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1. Introduction. The maximum dimension of the group of isometries
of an m-dimensional connected Riemannian manifold is m(m+1)/2. The
maximum is attained if and only if the Riemannian manifold is of constant
curvature and one of the following spaces (cf. [3], p. 308):

(i) an m-dimensional sphere S™, or a real projective space RP™,

(ii) an m-dimensional Euclidean space E™,

(iii) an m-dimensional simply connected hyperbolic space H™.

If M is a 2n-dimensional connected almost Hermitian manifold, then
the maximum dimension of the automorphism group of M is n(n+2). The
maximum is attained if and only if M is a homogeneous Kaehlerian
manifold with constant holomorphic sectional curvature %2 and one of the
following spaces (cf. [17]):

(i) a complex projective space CP" with a Fubini-Study metric (¢ > 0),

(i) a unitary space CE" (k = 0),

(iii) an open ball CD" with a homogeneous Kaehlerian structure of

negative constant holomorphic sectional curvature (k < 0).

In this paper we consider the similar problem in almost contact Riemannian
manifolds. To state the main theorem we prepare the followings. We denote
by (¢, &, 5, g) structure tensors of an almost contact Riemannian manifold N.
An odd dimensional sphere S?**! (in E®*+?) has the standard Sasakian structure
(cf. [11]). An odd dimensional Euclidean space E*"*! has also the standard
Sasakian structure ([8],[9]). By 7T or L we denote a circle or a line. By
(L, CD") we denote a line bundle over a CD"™ (which is a product bundle).
The space (L,CD") has a Sasakian structure (§8). In these three spaces £ is
an infinitesimal automorphism of the structure and generates a l-parameter
group exptf (—oo<t<<co) of automorphisms. Definitions of an &-deformation
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and a D-homothetic deformation are given by (4.6)—(4.7) and (7. 1)—(7.2).

THEOREM. Let N be a connected almost contact Riemannian manifold
of (2n+1)-dimension. Then the maximum dimension of the automorphism
group is (n+1)?*. The maximum is attained if and only if the sectional
curvature for 2-planes which contain & is a constant C and N is one of
the following spaces:

(i) C>0: a homogeneous Sasakian manifold (or its &-deformation)
with constant ¢-holomorphic sectional curvature H and
(i-1) H> —3: a space which is D-homothetically deformable to
a unit sphere S*™*! or its factor space S*"*'/F(t) where F(t)
denotes a finite group generated by exptfé (2m/t being an
integer),
(i-2) H= —3: a (Euclidean) space E*™*!' or its factor space
E+1/F(t) where F(t) is a cyclic group generated by expté
(¢t being a real number),
(i-3) H< —3: a space (L, CD") or its factor space (L,CD")/F(t)
where F(t) is a cyclic group generated by exptf (t being
a real number),
(ii) C=0: six global Riemannian products:

TxCP, TXxCE*, TxCD",
LxCP, LxCE*, LxCD",
(i) C<0: a product space Lx  ,CE" whose metric is given by
Iy = ([dt) oy + Gy  (cf. Lemma 4.6).

As a corollary we have

COROLLARY. Let N be a compact, connected and simply connected
almost contact Riemannian manifold. If the maximum dimension of the
automorphism group is attained, then N is a sphere with a Sasakian
structure or its deformation.

2. Preliminaries. An almost complex manifold M is defined by a
structure tensor J of type (1,1), satisfying JJX = —X for any vector field X
on M. M is almost Hermitian if, moreover, it has a Riemannian metric G
such that G(JX,JY)= G(X,Y) for any vector fields X and Y. Then we
have a 2-form W called the fundamental 2-form, which is defined by
W(X,Y) = G(X,JY). When the exterior derivative dW of W vanishes, M
is called an almost Kaehlerian manifold. If we have DJ=0 for the Riemannian
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connection D defined by G, then M is a Kaehlerian manifold.

On the other hand, an almost contact structure on N is defined by three
tensor fields: a (1,1)-tensor ¢, a vector field £ and a 1-form 7. They
satisfy (cf. [9], [10], [11]) :

(2] ¢t =0, 7(¢X)=0, n&) =1,
(2.2) ppX = =X + 9n(X)§

for any vector field X on N. An almost contact structure is said normal
if the torsion tensor N (see (3.7)) vanishes. If N has an associated Riemannian
metric g such that

2.3) 9 X) = 7(X),
@4 9($X, $Y) = 9(X,Y) — n(X) n(Y)

for any vector fields X and Y on N, then N is called an almost contact
Riemannian manifold. Further, if dy(X,Y) = 2¢(X,¢Y) is satisfied, then N
is called a contact Riemannian manifold. When £ is a Killing vector field,
a contact Riemannian manifold is called a K-contact Riemannian manifold, and
then £ is an infinitesimal automorphism. Further if the structure is normal,
then a contact Riemannian manifold N is called a Sasakian mainfold ([8], [11],
etc.). A Sasakian manifold is always a K-contact Riemannian mainfold.

By A(M) or A(N) we denote the automorphism group of M or N. By
Vv we denote Riemannian connection defined by g.

3. The maximum dimension of the automorphism group of N. Let
N be a (2n+1)-dimensional almost contact Riemannian manifold. Then the
necessary and sufficient conditions for X to be an infinitesimal automorphism
are

@1 Lx@se = 9esVs X + g5V . X =0,
8.2 (L) = XV, & - &V, X* =0,
(3.3) (Lxn)y = XV ymy + 1,V X2 =0,

3.4 (Lxp)p = XV 8 — 43V, X + ¢V, X* =0,

where a,b,c¢,s run from 1 to 2z+1. In the sequel, indices i,j, k., 7 run from
1 to 2n. We take a ¢-basis (e;,+++,€, €=y, , €, = Pey,ea =§) at a
point P and its dual basis. Then any infinitesimal automorphism X vanishing
at P satisfies VaX*=0 and V,X*=0 by (3.2) and (3.3). Non-vanishing
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components are V/,X*, and the set of all these is contained in the Lie algebra
of the unitary group U(n) by (3.1) and (3.4). Therefore it is at most
n?-dimensional. While the set of X non-vanishing at P is at most (2z+1)-
dimensional. Thus we have (cf. [17])

LEMMA 31. Let N be a 2n+1)-dimensional almost contact Riemannian
manifold. Then we have dim A(N) =< (n+1)%.

Now we show the following

LEMMA 3.2. Let N be a (2n+1)-dimensional almost contact Riemannian
manifold which admits the automorphism group A(N) of the maximum
dimension (n+1):. Assume that a tensor field (K**,..) of type (p,q) is
invariant by any infinitesimal automorphism. Then with respect to a
¢-basis at P we have

(1) K¥"..=0 if p+q is odd,
() If K is of type (1,1) (or (0,2)), then
K;=C3& + G (or Ky = Cigi5 + Cotpry) s

where C, and C, are real numbers.

PROOF. If we consider the linear isotropy group of A(N) at a point P
with respect to a ¢-basis, then it is U(n)x1 since A(N) is of the maximum
dimension. So it contains a 1l-parameter group e''Ix1 and, in particular,
(—=I) x 1 which is a map:

(3.5) Y — (=Y +2(Y)§) + 5»(Y)E,

(3.6) w—>(~w + w7 + w@r,

where Y is a tangent vector at P and w is a tangent covector. Therefore we
have (i). On the other hand, (i) may be known.

In an almost contact manifold N we have four torson tensors (which do
not depend on the metric, but we write them using Riemannian connection of
the associated metric):

(3 7) Ng’c = 2(vs¢g—Vb¢g) - ¢ls>(V3¢g_VC¢g’) + chbf“ - vcfaﬂb ’
(3 8) MC = ¢z(vb7]s—' v:")b) - ¢7g(vc773_ vs’]c) ’
(3' 9) Nba = Esvs(i’lbl + ¢’gvb§s - ¢ls>vafa >
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(3 10) M = fs(vb’?s_vsﬂb) .

There are relations among them (cf. [10]). The followings are required in
the sequel.

(3.11) N g + ¢¢ N3 + E°N, = 0,
(8.12) 7, Nic — Ny + Ny = 0,
(3.13) 7, Ny = Ny & = N, ¢,

(3.14) N =N§E =0,

(8.15) ¢N; + Nigy + E°N, = 0,
(3.16) Nps¢: — Ny — Nyme + Nemp = 0.

LEMMA 33. If @ (or X) is an (infinitesimal) automorphism of an
almost contact (Riemannian) manifold, then N, N;,, N¢ and N, are
invariant by ¢ (or X).

This is clear by (3.7)~(3. 10).

LEMMA 34. If an almost contact Riemannian manifold N admits the
automorphism group of the maximum dimension (n+1)%, then N is normal
and homogeneous.

PROOF. By Lemma 3.2 (i) we get N% =0 and N, =0. By (3.14) we
have N, = 0 and hence N, = 0. Then by (3.13), (3.14) and (3.15) we have
N} = N% =0 and ¢fN; + Ni¢; = 0. Since Ny is invariant by A(N), Ni is
written as Ni= ¢,8! + ¢c,¢! by Lemma 32 (ii). Thus we get 0= ¢:Nj
+ Ni¢; = 2¢iNj. Since ¢. is non-singular we have Nj =0, and hence
Ni = 0.

Similarly by (3.16) we get N,, = 0.

Now Ng =0 follows from (3.11). N& =0 follows from (3.12). Therefore
we have Ng =0.

4. Classification. We assume that spaces are connected.

LEMMA 4.1. Let N be an almost contact Riemannian manifold which
admits the automorphism group of the maximum dimension. Then the
sectional curvature for 2-planes which contain £ is equal to a constant C,.
More precisely we have
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4.1) Ry € = CiE% gy — Cimyd?.

PROOF. Since the tensor field 5, Rg.£? is invariant by A(N), by Lemma
3.2 (ii), we have

4.2) Rja=Cigs + Codpye

with respect to a ¢-basis at P. As is well known, R}, is symmetric with
respect to j and k. Thus R}, = C,g,, at P. Since Ri:a = Ria = 0, we have

(4' 3) naRg’cdfd = Cl(gbc_"]b"]c) ’

where C; may be a function on N. However, easily we see that C, is constant
on N. We consider the tensor field

4.4) R.E* — CiE%gye + Cimpdt .

If all indices a, b,c differ from A, then by Lemma 3.2 (i) (4.4) is vanishing.
If a=A, then (4.4) vanishes by (4.3). After putting b=A, or c=A, we see
that (4.4) vanishes.

LEMMA 4.2. Let N be an almost contact Riemannian manifold which
admits the automorphism group of the maximum dimension. Then

(4.5) Vine = Co(goe — m7me) + Cibie
holds for some constant C; and C,.

PROOF. The tensor V,7, is invariant by A(N) and hence WV, is, by
Lemma 3.2 (ii), of the form

Vine = Csgu + Cidyi

at P for some real numbers C, and C,. By N, =0, Vy(7,£)=0 and V,£*
= V,;7a we have V,5s = Van, = 0. Then (4.5) follows. Easily we see that
C; and C, are constant.

LEMMA 43. In Lemma 42 if C, is non-zero, then C, is equal to zero
and & is an infinitesimal automorphism.

PROOF. By (4.5) we have (d7),, = 2C,¢;.. On the other hand, we have
Li=0 and Lyp=0 by (3.9) and (3.10). Therefore we have L,dp =dLxn =0
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and (L;$),c=0. Next taking Lie derivative of ¢,, = g,,¢% and using (L) = 0
we have

0 = (Leg)sspe = 2Cs(gns — m7s) P: -
That is, we get 2C,g,,¢: =0, which implies C;=0.

LEMMA 44. Let N be an almost contact Riemannian manifold where
dn is not trivial (C, #0). If N admits the automorphism group of the
maximum dimension, then it is essentially a homogeneous Sasakian
manifold.

PROOF. By Lemma 4.3 we have V,5, = C,¢;.. We define an almost
contact structure (*¢, *£, *z, *g) by

(4 6) *¢'g = gd)g, *fa = fa.’ *771) = My
(4. 7) *gbc = 8C4gbc + (1—8C4) N Me »

where € is the sign of C,. Then we have (d¥*5)=2¥¢,,, that is, the deformed
structure is a Sasakian structure. Q.E.D.

Assume that dyp = 0 at some point. Then it holds globally on N and we
have

(4. 8) Vsne = Ca(gbc - M %) .

There are two cases: C; =0 (Lemma 4.5) and C;#0 (Lemma 4.6).

LEMMA 45. Let N be an almost contact Riemannian manifold such
that £ is a parallel field. N admits the automorphism group of the
maximum dimension if and only if N is a Riemannian product of one of
the three spaces CP", CE", CD", and a real line or circle.

PROOF. Let P be an arbitrary point of N. Then we define the
distribution by 5 =0 and we have the 2n-dimensional maximal integral
submanifold M(P) through P. M(P) is an almost Hermitain manifold by
restriction of ¢ and g to M(P). Since any automorphism @ of M leaves all
structure tensors invariant, it is distribution-preserving and @M(P) = M(Q)
where @ P=Q. Since £ generates a l-parameter group of automorphism exp z£,
we have exp t£-Q ¢ M(P) for some t. Therefore exptf-¢ is an automorphism
of M(P). Thereby the automorphism groups A(M(P)) and A(N) differ only
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one dimension, which is caused by £ Hence A(M(P)) is n(n+2)-dimensional,
and M(P) is one of the three spaces: CP", CE", and CD" ([17]). Since N
is homogeneous each trajectory of £ is homeomorphic to a real line L or a
circle T. We show that each trajectory intersects M(P) at only one point.
Assume that expté-P=QecM(P) for some ¢ #0. Let Y*¥ be an
infinitesimal automorphism on M(P) such that Y¥:+0. Since a small
neighborhood U of P is a Riemannian product, Y=(Y*,0) defines an infinitesi-
mal automorphism on U. By Ly =0 we have exptf-Y=Y (for any small
t) on U. In order that dim A(N)=(n+1)* holds Y must be globally defined
on N so that the restriction of ¥ to M(P) is Y*. By this argument we
must have Yy % 0. On the other hand, for any points P and Q in any one
of the spaces CP*, CE"*, CD", we have some infinitesimal automorphism Y*
such that Y¥ 0 and Y¥ = O (otherwise every geodesic starting at P goes to
Q with the same length). Therefore N is globally a Riemannian product.
The converse is clear. Q.ED.

Now we come to the final case: C,#0 and C,=0. By the Ricci
identity, (4.8) and (4.1), we have

- g(ghd Ne— e 77d) = —nRy = —Cl(gbc"?d"")cgba) .

Thus C; = —C?< 0. This implies that the sectional curvature for 2-planes
which contain & is negative. We define the distribution by 7=0, which is
also completely integrable by dn =0. Let M(P) be the maximal integral
submanifold through P. By restriction of ¢ and g, M(P) is an almost
Hermitian manifold. Let X be an infinitesimal automorphism of N and denote
by exptX the l-parameter group of automorphisms. Since A(N) is transitive,
we can assume that we have X which is not tangent at P (then X is not
tangent at any point) to M(P). For small ¢, if we put expzX-P = Q)
then expzX is an isomorphism of M(P) to M(Q(z)), since the equation =0
and the structure tensors are invariant by expzX. Now let s(¢) be a function
of ¢ such that exps(#)€-Q(t) = P. Then exps(t)focexpzX is a transformation
of M(P). Since (L;g)s = 2C3(gse—mm.), if %0, exps(t)§ is a non-isometric
homothety with respect to the distribution » = 0. Thus exps(#)£oexptX is
a l-parameter group of non-isometric homotheties of M(P). Let X be a
vector field on M(P) defined by this 1l-parameter group: LG = C,G, where
C; is a non-zero constant and G is the restriction of g to M(P). Let Y be
another infinitesimal automorphism of N which is not tangent to M(P). Then
by the same argument we have Y’ such that L,G = C,G on M(P). Put
Y* =Y —(Cy/Cs)X'. Then Y* is an infinitesimal isometry on M(P). On the
other hand exps(#)foexptX leaves ¢ and 5 invariant for each . Hence Y*
is an infinitesimal automorphism of M(P). This means that any infinitesimal
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automorphism Y induces an infinitesimal automorphism Y* on M(P). So we
can consider that only X is essential among infinitesimal automorphisms which
are not tangent to M(P). Therefore A(M(P)) is n(n+2)-dimensional, and
M(P) is a homogeneous Kaehlerian manifold. Since M(P) admits an
infinitesimal non-isometric homothety, M(P) is flat and it is the unitary space.
On the other hand, exp £ are homotheties with respect to the distribution
n=0, whose proportional factor is monotonically increasing as ¢, and hence its
trajectory is homeomorphic to a real line. Therefore we have

LEMMA 46. Let N be an almost contact Riemannian manifold such
that € is not parallel and dn is trivial. Then the maximum dimension
of the automorphism group is attained if and only if N is of the form
LXx M where L is a real line and M = CE™ is the wunitary space with
(J,G) and the metrics are related by

4.9) I = (A« + € Gy

for some constant c.

PROOF. We prove the converse. Let N= LX, M. In this product we
see that £ is defined by (d/dt) and ¢ is defined by translation of J in M by
exptf. Take a point P in M. Then we have a l-parameter group of
homotheties @; such that (@;)*G=e2*G and they leave invariant J and the
point P. Such ¢; exist, because M is the unitary space. We identify M with
(0)x M and consider J and ¢; on both M and (0)x M. By definition we have

b.ay = expté - J, - exp(—t)E,

where exp t£ itself denotes the differential of expz£. Thus exp sé-p=¢-exp s&
holds good. Since exptf-£=§ we have also (exp s&)*p = 7, where 5 = (d¢).

Let Z’ be an infinitesimal automorphism on M. Then by Z, ,y=expt£-Z,
we define a vector field Z on N. Since

expsE-Z,.y = expsE-expté-Z, = Zyis 0,

we have L,¢£ = [Z,£] = —L,Z=0. Thus exps¢é and exptZ are commutative.
Let Y be a vector field on NN such that 7(Y)=0. Then we get n(exp tZ-Y)=0.
Therefore to prove exptZ-¢ = ¢p-exptZ, it suffices to show for Y such that
7(Y)=0.

expsZ- Py Y = expsZ-expté-J,-exp(—1)E-Y

=exptE-expsZ - J,-exp(—t)E-Y
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=exptf-J, - expsZ cexp(—£)E-Y (w = expsZ -x)
=¢uw expsZ-Y.

Since ((exp sZ)*g)(£,£) =1 and ((exp sZ)*9)(§,Y) = 0 (if »(Y)=0) are clear, we
calculate the following for Y, V such that (Y) = (V) = 0;

(expsZ)*9)t.sx(Y, V) = guw(expsZ - Y, expsZ - V) (w = expsZ-x)

= ' G (exp(—t)E-expsZ-Y,exp(—t)E-expsZ-V)

= e’ Gy(expsZ - exp(—2t)E-Y,expsZ - exp(—t)E-V)

= e G:z(exp(—t>§ * Y’ exp(_t)f ° V)

= gu Y, V).
Therefore exp sZ is an isometry for each s, and hence Z is an infinitesimal
automorphism on N. The set of all such vector fields is 7n(n+2)-demensional.

Next define transformations ¢,: N— N by (¢, x)— (¢t+s, .x). Then (@,)

is a l-parameter group of transformations. Clearly @, and exptf are

commutative. So @, leaves £ invariant. We also have 7(p,Y) =0 for any Y
such that »(Y) =0. To show @,¢ = ¢p,, it suffices to show the following for

Y such that n(Y) = 0.
P bunY = @ -exptf-J, - exp(—2)f Y

= exptf - @, J, -exp(—2)§-Y
= exptf - (exp st - @i) - J, - exp(—£)E-Y
= expsé-exptf-J, - pi-exp(—£)E-Y (u = @:x)
= expst - exptf - J, - (exp(—£)E - exp tf) - @i - exp(—£)§- Y
= exp s« Puu - exptf - @i exp(—£)E-Y
= ¢uss.u * €xp s - exp t€ - prexp(—)E - Y
= bursw  Ps Y.

Finally we prove that ¢, is an isometry. Since (@¥g)(£,£)=1 and (@¥g)(£,Y)

=0 (if »(Y)=0) are clear, we show the following for Y,V such that
7(¥) = 5(V) =0.

(@¥D .Y, V) = Gasu(@sY, o,V) (w = ¢;x)
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= G y(exp(—t—5)§ - @, Y, exp(—t—5)E - @, - V)
= e IG,(exp(—9)E - @, - exp(—)E - Y, exp(—s)& - @, - exp(—£)E - V)
= "G p; - exp(—2)§ - Y, @i - exp(—£)E - V)
= ' G,(exp(—2)§ - Y, exp(—2)§ - V)
= gunY,V).

Therefore (@,) define an infinitesimal automorphism X which is not tangent
to M, and we have dim A(N)=(n+1)%

LEMMA 4.7. Now we give the relation between the sectional curvature
for 2-planes which contain € and the constants Cs, C,.

(1) C;=0,C,#0&=C,=C;>0.
(i) C,=0,C,=0&C,=0.
(i) C;#0,C,=0&C = —C2<O.

PROOF. For (=) part, (ii) is clear, and (iii) was proved already. We
give a proof of (i) here. By V,75. = C,¢;, £ is a Killing vector field, and
so we have

VeVe€® + Riaé® = 0.
We transvect the last equation with 7, and use (4.1). Then we get

—Ci(gse—msme) + Ci(gse—m7m:) = 0.

Thus C, = C} > 0. Since (i)~(iii) expire all cases, the converse (&=) is also
true.

5. Regular K-contact Riemannian manifolds. Let n: N— M = NJ/§
be the fibering of a regular K-contact Riemannian manifold N given by
W.M. Boothby and H.C. Wang [1]. Then M is an almost Kaehlerian
manifold with structure tensors J and G such that

6.1 g=m*G+91® 1,
6.2) (JX)* = pX*,

where X* is the horizontal lift with respect to 5. And the fundamental
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2-form W satisfies (cf. [2])
(5.3) 2r*W = doy.

LEMMA 5.1. In the fibering m: N— M of a regular simply connected
K-contact Riemannian manifold N, if X is an infinitesimal automorphism
on M, then we have some function f on N so that X* — f& is an
infinitesimal automorphism of the K-contact Riemannian structure and f
is unique up to an additive constant.

PrROOF. In the formula
G.4) AW Y,Z)=X-W({Y,Z)+Y -W(ZX) + Z-W(X,Y)

we have dW =0, where Y and Z are arbitrary vector fields on M. Let
X* Y* Z* be the horizontal lifts of X,Y, Z with respect to 7, and consider
the 1-form iydn. We notice that [£,Y*] = 0 and

®.5) [Y*,Z¥] = [Y, Z]* + o([Y*, Z*])§
hold. We show that iy.dy is a closed form.
Alirdn)(Y*, Z%) = Y* - dy(X*, Z%) — Z% - dy(X*,Y¥) — dy(X*, [Y*, Z%])
=2Y - WX, Z2) v —Z - WX, Y)-w — WX, [Y,Z)) - =],

which is seen to vanish by (5.4), since X is an infinitesimal automorphism of
the almost Kaehlerian structure on M. Next easily we have

(.6) d(ixdn)(Y*,§) =0.

Thus iy.dn is closed, and locally it is a derived form. Since M is simply
connected, we have some function f on N such that indy=df. Now we
prove that X*—f¢ is a Killing vector field with respect to g.

(Lr-r9)Y*,Z%) = Lz (G, Z) - ) — g((X*—fE,Y*], Z%)
— g(Y*, [X* — fE,Z%])
=L,GY,Z2)yn — GIX,Y),Z)-n — GY,[X,Z))- =,

which vanishes, because X is a Killing vector field with respect to G on M.
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Easily we have

Lx-sp )X*, ) = —p([X*,Y*]) — Y*f=0,
(Lx-rn9)E,E) =0.

Thus Lz g=0. On the other hand, we have
Lp-syn =iw-mdn + die-pyn = irdn —df=0.

Therefore X*—ff is an infinitesimal automorphism on N. Let f and f’ be
such two functions. Then the difference f—f" is constant. Q.ED.

Conversely, let @ be an automorphism of the K-contact Riemannian
structure on N. Since @ leaves £ invariant, we have some transformation &
on M such that 7np = ®z. We show that ® is an automorphism of the
(J, G)-structure. Since @*n =5 and @*g = g, we have @*(z*G) = z*G. For
any point P of N and for lifts Y* and Z* of Y and Z, we have

(D*G) (Y, Z) = GrompY*, npZ*) = G,(Y, Z) .
That is ®*G=G. Next by (5.2) and other relations, we have

(J(@Y))fe = dpr (7Y *)* = pp(JY)*.
Operating = we have J® = ®J. Thus

LEMMA 52. If w: N— M 1is the fibering of a regular K-contact
Riemannian manifold N, then @ of A(N) induces ® of A(M). If u is an
infinitesimal automorphism on N, then u is projectable and nu = X is an
infinitesimal automorphism on M. Thus dim A(N) = dim A(M)+1.

6. The relation of A(V) and AN/€) of the fibering of K-contact
Riemannian manifolds. Take an arbitrary point and a neighborhood U of
the point such that U is a simply connected regular K-contact Riemannian
manifold. On U we consider the Lie algebra a(U) of all infinitesimal
automorphisms of the structure. Let n: U —V be the fibering of U. Then
for any u € a(U), we have an infinitesimal automorphism X=7zz on V. Then
by Lemma 5.1 we have

6.1) dim a(U) = dim a(V) + 1,

where a(V) is the Lie algebra of all infinitesimal automorphism on V and the
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difference 1 is caused by £ Of course we have dim A(N) = dim a(N)
= dim q(U).

LEMMA 6.1. Let N be a K-contact Riemannian manifold. And assume
that N satisfies one of the following conditions :

(i) N is simply connected, regular and complete,
(ii) N s simply connected and homogeneous,
(iii) N is regular, compact and has vanishing first Betti number,

@iv) N is homogeneous, compact and has vanishing first Betti number,
(v) dim A(N) = (n+1)%.

Then we have
(6.2) ‘ dim A(N) = dim A(N/€) + 1.

PROOF. First we note that any homogeneous contact manifold is regular
(1])). We need to prove only when N satisfies (ili). Since N is orientable
and compact, a closed form 7i;.dn on N must be a derived form on N, for
the first Betti number vanishes. Thus we have dim a(N)= dim a(N/§) + 1.
By completeness of N and N/, we have (6.2). For (v) see Lemma 5.2 and
notice dim A(N/§) = n(n+2).

COROLLARY 6.2. In Lemma 6.1, if N has property (ii) or (iv), then
N/E is homogeneous. If N has property (1) or (iii), then N is homogeneous
if and only if N/E is homogeneous.

The unit (27+1)-dimensional sphere S?"*! is one of the standard Sasakian
manifolds ([11]). S?"*! is the circle bundle over the complex #n-dimensional
projective space CP". CP" is one of the standard examples of irreducible
Hermitian symmectric spaces.

PROPOSITION 6.3. dim A(S*™*!) = (n+1)2.

7. D-homothety class of an almost contact Riemannian manifold.
Let a be a positive number and define ¢*, ¥, * and g* by

(7.1 p* = ¢, =1/ n*=an,
(7.2) gF=ag + (@—-a)n® 7.

Then (¢*, £¥%, 9%, g¥, @) is also an almost contact Riemannian structure on N.
We call this deformation a D-homothety. By a D-homothety a K-contact
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Riemannian structure is deformed to another K-contact Riemannian structure,
and a Sasakian structure is deformed also to a Sasakian structure ([16]).

LEMMA 7.1. Let N be an almost contact Riemannian manifold with
(¢, &, n, g). Then the automorphism groups A(N) and A*(N) with respect to
(¢, &, n, 9) and (¥, E¥, n¥, g%, &) coincide.

PrROOF. This follows from (7.1) and (7.2).

REMARK 7.2. By the Lemma we see that if N is homogeneous, then
every D-homothetically deformed structure is also homogeneous. Thus S?"+!
gives an example of a homogeneous contact Riemannian (Sasakian) manifold
whose curvatures take negative and positive values (cf. [4], [16]).

A Sasakian manifold N has constant ¢-holomorphic sectional curvature
H(P) at P if every ¢-holomorphic section at P, that is, 2-plane determined
by Yp such that 5(Y) =0 and ¢Yp» has a common sectional curvature H(P).
If H is constant on N, then N is said to have constant ¢-holomorphic sectional
curvature H. If 2n+1=5, then H is always constant on N. The necessary
and sufficient condition for a Sasakian manifold N to have constant
¢-holomorphic sectional curvature H is (cf. [6]).

(7 3) 4Rabcd = (H+ 3)(gdagcb - gdbgcw>
+ (H—=1)(m9aGac+ 1cNaGra— NaNaGre— MG da + PasPac— PaaPoc+ 2Pachas) -

It is known that, if H is constant > —3, we have a positive constant &
so that N is of constant curvature 1 with respect to the deformed structure
(%, £%, 7%, g*) (cf [16]).

Next let #: N— N/ be the fibering of a regular Sasakian manifold with
constant ¢-holomorphic sectional curvature H. Then N/& is a Kaehlerian
manifold with constant holomorphic sectional curvature k=H+3 (cf. [7]).

8. Proof of the main theorem. Assume that the maximum dimension
of the automorphism group is attained in N. Then by Lemma 4.1 the
sectional curvature for 2-planes which contain £ is equal to a constant C=C,.
All possible cases are (i), (ii) and (iii) of Lemma 4.7.

(i) Suppose that C >0 holds. Then by Lemma 4.4 N can be considered
as a homogeneous Sasakian manifold after some deformation by (4.6)—(4.7).
N has constant ¢-holomorphic sectional curvature H, as is seen from the
argument in proof of Lemma 3.2. Since N is regular it is a circle or line
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bundle over N/¢€. By Lemma 52 we have dim A(N/£) = n(n+2) and hence
NJ/E is one of the three spaces: CP", CE® and CD" according to H > —3,
H= -3 and H< —-3.

(i-1) When H > —3, N is D-homothetically deformable to a space N*
of constant curvature 1. Therefore N or N¥ is a circle bundle over CP™.
N¥* is S?»*! or a factor space S?*!/F(¢,) where F(¢,) is a finite group generated
by expt,£. Conversely, S**!/F(t,) admits the automorphism group of the
maximum dimension. In fact, any infinitesimal automorphism on S§?"*! is
either proportional to £ or of the form X*—jf¢ (for notations see Lemma 5.1)
and it is invariant by exp?£. So X*—f¥ can be considered as an infinitesimal
automorphism on S*"*+!/F(¢,).

(i2) When H=—-3 Nis a T- or an L-bundle over CE". An L-bundle
is a universal covering manifold of a T-bundle, and an L-bundle is considered
as a (Euclidean) space E®"*! with a suitable coordinates. The metric g and
other tensors are given in terms of coordinates (cf. [8], [9]). Therefore N is
E?+1 or its factor space by F(¢), where F(¢) is a cyclic group generated by
exptf for a real number £, Conversely, by Lemma 6.1 E*"*! admits the
group of automorphisms of the maximum dimension (cf. [5]), and so does
E*+1/F(¢) by the same argument as in (i-1).

(i-3) When H< —3 N'is a T- or an L-bundle over CD". We consider
the converse. Since the fundamental 2-form W (on CD") is closed, it is locally
exact. However, since CD" is an opzn ball W is globally an exact form, ie.,
we have a 1-form w on CD” such that W=dw. Let z: (L,CD")— CD" be
an L-product bundle over CD". Then n =2 n*w+d¢ is an invarient 1-form on
(L, CD™) which defines an infinitesimal connection. It defines a contact structure
on (L,CD") which turns to a Sasakian structure by a suitable metric. Similarly
to (i-1) or (i-2), (L,CD") or its factor space admits the automorphism group
of the maximum dimension.

(ii) For the case C= C, =0, see Lemmas 4.5 and 4.7.
(iii) For the case C= C, < 0, see Lemmas 4.6 and 4.7.

REMARK 81. The scalar curvature S* in N and the scalar curvature S
in M =N/§ are in the relation S* = .S—2n ([15]). So we have

COROLLARY 82. Let N be a simply connected contact Riemannian
manifold which admits the automorphism group of the maximum dimension
(n+1)? and has one of the following properties :

(i) N is compact,

(ii) the scalar curvature S* > —2n,

(i) the ¢-holomorphic sectional curvature > —3.
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Then N is globally D-homothetic with the unit sphere.

REMARK 8.3. Roughly spzaking, the maximum dimension of the
automorphism group of a Sasakian manifold may be half of the dimension of
the isometry group. The following fact may have some interest: Let N be
a contact Riemannian manifold which is a symmetric space with respect to g.
Then at any point P, the geodesic symmetry op is not an automorphism, since

O'PEP = —fn

9. ¢-preserving transformations on contact Riemannian manifolds.
We consider the group ¢(IN) of all ¢-preserving transformations of a contact
Riemannian manifold N. It is known that ([12]).

9.1 dim ¢(IN) = dim A(N) + 1.
If a contact Riemannian manifold is compact, we have

9.2) H(N) = A(N).

These give the difference between M and N. Namely, in a compact contact
Riemannian manifold N we have

9.3) I(N) > ¢(N),

where I(N) denotes the group of all isometries of N. While in a compact
almost Kaehlerian manifold we have

9.4 Lie algebra of I(M) c Lie algebra of JM),

where J(M) denotes the group of all J-preserving transformations of M.

THEOREM 9.1. Let N be a (2n+1)-dimensional contact Riemannian
manifold. Then we have dim ¢(N)= (n+1)* + 1.

(1) If the maximum is attained in a contact Riemannian manifold,
then N is homeomorphic with the Euclidean space.

(i) If N is compact, then dim ¢(N)= (n+1)*. And if the maximum
is attained in a compact and simply connected contact Riemannian manifold,
then N is globally D-homothetic to the unit sphere.

PROOF. The first follows from (9.1). (i) follows from [13] or [14], since
N with dim¢(N)= n+1)* + 1 (dim A(N) = (n+1)*) is homogeneous and
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Sasakian. (ii) follows from (9.2) and Corollary 8.2.

S. TANNO

QED.

We have considered ¢(N) only for a contact Riemannian manifold N. If

N is an almost contact manifold, then ¢(IN) is quite different from one we

have treated in this section and it is too large.

In order to get results

analogous to J(M) for an almost complex manifold M (cf. [17]), it is natural
to consider the automorphism group of an almost contact structure, that is,
the set of all transformations which leave ¢, £ and 7 invariant.
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