitrary point x of M and fix it. Then by the quite similar argument on infinitesimal holonomy group as in [5] we have

Lemma 1.1. The restricted holonomy group $\psi(x)$ of g at x is contained in that $\psi^{*}(x)$ of y^{*}.

Now we define a linear transformation A of the tangent space M_{x} at x by

$$
\begin{equation*}
g(A X, Y)=g^{*}(X, Y) \tag{1.1}
\end{equation*}
$$

for X, Y in M_{x}. We show that A commutes with every element σ of $\psi(x)$. As g, and y^{*} by Lemma 1.1, are invariant by $\psi(x)$, we have

$$
\begin{align*}
g(\sigma X, \sigma \cdot Y) & =g(X, Y), \tag{1.2}\\
g^{*}(\sigma X, \sigma Y) & =g^{*}(X, Y) . \tag{1.3}
\end{align*}
$$

Then by (1.1), (1.2) and (1.3), we have

$$
\begin{equation*}
g(A c \cdot X, \sigma Y)=g(\sigma A X, \sigma Y) \tag{1.4}
\end{equation*}
$$

As g and σ are non-singular we have $A c=\sigma A$ for any σ of $\psi(x)$. Since $\psi(x)$ acts on M_{x} irreducibly, A must be of the form either $A=a I$, or $A=a I+b J$, where I is the identity transformation of M_{x} and J is a linear transformation such that $J^{2}=-I, a$ and b are real numbers. (p. 277, [2]) If $A=a I$ we have $y^{*}=a y$ at x, namely φ is conformal. Thus the essential point is to obtain the conditions for $b J$ to vanish. Suppose that $A=a I+b J$, then by the symmetry of g^{*}, A and J are symmetric. This implies:

$$
\begin{equation*}
g(J X, J Y)=-g(X, Y) \tag{1.5}
\end{equation*}
$$

for any X, Y in M_{x}. Thus J satisfies:
(i) If X and Y are orthogonal, so are $J X$ and $J Y$.
(ii) If X is null, so is $J X$.
(iii) If X is pcsitive (negative), then $J X$ is negative (positive resp.);

Thus we have
Lemma 1.2. The only possible case of existence of J is that $\operatorname{dim} M$ is even and the signature is zero.

Next we find out the system of equations which J must satisfy. By this we obtain the next:

Lemma 1.3. When $\operatorname{dim} M$ is 2 and the signature is zero, J does not exist.

Assume that $\operatorname{dim} M=m=2 n$ and take a basis of M_{x} such that

$$
J=\left(\begin{array}{rr}
0 & -E \tag{1.6}\\
E & 0
\end{array}\right) \quad E: \text { unit } n \times n \text { matrix. }
$$

As any $\sigma \in \psi(x)$ commutes with A and hence $J, \psi(x)$ is considered as the real representation of the unitary group $U(n)$:

$$
\sigma=\left(\begin{array}{rr}
Q & -R \tag{1.7}\\
R & Q
\end{array}\right) \quad Q, R: n \times n \text { matrices. }
$$

By (1.5) namely ${ }^{t} J g J=-g, g$ is of the form

$$
g=\left(\begin{array}{rr}
B & C \tag{1.8}\\
C & -B
\end{array}\right) \quad B, C: n \times n \text { matrices. }
$$

By (1.2) namely ${ }^{t} \sigma g \sigma=g, Q$ and R satisfy the following:

$$
\begin{align*}
& { }^{t} Q B Q+{ }^{t} Q C R+{ }^{t} R C Q-{ }^{t} R B R=B, \tag{1.9}\\
& { }^{t} Q C Q-{ }^{t} Q B R-{ }^{t} R B Q-{ }^{t} R C R=C . \tag{1.10}
\end{align*}
$$

So if $m=2$, we put $Q=q, R=r, B=\beta$ and $C=\gamma$, then (1.9) and (1.10) reduce to

$$
\begin{align*}
& \beta q^{2}+2 \gamma r q-\beta r^{2}=\beta \tag{1.11}\\
& \gamma q^{2}-2 \beta r q-\gamma r^{2}=\gamma . \tag{1.12}
\end{align*}
$$

The solution (q, r) are at most two pairs. This implies $\psi(x)=\{$ identity . If
$m \geqq 4$, the number of variables in Q, R exceeds the number of the equations (1.9), (1.10). For example, if $m=4, \sigma$ has 8 variables and 6 equations.
2. Conformal transformations preserving \boldsymbol{R} and $\nabla \boldsymbol{R}$. In this section we use tensor calculus in a coordinate neighborhood. First we recall the followings.

Lemma 2.1. For a conformal transformation of pseudo-Riemannian manifolds $\varphi: M \rightarrow M^{\prime}$ such that $\phi^{*} g^{\prime}=e^{2 \alpha} g$, if φ maps R into R^{\prime} and if $m \geqq 3$, then

$$
\begin{equation*}
\nabla_{j} \alpha_{k}=\alpha_{j} \alpha_{k}-(1 / 2) \alpha_{r} \alpha^{r} g_{j k} \tag{2.1}
\end{equation*}
$$

holds, where $\alpha_{k}=\partial_{k} \alpha$. (cf. $\left.[1,5]\right)$
Lemma 2.2. Suppose that (2.1) holds for a conformal transformation, and that d α vanishes at a point, then α is constant on M. [5]

Lemma 2.3. If $m=3$, we have

$$
R^{i}{ }_{j k l}=\delta_{l}^{i} R_{j k}-\delta_{k}^{i} R_{j l}+R_{l}^{i} g_{j k}-R_{k}^{i} g_{j l}-(1 / 2) S\left(\delta_{l}^{i} g_{j k}-\delta_{k}^{i} g_{j l}\right),
$$

where $R_{j k}=R^{i}{ }_{j k i}$ is the Ricci curvature tensor and S is the scalar curvature.
Now we prove the following Proposition which was obtained when the metrics are positive definite in $[4,5]$:

Proposition 2.4. Let (M, g) and (M^{\prime}, g^{\prime}) be pseudo-Riemannian manifolds such that dim $M \geqq 3$. If a conformal transformation φ of M to M^{\prime} maps R into R^{\prime} and ∇R into $\nabla^{\prime} R^{\prime}$, then either $d \alpha=0$ or $R=0$ holds on M.

Proof. Generally we have

$$
\begin{align*}
& \nabla_{h}\left({ }^{\varphi} R^{\prime}\right)^{i}{ }_{j k l}-{ }^{\varphi}\left(\nabla^{\prime} R^{\prime}\right)_{h}{ }^{i}{ }_{k k l} \tag{2.2}\\
& \quad=-W_{r l l}^{i}\left({ }^{\varphi} R^{\prime}\right)^{r}{ }_{j k l}+W^{r}{ }_{j l l}\left({ }^{\varphi} R^{\prime}\right)^{i}{ }_{r k l}+W^{r}{ }_{k l}\left({ }^{\varphi} R^{\prime}\right)^{i}{ }_{j r l}+W^{r}{ }_{l h}\left({ }^{\varphi} R^{\prime}\right)^{i}{ }_{j k r}
\end{align*}
$$

where ${ }^{\varphi}(\quad)$ means the tensor field transformed by φ, and

$$
\begin{equation*}
W_{j k}^{i}=\alpha_{j} \delta_{k}^{i}+\alpha_{k} \delta_{j}^{i}-\alpha^{i} g_{j k}, \tag{2.3}
\end{equation*}
$$

if φ is a conformal transformation. As ${ }^{\varphi} R^{\prime}=R$ and ${ }^{\varphi}\left(\nabla^{\prime} R^{\prime}\right)=\nabla R$, the left hand side of (2.2) vanishes. We substitute the relation (2.3) into (2.2) and get

$$
\begin{align*}
& 2 \alpha_{h} R^{i}{ }_{j k l}+\alpha^{i} R_{h j k l}+\alpha_{j} R_{h k l}^{i}+\alpha_{k} R_{j h l}^{i}+\alpha_{l} R^{i}{ }_{j k h} \tag{2.4}\\
& \quad-\alpha_{r} R^{r}{ }_{j k l} \delta_{h}^{i}-\alpha^{r} R_{r k l}^{i} g_{j h}-\alpha^{r} R^{i}{ }_{j r l} g_{k h}-\alpha^{r} R_{j k r}^{i} g_{l h}=0 .
\end{align*}
$$

Transvecting (2.4) with $g^{j k}$ and δ_{i}^{h}, we have

$$
\begin{equation*}
2 \alpha_{h} R^{i}{ }_{l}+\alpha^{i} R_{h l}+\alpha_{i} R_{h}^{i}-\alpha_{r} R^{r}{ }_{l} \delta_{h}^{i}-\alpha^{r} R_{r}^{i} g_{l h}=0 \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
(m-3) \alpha_{r} R^{r}{ }_{j k l}=R_{j k} \alpha_{l}-\alpha_{k} R_{j l} . \tag{2.6}
\end{equation*}
$$

If we contract (2.5) with respect to i and l, we get $\alpha_{h} S=0$. We assume that $d \alpha \neq 0$ everywhere on M otherwise by Lemma 2.2 we have $d \alpha=0$ on M. Then $S=0$ holds. Transvecting (2.6) with $g^{j k}$, we have $(m-2) \alpha_{r} R^{r}{ }_{l}=0$. Then (2.5) implies

$$
2 \alpha_{k} R_{j l}+\alpha_{j} R_{k l}+\alpha_{l} R_{j k}=0
$$

By taking cyclic sum of this equation, we have $\alpha_{j} R_{k l}=0$, and hence $R_{k l}=0$. If $m=3$ we have $R=0$ by Lemma 2.3. So we assume that $m>3$, then (2.6) means $\alpha_{r} R^{r}{ }_{j k l}=0$. Then lowering the index i in (2.4) we have

$$
\begin{equation*}
2 \alpha_{h} R_{i j k l}+\alpha_{i} R_{h j k l}+\alpha_{j} R_{i n k l}+\alpha_{k} R_{i j h l}+\alpha_{l} R_{i j k h}=0 . \tag{2.7}
\end{equation*}
$$

Take any point x and a coordinate neighborhood about x such that the vector α_{n} has the components $\left(\alpha_{1}, 0, \cdots, 0\right)$ at x.
(i) If we put $h=1, i, j, k, l \neq 1$, then $R_{i j k l}=0$.
(ii) If we put $h=1, i=1, j, k, l \neq 1$, then $R_{1 j k l}=0$.
(iii) If $h=1, i=1, k=1, j, l \neq 1$, then $R_{1 j 1 l}=0$.

Thus $R=0$, this completes the proof.
3. Proof of Theorem 1. By Lemma 1.2 and 1.3, we have $A=a I$ namely ϕ is a conformal transformation of M to $M^{\prime}: \phi^{*} g^{\prime}=e^{2 \alpha} g$. Then by Proposition 2.4 , if $m \geqq 3$, we have either $d \alpha=0$ or $R=0$. Since M is irreducible we have $d \alpha=0$. For the case of $\operatorname{dim} M=2$, the proof in [5] is valid.
4. Proof of Theorem 2. Contrary to Theorem 1, in Theorem 2 analyticity is not assumed. As for this we refer Theorem 9.1 in [2], p. 151.

Applications of Theorem 2 will be seen in another paper.

References

[1] S. Ishihara, Groups of projective transformations and groups of conformal transformations, Journ. Math. Soc. Japan, 9(1957), 195-227.
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Tracts, No. 15, New York, 1963.
[3] K. Nomizu, Sur les transformations affines d'une variété riemannienne, Comptes Rendus, Paris, 237(1953), 1308-1310.
[4] K. Nomizu and K. Yano, Some results related to the equivalence problem in Riemannian geometry, Proc. United States-Japan Sem. Diff. Geom., Kyoto, 1965.
[5] K. nomizu and K. Yano, Some results related to the equivalence problem in Riemannian geometry, Math. Zeitshr., 97(1967), 29-37.

Mathematical Institute, Tôhoku University, Sendai, Japan.

