COMPARISON BETWEEN $T(r, f)$ AND $\log M(r, f)^{*)}$

Nobushige Toda

(Received December 6, 1968)

1. Introduction. Let $f(z)$ be a transcendental entire function and let

$$
M(r)=M(r, f)=\max _{|z|=r}|f(z)|
$$

be the maximum modulus of $f(z)$ on $|z|=r$ and

$$
T(r)=T(r, f)=(1 / 2 \pi) \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

the characteristic function of $f(z)$, where $\log ^{+}|x|=\max (\log |x|, 0)$.
We define the order ρ and lower order λ of $f(z)$ as follows;

$$
\rho=\lim _{r \rightarrow \infty} \sup \frac{\log \log M(r, f)}{\log r}, \quad \lambda=\lim _{r \rightarrow \infty} \inf \frac{\log \log M(r, f)}{\log r} .
$$

Paley [6] proved that for each $\rho(0 \leqq \rho \leqq \infty)$, there is an entire function of order ρ for which

$$
\lim _{r \rightarrow \infty} \sup \frac{\log M(r, f)}{T(r, f)}=\infty
$$

On the other hand, it is conjectured that

$$
C_{f}=\liminf _{r \rightarrow \infty} \frac{\log M(r, f)}{T(r, f)} \leqq \pi \rho
$$

for $1 / 2<\rho<\infty$ (see [4, 6]), and it is known that

$$
C_{f} \leqq \pi \rho / \sin \pi \rho
$$

for $0 \leqq \rho \leqq 1 / 2$, and this is the best possible estimate (see $[9,11]$).

[^0]Further, we know the following results.
[I] For $0 \leqq \rho<1, \quad C_{f} \leqq \pi \rho / \sin \pi \rho$. ([9,11])
[II] For $0 \leqq \rho<\infty, \quad C_{f} \leqq C(\rho) \quad([4,6]) \quad$ and $C(\rho) \sim 2 e \rho \quad$ (see [6]), where $C(\rho)$ is a constant depending only on ρ.
[III] For $1 / 2 \leqq \rho<\infty$, if there exists a θ such that

$$
\log \left|f\left(r e^{i \theta}\right)\right| \sim \log M(r, f),
$$

then

$$
\begin{equation*}
C_{f} \leqq \pi \rho \tag{2}
\end{equation*}
$$

[IV] For $0 \leqq \lambda<1, \quad C_{f} \leqq \pi \lambda / \sin \pi \lambda$. (See $[1,5]$.)
[V] For $1 / 2 \leqq \lambda<\infty$, if there is a θ such that

$$
\log \left|f\left(r e^{i \theta}\right)\right| \sim \log M(r, f)
$$

then

$$
\begin{equation*}
C_{s} \leqq \pi \lambda . \tag{7}
\end{equation*}
$$

In this, note, we prove that for $0 \leqq \lambda<\infty$ there is a constant $C(\lambda)$ depending only on λ such that $C_{f} \leqq C(\lambda)$ and $C(\lambda) \sim 2 e \lambda$.
2. Lemmas. We give here some lemmas which we use in the next section.

Lemma 1. For any positive r and R such that $r<R<\infty$, it holds that

$$
T(r, f) \leqq \log M(r, f) \leqq \frac{R+r}{R-r} T(R, f)
$$

From these inequalities, we obtain

$$
\rho=\lim _{r \rightarrow \infty} \sup \frac{\log T(r, f)}{\log r}, \quad \lambda=\lim _{r \rightarrow \infty} \inf \frac{\log T(r, f)}{\log r} \quad \text { (see [3]). }
$$

Lemma 2. Let $f(z)$ be an entire function of lower order $\lambda(0 \leqq \lambda<\infty)$. Then there exists a function $\lambda(r)$ having the following properties:
(1) $\lambda(r)$ is a non-negative continuous function of r for $r \geqq r_{0}>0$,
(2) $\lambda(r)$ is differentiable for $r>r_{0}$ except at isolated points at which $\lambda^{\prime}(r-0)$ and $\lambda^{\prime}(r+0)$ exist,
(3) $\lim _{r \rightarrow \infty} r \lambda^{\prime}(r) \log r=0$,
(4) $\lim _{r \rightarrow \infty} \lambda(r)=\lambda$,
(5) $\quad r^{\lambda(r)} \leqq \log M(r, f)$ and $\lim _{r \rightarrow \infty} \inf \frac{\log M(r, f)}{r^{\lambda(r)}}=1$. (See [8].)

We call this function $\lambda(r)$ a lower proximate order for $f(z)$.
Lemma 3. Let $U(r)=r^{\lambda(r)}\left(r \geqq r_{0}\right)$. Then for $k>1$

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{U(k r)}{U(r)}=k^{\lambda} . \tag{10}
\end{equation*}
$$

Proof. By a simple calculation, we have

$$
\frac{r U^{\prime}(r)}{U(r)}=r \lambda^{\prime}(r) \log r+\lambda(r)
$$

Therefore, using the properties (3) and (4) of Lemma 2, we see that for any $\varepsilon>0$, there is an r_{1} such that for every $r \geqq r_{1}$,

$$
\frac{\lambda-\varepsilon}{r}<\frac{U^{\prime}(r)}{U(r)}<\frac{\lambda+\varepsilon}{r} .
$$

Integrating the above inequalities from r to $k r$, we have

$$
(\lambda-\varepsilon) \log k<\log \frac{U(k r)}{U(r)}<(\lambda+\varepsilon) \log k
$$

so that

$$
\lim _{r \rightarrow \infty} \frac{U(k r)}{U(r)}=k^{\lambda}
$$

3. Theorem. Now, we can prove the following theorem.

THEOREM. Let $f(z)$ be an entire function of lower order $\lambda(0 \leqq \lambda<\infty)$. Then

$$
C_{f} \begin{cases}\leqq\left(\lambda+\sqrt{\lambda^{2}+1}\left(\frac{1+\sqrt{\lambda^{2}+1}}{\lambda}\right)^{\lambda}\right. & (\lambda>0) \\ \leqq 1 & (\lambda=0)\end{cases}
$$

Proof. Let $R=r(1+x), x>0$. Then from Lemma 1 ,

$$
\log M(r) \leqq \frac{x+2}{x} T((1+x) r) .
$$

Dividing each side by $U(r)$ of Lemma 3 and taking the inferior limit, we have

$$
1=\liminf _{r \rightarrow \infty} \frac{\log M(r)}{U(r)} \leqq \frac{x+2}{x} \liminf _{r \rightarrow \infty} \frac{T((1+x) r)}{U(r)} .
$$

Consequently

$$
\frac{x}{x+2} \leqq \liminf _{r \rightarrow \infty} \frac{T((1+x) r)}{U(r)}
$$

Here

$$
\frac{T((1+x) r)}{U(r)}=\frac{T((1+x) r)}{U((1+x) r)} \cdot \frac{U((1+x) r)}{U(r)}
$$

so that

$$
\begin{aligned}
\liminf _{r \rightarrow \infty} \frac{T((1+x) r)}{U(r)} & \leqq \liminf _{r \rightarrow \infty} \frac{T((1+x) r)}{U((1+x) r)} \cdot \limsup _{r \rightarrow \infty} \frac{U((1+x) r)}{U(r)} \\
& =\liminf _{r \rightarrow \infty} \frac{T(r)}{U(r)} \cdot(1+x)^{\lambda}
\end{aligned}
$$

by Lemma 3. Using this inequality and from the equality

$$
\frac{\log M(r)}{T(r)}=\frac{\log M(r)}{U(r)} \cdot \frac{U(r)}{T(r)},
$$

we get

$$
\begin{aligned}
C_{f} & =\liminf _{r \rightarrow \infty} \frac{\log M(r)}{T(r)} \leqq \liminf _{r \rightarrow \infty} \frac{\log M(r)}{U(r)} \cdot \limsup _{r \rightarrow \infty} \frac{U(r)}{T(r)} \\
& =1 \cdot \frac{1}{\liminf _{r \rightarrow \infty} \frac{T(r)}{U(r)}} \begin{cases}\leqq \frac{x+2}{x}(1+x)^{\lambda}, & \lambda>0, \\
\leqq \frac{x+2}{x}, & \lambda=0 .\end{cases}
\end{aligned}
$$

Put

$$
K(x)= \begin{cases}\frac{x+2}{x}(1+x)^{\lambda}, & \lambda>0, \\ \frac{x+2}{x}, & \lambda=0 .\end{cases}
$$

Then $K(x)$ takes the minimum value

$$
C(\lambda)=\left(\lambda+\sqrt{\lambda^{2}+1}\right)\left(\frac{1+\sqrt{\lambda^{2}+1}}{\lambda}\right)^{\lambda},
$$

being $\sim 2 e \lambda(\lambda \rightarrow \infty)$, for $x=\frac{1-\lambda+\sqrt{\lambda^{2}+1}}{\lambda}$ if $\lambda>0$, and $K(x)$ decreases monotonously to 1 as $x \rightarrow \infty$ if $\lambda=0$. From this fact, we have

$$
C_{f} \leqq C(\lambda), \quad(\lambda \geqq 0)
$$

where

$$
C(\lambda)=\left\{\begin{array}{l}
\left(\lambda+\sqrt{\lambda^{2}+1}\right)\left(\frac{1+\sqrt{\lambda^{2}+1}}{\lambda}\right)^{\lambda}, \quad \lambda>0, \\
1, \quad \lambda=0 .
\end{array}\right.
$$

Clearly $C(\lambda) \sim 2 e \lambda$ as λ tends to infinity and $C(\lambda) \leqq(2 \lambda+1) e$ for any $\lambda(0 \leqq \lambda<\infty)$.

REmARK. Thus the best estimate of C_{f} which we have known is as follows.

Let $0<\xi<1$ be the root of the equation

$$
\frac{\pi x}{\sin \pi x}=C(x) .
$$

Then

$$
C_{r} \leqq \pi \lambda / \sin \pi \lambda \quad \text { in } 0 \leqq \lambda \leqq \xi
$$

and

$$
C_{f} \leqq C(\lambda) \quad \text { in } \xi<\lambda<\infty .
$$

References

[1] J. M. ANDERSON, Regularity criteria for integral and meromorphic functions, Trans. Amer. Math. Soc., 124(1966), 185-200.
[2] A. A. GoL'DBERG, Growth of an entire function along a half-line, Soviet Math. Dokl., 4(1963), 1491-1493.
[3] W. K. HAYMAN, Meromorphic functions, Oxford Math. Mono., 1964.
[4] W. K. HAYMAN, Research problems in function theory, Univ. London, 1967.
[5] I. V. Ostrowski, On the deficiencies of meromorphic functions of lower order less than one, Soviet Math. Dokl., 4(1963), 587-591.
[6] R.E.A.C. Paley, A note on integral functions, Proc. Cambridge Philo. Soc., 28(1932), 262-265.
[7] V. P. Petrenko, Growth of a meromorphic function along a half-line, Soviet Math. Dokl., 5(1964), 405-408.
[8] S. M. Shaf, A note on lower proximate orders, J. Indian Math. Soc., 12(1948), 31-32.
[9] G. Valiron, Sur le minimum du module des fonctions entières d'ordre inferieur à un, Mathematica, 11(1935), 264-269.
[10] G. Valiron, Fonctions entières d'ordre fini et fonctions méromorphes, Mono. L'Enseign. Math., No. 8, Univ. Genève, 1960.
[11] A. Wahlund, Über einem Zusammenhang zwischen dem Maximalbetrage der ganzen Funktion und seiner unteren Grenze nach dem Jensen'schen Theoreme, Ark. Mat. Astronom. Fys., 21 A No. 23, (1929), 34pp.

Mathematical Institute
Tôhoku University
Sendai, Japan

Added in proof: Recently Petrenko has stated a positive answer for Paley's conjecture without proof in Dokl. Akad. Nauk SSSR 184-5(1969).

[^0]: *) This work was supported in part by the Sakkokai Foundation.

