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OPERATING FUNCTIONS ON SOME SUBSPACES OF [,

YOsHIKAZU UNO

(Received September 5, 1967)

1. Let L(0,27) be the set of all square integrable functions defined on
(0,27) and continued by periodicity. We set

Aps(f) = [ f t_cit/_g { fo flx+t) — flz—p)|* dx }B/z ]1/3

0

for fe L¥0,27), where 1 =8=2and 33/2-1>8>8/2 - 1.
We define a space Ag; by

Apo = {1 Apa(f) < oo}

If feAgs and fo(x) = flx—a), then As:(f.) = Ass(f), if ¢ is a constant,
then Ags(cf) = |c|Aps(f) and if f, g€ Agp, then Aps(f+9) = Aso(f)+Ass(9)
by Minkowski’s inequality.

We shall characterize the complex valued function @ of a complex
variable which operates in Ag; i.e. @(f)<€ Ags for all fe Ags where o(f)(x)
= o(f(x)).

2. Let the Fourier series of f< L*0,2m) be
@)~ 3 cqe®.

For 8 and § which satisfy the above conditions, we set

Bso(f) = {g nBr+s ( S el 2)/8/2 }1//3

[kl>n

Coo(f) = {i = 36/2+8 ( S el 2k2)/9/2 }1/3 .

n=1 lkl=n
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We can prove a following theorem by the same method as Prof. G. Sunouchi
in [2].

THEOREM 1. For 1=8=2 and B/2—1 <8< 38/2—1, the finiteness
of Aps(f), Bss(f) and Css(f) are equivalent each other.

In the proof of Theorem 1, we use the fact that the convergency of
Bso(f) and Cs5(f) are equivalent to the convergency of B'gs(f) and Cgs(f)

respectively where

o 5 \1/8
Besf) = {Z On(-B/2+8) ( S 1%(2)6/ }

|k[>2"

> B2 ) VB
C'B,b‘(f) — IZ 2n(1—3B/2+5)< Z \Ck l 2 kz) } .

n=1 |k| =27

For the sake of simplicity, we omit the proof.

3. THEOREM 2. Let B and & be numbers satisfying the above
conditions.

(i) For 1-B8+8>0, @ operates in Ags if and only if ¢ satisfies
locally the Lipschitz condition.

(ii) For 1—B+8 =0, if @ operates in Ags, then @ satisfies locally the
Lipschitz condition. Moreover if B8=1, the condition is necessary
and sufficient.

(ili) For 1—-B8+8 <0, @ opzrates in Ags if and only if ¢ satisfies the
Lipschitz condition.

Dr. S. Igari [1] proved the cases of 8=1 and 8=0 in (ii) and 8=2. Our
method of proof is inspired by Igari’s paper.

o

LEMMA 1. If feAgs and flx) ~ > c.e'™?, then we have

N=—o00

oo

2. lealfnl? < oo,

n=-—o0

PROOF. Since 2/8 > 1, by Hélder’s inequality we have

oo o 2k—1

2 lealfinl® =20 2 lealfln]?

n=—oco k=1 |n]=2k1
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2k—-1

=22 Y ol

|n|=2k-1

o 2k—1 B/2 [ 261 1-B/2
§22“< 2. |cn|2) (Z 1)

k=1 |n|=2k-1 |n|=2k-1

Y o B/2
é 28 sz(l—-ﬁ/ﬂ-b‘) ( Z |cn l 2)

k=0 |n]|=2¢
=C{Bss(f)}".

where C is a constant. By Theorem 1 the proof is complete.

PROOF OF SUFFICIENCY OF THEOREM 2. In (i) and (ii), we may
show that fe Ay; is bounded. If 8=1 in (i) and (ii), > |c.| < oo by

N=-—00

Lemma 1 and hence f is bounded. If 8+#1 in (i), we have
- o VB [ o 1-1/8
2 el = (Z lcnl‘*lnls) (Z ‘n|—3/(l3—1))

by Holder’s inequality. The right side is convergent by Lemma 1 and then
f is bounded.

In (iii) the sufficiency of the condition is clear.

M, 5, M,, etc. will denote constants depending on only  the indices, not
always the same in each occurrence.

LEMMA 2. Let n(x) be a continuous function which is equal to 1 on
[—a, al, equal to zero outside of (—a—&, a+&) and linear otherwise where

O<a<m/4, 0<E&E<L/2. Then

Aoy <) M/ ETE A 1A= 0
28(n) =
"7 My aflog(1/e) e if 1-8+8=0.

PrROOF. If 0=z =¢&/2, then we have
In(x+2) — nlx—1t)| =2t/€

for —a—é—t=x= —a+t and a—t=x=a+&+t. If £/2=t =1, then we
have



OPERATING FUNCTIONS ON SOME SUBSPACES OF 1/, 63

In(x+t) —glz—p) =1

for —a—€é—t=x= —a—t and a—t=x=a+&+¢t. And we have |g(x+1)
— g(x—t)| = 0 otherwise. Therefore

/2% B/2
A= [ ,‘i’fm{ 2t)2<2t+e>} f S )

1 (" dt Yodt
éMB{ EB/Z./; tz—sB/z+6 + j;/z t2—ﬁ+8 :

But we have —1<2—(38/2) + 8 <1 from the conditions of 8 and 8. If
1—B8+3> 0, we have easily

Afo(n) = M, 5/87°%0.
If 1-8+8 =0, we have
A o(m) = Mg slog(1/€).
LEMMA 3. Let flx) be a function which is equal to 1 on [—a, a),
equal to zero outside of (—a—¢&, a+§&) and allowed to take arbitrary value

otherwise, where 0 <& << a/2 <w/8. Then

Ak f) >{ Mg 5.,/ 5+ if 1-B+8>0
R = {log (a/&)}V# if 1-8B+8=0.

PROOF. If &/2 =t =a, we have f(x+#)=1 and fx—t) =0 for —a—i¢
<z =< —a—&+t. Therefore

a —a—&+t
dt (2t —&)*? 8)‘3/2
A= | pemve {f dx} >f AR
&/2 —-a—t
But (2t—&)%*=¢t** when &€ =t =a. Therefore we have

LI Mgs,/87% if 1-8+8>0
s = | 2 = ’
Aﬁ,a(f) = tl—/3+3 == { ]Og (a/e) if 1_B+8 — 0 .

e

LEMMA 4. Let n(x) be the same function as it in Lemma 2. Then
for fe Ags we have
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Ags(nf) = Aps(f) + My s(f)/0-FR+3VE 5

PROOF. By Minkowski’s inequality we have

Aol = [ [ %[ e iisiao) - fe-0)

B/2 -1/B

+ fla—t) n@+t) —nz—0)} |*dx)

IA

[0 ’U |fla+t) - fle=2)|? dx]gﬁ/z]w

= Aps(f) + IV say.

By the same method in Lemma 2 we have

1= [l [ amoe (Y asl o [ Gl [ a-oaef

1" d bode
— Mﬁ“f”?{eTf P:35/.’T-6 +f FB‘/Z‘@E .
0 &2

We note 1—(8/2)+8 >0 and 1—-(38/2)+8 < 0, then
I =< M,(f)/&-*2+2.
Therefore we have
Apo(nf) = Apo(f) + Mpo(f)/80- 520
PROOF OF NECESSITY OF THEOREM 2. Let £x) be a continuous
function which is ejual to 1 on [—1, 1], equal to zero outside of (—3/2, 3/2)

and linear otherwise. For £=1,2,---, we set

Eu(x) = E{(x—27%) 2841

*)  Mp,s5(f) denotes a constant depending on B, § and f.
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m(x) = E{(x—27F) 2"}
L= {x; Elx) =1} = [-2797" 4 275, 27F74 4+ 27F]

For fe Ags and z<C (the field of complex numbers) we set

D.()@) = p{flx) + 2} — @(2).

Then ®,(f)< Ags since @ operates in Ag,.
Firstly we shall show the necessity of (i) and (ii). Our proof is divided
into four parts.

(1) For every z<C, there exist two positive constants a, and M,, and
an interval I, such that Az:{®,(f)} =M, if Axs(f) =a, and the support

of fisinI,.

PROOF. Suppose that the statement is false. Then there exists a
sequence of functions f; such that

Api(fi) =1/F, supp f, C I
and
Ap s {@.(fi)} = k 2ra-predrs

Since the supports of f are disjoint each other, there exists f= 3" f, and we

k=1
have
- 1
A,e,s(f) = ZAB,8<fk) = }_,F < oo,
k=1 k=1
But

flcq)z(f) = q)z(fk) ’

and hence by Lemma 4

Ap s {@.(fi)} = Ass{E:D.()}
= Aps{@(f)} + M s{D,(f)} 286178,

When % is large enough, the inequality contradicts the condition of

AB,S {(Dz(flc)} .

(1) @ is bounded on every compact set.
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PROOF. We can choose a >0 and &> 0 of a function #(x) in Lemma 1
such that supp nCl,. If Ags2'y) =a,, ie |2'| =a./Agsn), then by (I) we
have M, = A;;{®.(z')}. By suppnCl, we have ®,(2'n)(x) = @{2y(x)+z}
— @(z), and hence

P& +2) — @(z) if @) =1

®(n)) = 0 if @) =0
n =0.

Therefore we can write
D.(2'n)(x) = fx) {p(' +2) — @(2)}
where f(x) =1 if n(x) =1 and f() =0 if 5(x)=0. By Lemma 3

M50/ if 1-B+8>0

AB,ﬁ Qz z, z Z’ S
@2} =@z’ +2) (p(z)‘{{log(a/S)}l/B if 1-8+8=0

Consequently @(z+2") is bounded for |2'| =a.,/Ass(n), and hence it is
bounded on every compact set..

(Ill) For every z<C, there exist two positive constants a, and M,
and an interval I, such that Ags{®us(f)} = M; if Ap(f)=a., suppfC
and |2 |=a,.

PROOF. Conversely suppose that there exist two sequences of functions
f+ and complex numbers z, such that

AB,b(fk) = 1/k2 ’ Suppfk C I, |z = 1/132 Aﬂ,s(’mc)

and
Ap s (@o(f)} Z b 2E0-0RD/E

We set f=5 f.+ > 2. Then

k=1 k=1

Ass(f) = ZAﬁa(fk) + Z |z | Ag,a(me)

‘k=1
L
- 2

II/\

-1
2 gt

n[\/]S

< oo,

Therfore we have fe As;5. Now
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ED(f) = E@.(frt20)
= E{p(fitzt2) — 9(2))
= E:P:rn(f) + Exlp(zit2) — 2(2)}
= Q..0,(fi) + Ee{Pp(zet+2) — 9(2)}

and hence by Lemma 4

Aps{Puie(fi)} = Aps{E@(N)} + P21+ 2) — @(2) [ Ass(Er)

= AB,S{q)z(f)} + MB,B{(I)Z(f)} Qk(1-B/2+8)/8
Qka-8+8)/8  if 1—-8+8>0

+ Mg, |p(z+2) — ()|
e | P2 # {(logZ")W if 1-8+8=0.

By (I) |@(z+=2x) — ()| is bounded. This implies the contradiction.

(IV) For every z<C, @ satisfies the Lipschitz condition in a neighbour-
hood of z.

PROOF. We can choose a >0 of 5(x) in Lemma 2 such that suppnC I,
for all €<€(0,a/2). Let the function 7(x) denote by n(x). We note that
the number a depends on only z. If |2'| =a} and

2/a)4-88  if 1—8+8>0

12 —2"| = di/ My, {
{log2/a)}¥* if 1-B+8=0,

then we can choose & such that

1/0-8+0/8  if 1-B48>0
0<é<a/2 and a;=|2' —=2"|Mjs;
{log(z/&)}# if 1-B+8=0.

Let 7(x) for this & denote by 5(x). By Lemma 2 we have
Aps{(Z—2") n} = |2/ —2"| Apa(m)
{ 1/60-8+d8  if 1—-B+8>0
{log1/8)}¢ if 1-B+8=0

= (27 —2"|Mgs

)

a,
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and hence by (I1I)
M, = Aps[Peir {27 =2} ] = Apolp{(z" —2) n+2+27] — plz+2)].

But we have

) P2 +2)—p(z+2) if ylx)=1
p{(z"—2) p(x) + z+2'} — p(z+2) = {

if nx)=0
and therefore we write
P{"—2) (@) +2+2} — p(z+2) = fl) {¢(z"+z) — p(z+2)}
where f(z) =1 if 9(z) = 1 and f(x) = 0 if 4(x) = 0. Therefore by Lemma 3
M. = |p(z" +2) — p(z+2)| Apa(f)

My, /€02 if 1—8+8>0

= @z’ +2) — p(z+2)| ,
{log(a/&)}V# if 1-8+8=0

2 +2)—p(z+2" ,
2 19 )=o) pg o

Constants in the above inequality are independent of 2" and 2", and hence
@ satisfies the Lipschitz condition in a neighbourhood of z.
Thus proof of necessity of (i) and (ii) is complete.

Nextly we shall show the necessity of (iii). The proof is divided in
three steps.

(1) For every interval IC[—mn, n] and every positive number a, there
exists a finite sum E of intervals in I such that a=Ags(Xz) where x5 is
the characteristic function of E.

PROOF. We shall first show that

Sgp Aﬁ,ﬁ(XE) = o0

where E runs all the finite sums of intervals in I
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Suppose that for all finite sums E of intervals in [

Apos(Xp) = K < o0,

where Kj; is a constant independent of E. If f is a step function such that
0=f=1, then f =) a,X, where @; =0 and > _a;, =1. Therefore we have

Ags(f) =2 i Aps(Xs) = Kps

and hence for any bounded measurable function f such that suppfc I, we
have

Ago(f) = Kol [l -

Now we may set I=(—&&). Let flx)=¢"" for xel and flx)=0
otherwise. Then we have

o = Afa(f)

e dt e—t B/2
Z m If [eiNzetI\'t _ elNze—iNtiZ dx
0

—-e+t

—f 2 /s/z+a {(4 sin® Nt) 2(e— £)ere,

If 0<t<1/N for N>2/& then Nt <1 and hence sin Nt >cNt (c is a
constant). Therefore

KEs= ASs(f)

B/2

YT dt : 1
=My [ |t No(e - )|
0

= Mﬂf tz B/2+b (8 ) t
— M'9 885/2 NI—B/2+8 )

This contradicts 1 — (8/2) + 8 >0, when N is sufficiently large. Therefore
we have

sup Ags(Xg) = oo,
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and hence there exists a finite sum E of intervals in I such that a < Ags(Xz)
< oo, Now we set

I (h) = A,a,s(xEn(-z,k))

and then I(h) is continuous, I(—n) =0 and I(x) > a. Consequently there
exists A" such that I(h") = a. EnN(—n, k) satisfies the condition of (I).

(A1) There exist two positive constants M and a, and an interval I
such that if suppfCI and Ags(f) = a, then Ags{p(f)} = M.

PROOF. Conversely suppose that there exists a sequence of functions
fe such that

supp f: C Ik" Aps(f) =1/F

and

Aﬂ,é’ {¢(fk)} =k OK(L~B/2+8)/8 _

We set f =3 fi, and then
k=1
w = 1
AN =2 Aes(f) =2 <>
k=1 k=1

Therefore fe Ags.
Without loss of generality we may assume @(0) =0. Then we have
E@p(=@(fr). Therefore by Lemma 3 we have

Ags{p(f} = Apallp(f)} = Apsl@(f)} + Mas{p(f)}2e-5mor8,

This contradicts Ags(f) < o when % is large enough.

(II1) @ satisfies the Lipschitz condition.

PROOF. For fixed z, 2’ € C, by (I) there exists a finite sum E of intervals
in I such that AgszXz) =a/2. Let J be an interval in E. Then there
exists a finite sum F of intervals J such that Ags(2'X;) = a/2. Therefore
by (II) we have

OM = Auslp(z Xy + 2 Xe) — p(zX,)} .
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Since
P(2Xp +2'Xp) — p(2Xp) = {p(z+2) — p(2)} XF,

we have

2M = |p(e+2) = 9(a)| Analiy) = 1PEE =P
P4
This shows that ¢ satisfies the Lipschitz condition. Thus the proof of
Theorem 2 is complete.

REMARK. For 8>1 and 1—8+8 = 0, there exists an unbounded function
f belonging to Ags.
We set

oo

f(x)=2‘ﬂﬁzs—nr)%m

n=2

where € >0 and 1+& < 8. It is well-known that fe L*(—a, w) and flx) — oo
as £ —0. We shall show that this function is in Az; By Theorem 1, it
is sufficient to show C,s(f) < co. Now by hypothesis we can write

* B/2
Cholf) = ;n-“m(z k]

lk|=n /

Therefore we have

oo o n k2 B/2
Cia(f) = En e (Z W)

|k]=2

n

- 872
=M, e ( (log n) @+e78 )

n=1

LSS 1 o
- MB Z., n(log n)1+a <

n=1

Hence, in this case, our necessary condition is not sufficient.
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