ON THE ALGEBRA OF MEASURABLE OPERATORS FOR

A GENERAL $\boldsymbol{A} \boldsymbol{W}^{*}$-ALGEBRA

Kazuyuki Saitô

(Received November 19, 1968)

1. Introduction. It is an interesting problem in the non-commutative integration theory to construct a "measurable operator" without using unbounded linear operators. From this point of view, we shall extend Berberian's result on "The regular ring of a finite $A W$ "-algebra" to general $A W$ "-algebras. S. K. Berberian defined a "closed operator" for a finite $A W^{*}$-algebra in algebraic fashion and studied the structure of the "closed operators" [1].

The plan of this paper is as follows. Section 3 is devoted to formulate the notions of "strongly dense domains" and "measurable operators" with respect to a given $A W^{*}$-algebra M. Our definitions are closely related to that of [1]. Along the same lines with [1], we shall construct the algebra \mathcal{C} of "measurable operators" for the general $A W^{*}$-algebras and study some preliminary algebraic properties of \mathcal{C}. Section 5 deals with the spectral theorem for "self-adjoint measurable operators" using the Cayley transform. Theorem 5.1 gives the necessary and sufficient condition for a unitary element in M to be the Cayley transform of some "self-adjoint element" of \mathcal{C}. In particular, Lemma 4.1 and Theorem 5.1 play essential rôles in our discussions. In section 6, Theorem 6.2 gives an alternative proof of ([5] Theorem): If \mathcal{C} is regular ([10], Definition 2.2), then M is finite. Theorem 6.3 concerns with the polar decomposition of a "measurable operator" which is one of the main theorems in this paper. Moreover, we shall show that \mathcal{C} is a Baer*-ring in the sense of [6].

Before going into discussions, the author wishes to express his gratitude to Prof. M. Takesaki for calling his attention to the reference [1], and he is also grateful to Prof. J. Tomiyama for useful conversations with him.
2. Notations and Definitions. An $A W^{*}$-algebra M is a C^{*}-algebra satisfying the following two conditions:
(a) In the set of projections any collection of orthogonal projections has a least upper bound.
(b) Any maximal commutative self-adjoint subalgebra is generated by its projections.

Denote the set of all self-adjoint elements, projections, partial isometries and unitary elements in M by $M_{s a}, M_{p}, M_{p i}$ and M_{u}, respectively.

Let M be the two sided ideal generated by all finite projections in M, then \mathfrak{M}_{p} contains only finite projections.

If $\left\{e_{n}\right\}$ is a sequence in $M_{p}, e_{n} \uparrow$ means $e_{n} \leqq e_{n+1}$; if moreover sup $\left\{e_{n}\right.$, $n \geqq 1\}=e$, we write $e_{n} \uparrow e$. The notations $e_{n} \downarrow$ and $e_{n} \downarrow e$ have the dual meanings.

The right projection of an element $x \in M$ is $R P(x), L P(x)$ is the left projection; the relation $R P(x) \sim R P(x)$ will be needed. For a subset $S \subset M$, S^{\prime} is the set of all elements of M which commute with each element of S. If S is a self-adjoint subset, then S^{\prime} is an $A W^{*}$-subalgebra of M (that is, S^{\prime} is itself an $A W^{*}$-algebra and the least upper bound of orthogonal projections computed in S^{\prime} is the same as computed in M). If S consists of a single unitary element u, S^{\prime} is an $A W^{*}$-subalgebra of M and $S^{\prime \prime}$ is a commutative $A W^{*}$-subalgebra of M.

3. Strongly dense domains and Measurable operators.

Definition 3.1. ([1], p.228). A sequence $\left\{e_{n}\right\}$ in M_{p} is a strongly dense domain (SDD), in case $e_{n} \uparrow 1$ and $1-e_{n} \in \mathfrak{M}$.

An essentially measurable operator (EMO) is a pair of sequences $\left\{x_{n}, e_{n}\right\}$ with $x_{n} \in M,\left\{e_{n}\right\}$ an SDD, and such that $m<n$ implies $x_{n} e_{m}=x_{m} e_{m}$ and $\left(x_{n}\right) * e_{m}=\left(x_{m}\right) * e_{m}$.

For example if $x \in M$, we can take $x_{n}=x$ and $e_{n}=1$ for all $n ;\left\{x_{n}, e_{n}\right\}$ is an EMO, written briefly $\{x, 1\}$.

To introduce the algebraic operations in EMO, we need the following definition and lemma.

Definition 3.2. If $x \in M$, and $e \in M_{p}$, we denote the largest projection right-annihilating $(1-e) x$ by $x^{-1}[e]$; that is, $1-x^{-1}[e]$ is the right projection of $(1-e) x$.

Lemma 3.1. Let $\left\{e_{n}\right\},\left\{f_{n}\right\}, \cdots\left\{g_{n}\right\}$ be SDD, and x be any element of M, then $\left\{e_{n} \wedge f_{n} \wedge \cdots \wedge g_{n}\right\}$ and $\left\{x^{-1}\left[e_{n}\right]\right\}$ are SDD.

Proof. It is sufficient to consider the case of two $\operatorname{SDD}\left\{e_{n}\right\}$ and $\left\{f_{n}\right\}$. Putting $g_{n}=e_{n} \wedge f_{n}, g=\sup \left\{g_{n}, n \geqq 1\right\}, h_{n}=x^{-1}\left[e_{n}\right]$ and $h=\sup \left\{h_{n}, n \geqq 1\right\}$; evidently $g_{n} \uparrow g$. Since $1-g \leqq 1-g_{n}=\left(1-e_{n}\right) \bigvee\left(1-f_{n}\right)$, and $1-e_{n}, 1-f_{n} \in \mathfrak{M}$, by ([3], Theorem 6.2), we have $\left(1-\mathrm{e}_{n}\right) \vee\left(1-f_{n}\right) \in \mathfrak{M}, 1-g_{n}$ and $1-g \in \mathfrak{M}$. By Definition 3.2, $\left(1-e_{k}\right) h_{k}=0$ and h_{k} is the largest such projection. If $m<n$, then $\left(1-e_{n}\right) x h_{m}=\left(1-e_{n}\right)\left(1-e_{m}\right) x h_{m}=0$, hence $h_{m} \leqq h_{n}$. Since $1-h_{n}=1-x^{-1}\left[e_{n}\right]$
$=R P\left(\left(1-e_{n}\right) x\right) \sim L P\left(\left(1-e_{n}\right) x\right) \leqq 1-e_{n}, 1-x^{-1}\left[e_{n}\right] \in \mathfrak{M}$ for all n. Noting that $\left\{1-e_{n}, 1-f_{n}, 1-g_{n}, 1-h_{n}, 1-g, 1-h ; n=1,2, \cdots\right\} \subset\left(\left(1-e_{1}\right) \vee\left(1-f_{1}\right) \vee\right.$ $\left.\left(1-h_{1}\right)\right) M\left(\left(1-e_{1}\right) \vee\left(1-f_{1}\right) \vee\left(1-h_{1}\right)\right)$ (Note that this is a finite $A W^{*}$-algebra), by ([3], p.248), for the unique normalized center-valued dimension function $\mathrm{D}(\cdot)$ of $\left(\left(1-e_{1}\right) \bigvee\left(1-f_{1}\right) \vee\left(1-h_{1}\right)\right) M\left(\left(1-e_{1}\right) \bigvee\left(1-f_{1}\right) \vee\left(1-h_{1}\right)\right)$, we have

$$
D\left(1-h_{n}\right) \leqq D\left(1-e_{n}\right)
$$

and

$$
D(1-g) \leqq D\left(1-g_{n}\right) \leqq D\left(1-e_{n}\right)+D\left(1-f_{n}\right) ;
$$

$D(1-h)=D(1-g)=0$ result from $D\left(1-e_{n}\right) \downarrow 0$ and $D\left(1-f_{n}\right) \downarrow 0$. This completes the proof of Lemma 3.1.

Suggested by ([9], Corollary 5.1), we introduce an equivalence relation in the set of all EMO :

Definition 3.3. ([1], Definition 2.2) Two EMO $\left\{x_{n}, e_{n}\right\}$ and $\left\{y_{n}, f_{n}\right\}$ are equivalent, denoted by $\left\{x_{n}, e_{n}\right\} \equiv\left\{y_{n}, f_{n}\right\}$, if there exists an $\operatorname{SDD}\left\{g_{n}\right\}$ such that $x_{n} g_{n}=y_{n} g_{n},\left(x_{n}\right)^{*} g_{n}=\left(y_{n}\right) * g_{n}$ for all n. The SDD $\left\{g_{n}\right\}$ implements the equivalence.

It is immediate that the relation just defined is indeed an equivalence relation. The next remarks, which are easy to verify, will be used frequently.

REMARK. If $\left\{x_{n}, e_{n}\right\}$ is an EMO and $\left\{f_{n}\right\}$ is any SDD, then $\left\{x_{n}, e_{n} \wedge f_{n}\right\}$ is an EMO, and $\left\{x_{n}, e_{n}\right\} \equiv\left\{x_{n}, e_{n} \wedge f_{n}\right\}$. If an $\operatorname{SDD}\left\{g_{n}\right\}$ implements $\left\{x_{n}\right.$, $\left.e_{n}\right\} \equiv\left\{y_{n}, f_{n}\right\}$, and $h_{n}=e_{n} \wedge f_{n} \wedge g_{n}$, then $\left\{x_{n}, h_{n}\right\}$ and $\left\{y_{n}, h_{n}\right\}$ are EMO, and SDD $\left\{h_{n}\right\}$ implements $\left\{x_{n}, h_{n}\right\} \equiv\left\{y_{n}, h_{n}\right\}$.

Definition 3.4. ([1], Definition 2.3) Let $\left\{x_{n}, e_{n}\right\}$ be an EMO and [x_{n}, $\left.e_{n}\right]$ be its equivalence class. $\left[x_{n}, e_{n}\right]$ is said a "measurable operator" (MO). Denote the set of all MO by \mathcal{C} and we use letters $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \cdots$ for the elements of \mathcal{C}.

After suitable operations are defined, \mathcal{C} is the Baer*-ring promised in the introduction, and $x \rightarrow[x, 1]$ is the imbedding of M in \mathcal{C}.

Now we are in the position to define the operations in \mathcal{C}. If $\left\{x_{n}, e_{n}\right\}$ and $\left\{y_{n}, f_{n}\right\}$ are EMO, and λ is a complex number, we define $\lambda\left\{x_{n}, e_{n}\right\}=\left\{\lambda x_{n}, e_{n}\right\}$, $\left\{x_{n}, e_{n}\right\}+\left\{y_{n}, f_{n}\right\}=\left\{x_{n}+y_{n}, e_{n} \wedge f_{n}\right\}$ and $\left\{x_{n}, e_{n}\right\}^{*}=\left\{\left(x_{n}\right)^{*}, e_{n}\right\}$; the righthand members of these definitions are easily seen to be EMO. Set $g_{n}=e_{n} \wedge f_{n} \wedge$ $\left(\left(y_{n}\right)^{-1}\left[e_{n}\right]\right) \wedge\left(\left(\left(x_{n}\right)^{*}\right)^{-1}\left[f_{n}\right]\right)$; it is straightforward to verify that $\left\{g_{n}\right\}$ is an

SDD, and that if $m<n$, then $\left(x_{n} y_{n}\right) g_{m}=\left(x_{m} y_{m}\right) g_{m}$ and $\left(\left(y_{n}\right)^{*}\left(x_{n}\right)^{*}\right) g_{m}$ $=\left(\left(y_{m}\right)^{*}\left(x_{m}\right)^{*}\right) g_{m}$, that is, $\left(x_{n} y_{n}\right)^{*} g_{m}=\left(x_{m} y_{m}\right)^{*} g_{m}$. This implies that $\left\{x_{n} y_{n}\right.$, $\left.g_{n}\right\}$ is an EMO, and this is our definition for $\left\{x_{n}, e_{n}\right\}\left\{y_{n}, f_{n}\right\}$. Mereover, if $\left\{x_{n}, e_{n}\right\} \equiv\left\{x_{n}^{\prime}, e_{n}^{\prime}\right\}$ and $\left\{y_{n}, f_{n}\right\} \equiv\left\{y_{n}^{\prime}, f_{n}^{\prime}\right\}$, then $\lambda\left\{x_{n}, e_{n}\right\} \equiv \lambda\left\{x_{n}^{\prime}, e_{n}^{\prime}\right\},\left\{x_{n}, e_{n}\right\}$ $+\left\{y_{n}, f_{n}\right\} \equiv\left\{x_{n}^{\prime}, e_{n}^{\prime}\right\}+\left\{y_{n}^{\prime}, f_{n}^{\prime}\right\}, \quad\left\{x_{n}, e_{n}\right\}^{*} \equiv\left\{x_{n}^{\prime}, e_{n}^{\prime}\right\}^{*}, \quad$ and $\quad\left\{x_{n}, e_{n}\right\}\left\{y_{n}, f_{n}\right\}$ $\equiv\left\{x_{n}^{\prime}, e_{n}^{\prime}\right\}\left\{y_{n}^{\prime}, f_{n}^{\prime}\right\}$. Thus if $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ and $\boldsymbol{y}=\left[y_{n}, f_{n}\right]$, the definitions $\lambda \boldsymbol{x}=\left[\lambda x_{n}, e_{n}\right], \boldsymbol{x}+\boldsymbol{y}=\left[x_{n}+y_{n}, e_{n} \wedge f_{n}\right], \boldsymbol{x}^{*}=\left[\left(x_{n}\right)^{*}, e_{n}\right]$, and $\boldsymbol{x} \boldsymbol{y}=\left[x_{n} y_{n}, g_{n}\right]$, are unambiguous. With these definitions, \mathcal{C} becomes an associative algebra over the complex numbers, with involution *: $\boldsymbol{x}^{* *}=\boldsymbol{x},(\boldsymbol{x}+\boldsymbol{y})^{*}=\boldsymbol{x}^{*}+\boldsymbol{y}^{*}$, $(\lambda \boldsymbol{x})^{*}=\bar{\lambda} \boldsymbol{x}^{*}$ and $(\boldsymbol{x} \boldsymbol{y})^{*}=\boldsymbol{y}^{*} \boldsymbol{x}^{*}$. If $x, y \in M$, and λ is a complex number, clearly $\{x, 1\}+\{y, 1\} \equiv\{x+y, 1\}, \lambda\{x, 1\} \equiv\{\lambda x, 1\},\{x, 1\}^{*} \equiv\left\{x^{*}, 1\right\}$, and $\{x, 1\}\{y, 1\} \equiv\{x y, 1\} ;$ passing from $\{\cdot, \cdot\}$ to $[\cdot, \cdot],[x, 1]+[y, 1]=[x+y, 1]$, $\lambda[x, 1]=[\lambda x, 1],[x, 1]^{*}=\left[x^{*}, 1\right]$, and $[x, 1][y, 1]=[x y, 1]$, thus the mapping $x \rightarrow[x, 1](x \in M)$ is a *-isomorphism of M into \mathcal{C}; for if $[x, 1]=[y, 1]$, then $\{x, 1\} \equiv\{y, 1\}$, so there exists an $\operatorname{SDD}\left\{e_{n}\right\}$ such that $(x-y) e_{n}=0$ for all n. The result follows from ([3], Lemma 2.2).

Summarizing the above results, we have
ThEOREM 3.1. The set \mathcal{C} of all MO is an associative algebra over the complex numbers, with involution *, with respect to the operations

$$
\begin{aligned}
{\left[x_{n} \cdot e_{n}\right]+\left[y_{n}, f_{n}\right] } & =\left[x_{n}+y_{n}, e_{n} \wedge f_{n}\right], \\
\lambda\left[x_{n}, e_{n}\right] & =\left[\lambda x_{n}, e_{n}\right], \\
{\left[x_{n}, e_{n}\right]^{*} } & =\left[\left(x_{n}\right)^{*}, e_{n}\right]
\end{aligned}
$$

and

$$
\left[x_{n}, e_{n}\right]\left[y_{n}, f_{n}\right]=\left[x_{n} y_{n}, g_{n}\right]
$$

where $\left\{g_{n}\right\}$ is the SDD such that $g_{n}=e_{n} \wedge f_{n} \wedge\left(\left(y_{n}\right)^{-1}\left[e_{n}\right]\right) \wedge\left(\left(\left(x_{n}\right)^{*}\right)^{-1}\left[f_{n}\right]\right)$. The mapping $x(x \in M) \rightarrow[x, 1]$ is $a *$-isomorphism of M into \mathcal{C}, and $[1,1]$ is a unit element for \mathcal{C}.

To simplify the notations, we shall denote $[x, 1]$ by \bar{x}; then $\overline{1}$ is the unit element of \mathcal{C}, which we condense further to $1 . \bar{M}$ is the image of M in \mathcal{C}.

Remark. Let $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ be in \mathcal{C} : for any fixed index m, $\left[x_{n}, e_{n}\right] \overline{e_{m}}$ $=\overline{x_{m} e_{m}}$. For $\left(e_{m}\right)^{-1}\left[e_{n}\right]$ is the largest projection right-annihilating $\left(1-e_{n}\right) e_{m}$, noting that $\left(1-e_{n}\right) e_{m} e_{n}=\left(1-e_{n}\right) e_{n} e_{m}=0$, we have $\left(e_{m}\right)^{-1}\left[e_{n}\right] \geqq e_{n} ;\left\{x_{n}, e_{n}\right\}\left\{e_{m}, 1\right\}$ $\equiv\left\{x_{n} e_{m}, e_{n}\right\}$. On the other hand, by Definition 3.1, we have for $n>m$,

$$
x_{n} e_{m} e_{n}=x_{m} e_{m} e_{n}
$$

$$
e_{m}\left(x_{n}\right)^{*} e_{n}=\left(x_{n} e_{n}\right)^{*} e_{n}=\left(x_{m} e_{m}\right)^{*} e_{n}=e_{m}\left(x_{m}\right)^{*} e_{n}
$$

and for $n \leqq m$,

$$
\begin{gathered}
x_{n} e_{m} e_{n}=x_{n} e_{n}=x_{m} e_{n}=x_{m} e_{m} e_{n}, \\
e_{m}\left(x_{n}\right){ }^{*} e_{n}=e_{m}\left(x_{m}\right) e_{n} .
\end{gathered}
$$

This implies that the $\operatorname{SDD}\left\{e_{n}\right\}$ implements the equivalence $\left\{x_{n}, e_{n}\right\}\left\{e_{m}, 1\right\}$ $\equiv\left\{x_{m} e_{m}, 1\right\}$. It follows that if $\left[x_{n}, e_{n}\right]=\left[y_{n}, f_{n}\right]$, then $x_{m}\left(e_{m} \wedge f_{m}\right)=y_{m}\left(e_{m} \wedge f_{m}\right)$ for all m, thus the equivalent "linear operators" $\left\{x_{n}, e_{n}\right\}$ and $\left\{y_{n}, f_{n}\right\}$ agree, so to speak, on their largest possible common domain.

If M is a W^{*}-algebra ([8]), it is easy to see from ([9], Corollaries 5.1 and 5.3) that the *-algebra \mathcal{C} just constructed is $*$-isomorphic with the $*$-algebra of measurable operators in the sense of [9], in such a way as to preserve the elements of M. Because of the inherent nature of the above construction, we have as an immediate corollary a theorem of Ogasawara and Yoshinaga:

Theorem 3.2 ([1], [7]). Let M and N be $A W^{*}$ algebras, $\mathcal{C}_{M}, \mathcal{C}_{N}$, their *-algebras of measurable operators. There exists a one to one correspondence between the *-isomorphisms $\Phi: \mathcal{C}_{M} \rightarrow \mathcal{C}_{N}$ and the *-isomorphisms $\phi: M \rightarrow N$ and the correspondence $\Phi \rightarrow \phi$ is obtained by restricting Φ to M.

Proof. We may suppose M (resp. N) to be a self-adjoint subalgebra of \mathcal{C}_{M} (resp. \mathcal{C}_{N}). By Lemma 5.3, any $*$-homomorphism $\Phi: \mathcal{C}_{M} \rightarrow \mathcal{C}_{N}^{\prime}$ necessarily maps M into N. On the other hand for ϕ preserves the finiteness of projections, any *-isomorphism $\phi: M \rightarrow N$ can be lifted to a $*$-isomorphism $\Phi: \mathcal{C}_{M} \rightarrow \mathcal{C}_{N}$; Φ is the mapping $\left[x_{n}, e_{n}\right] \rightarrow\left[\phi\left(x_{n}\right), \phi\left(e_{n}\right)\right]$. This induced Φ is unique. For, given any $\boldsymbol{x} \in \mathcal{C}_{M}$, we can find an $\operatorname{SDD}\left\{e_{n}\right\}$ in M such that $\boldsymbol{x} e_{n} \in M$ for all n; then $\Phi\left(\boldsymbol{x} e_{n}\right)=\Phi(\boldsymbol{x}) \cdot \Phi\left(e_{n}\right), \phi\left(\boldsymbol{x} e_{n}\right)=\Phi(\boldsymbol{x}) \phi\left(e_{n}\right)$, and by Lemma 4.5, we see that Φ is determined by its values on M. This completes the proof of Theorem 3.2.

Next we investigate the connection between subalgebra $e M e\left(e \in M_{p}\right)$ of M and subalgebras of \mathcal{C}. Noting that for any $e \in M_{p}, e M e$ is also an $A W^{*}$-algebra ([3]), we have

ThEOREM 3.3. For any projection e in M, the algebra of all measurable operators for eMe is *-isomorphic to $\bar{e} C \bar{e}$.

Proof. We write $\left\{x_{n}, e_{n}\right\}_{e}$ to indicate an EMO with respect to $e M e$; in particular $x_{n} \in e M e, e_{n} \uparrow e$ and $e-e_{n} \in \mathfrak{M}$. Setting $e_{n}^{\prime}=e_{n}+1-e$, we have $e_{n}^{\prime} \uparrow 1$ and $1-e_{n}^{\prime}=e-e_{n} \in \mathfrak{M}$, and it is easy to verify that the mappig $\left[x_{n}, e_{n}\right]_{e}$
$\rightarrow\left[x_{n}, e_{n}^{\prime}\right]$ is a $*$-isomorphism of the algebra of measurable operators for $e M e$ into $\bar{e} C \bar{e}$. It is sufficient to show that this mapping is onto. Suppose \boldsymbol{y} is a self-adjoint element of $\bar{e} C \bar{e}, \bar{u}$ its Cayley transform (Section 5, Lemma 5.1) and $\boldsymbol{y}=\left[y_{n}, f_{n}\right]$ with $y_{n}, f_{n} \in\{\boldsymbol{u}\}^{\prime \prime}$ (Theorem. 5.2). Since \bar{e} commutes with \boldsymbol{y}, e commutes with u (Remark following Lemma 5.1), hence e, y_{n}, f_{n} mutually commute. If we set $x_{n}=y_{n} e, e_{n}=f_{n} e$, then $e_{n} \uparrow e$ and $e-e_{n} \leqq 1-f_{n} \in \mathfrak{M}$, so $\left\{e_{n}\right\}$ is an SDD in $e M e$. Moreover, an easy calculation shows that $\left\{x_{n}, e_{n}\right\}_{e}$ is an EMO in $e M e$ and $\left[x_{n}, e_{n}^{\prime}\right]=\boldsymbol{y}$. This completes proof of the theorem.

4. Preliminary algebraic properties of \mathcal{C}.

Lemma 4.1. If $\boldsymbol{x}=\left[x_{n}, e_{n}\right](\boldsymbol{x} \in \mathcal{C})$ and all the x_{n} are invertible, then \boldsymbol{x} is invertible, and $\boldsymbol{x}^{-1}=\left[\left(x_{n}\right)^{-1}, h_{n}\right]$ for a suitable $\operatorname{SDD}\left\{h_{n}\right\}$.

To prove this, we need the following lemma:
Lemma. For any e in M_{p} and any invertible element s in M,

$$
\left(\left(s^{*}\right)^{-1}\right)^{-1}[1-e]=1-s^{-1}[e],
$$

and if $1-e \in \mathfrak{M}$, then $s^{-1}[1-e]$ is also in \mathfrak{M}.
Proof. By Definition 3.2, the right annihilator of $e\left(s^{*}\right)^{-1}\left(R A\left(e\left(s^{*}\right)^{-1}\right)\right)$ $=\left(\left(\left(s^{*}\right)^{-1}\right)^{-1}[1-e]\right) M$, and the right annihilator of $\left.(1-e) s(R A(1-e) s)\right)=$ $\left(s^{-1}[e]\right) M$. Since $(1-e) s s^{-1} e=0$, we have

$$
s^{-1} e \in R A((1-e) s)
$$

and

$$
\left(e\left(s^{*}\right)^{-1}\right)\left(1-\left(s^{-1}[e]\right)\right)=0,
$$

thus we have

$$
1-s^{-1}[e] \leqq\left(\left(s^{*}\right)^{-1}\right)^{-1}[1-e] .
$$

On the other hand,

$$
\begin{aligned}
(1-e) s\left(s^{-1}[e]\right) & =0, \\
s\left(s^{-1}[e]\right) & =e s\left(s^{-1}[e]\right), \\
s^{-1}[e] & =\left(s^{-1}\right) e s\left(s^{-1}[e]\right), \\
s^{-1}[e] & =\left(s^{-1}[e]\right) s^{*} e\left(s^{*}\right)^{-1} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\left.s^{-1}[e]\left(\left(s^{*}\right)^{-1}\right)^{-1}[1-e]\right) & \left.=\left(s^{-1}[e]\right) s^{*} e\left(s^{*}\right)^{-1}\right)\left(\left(\left(s^{*}\right)^{-1}\right)^{-1}[1-e]\right)=0 \\
\left(\left(s^{*}\right)^{-1}\right)^{-1}[1-e] & \leqq 1-s^{-1}[e] .
\end{aligned}
$$

The lemma follows.
Proof of Lemma 4.1. Let f_{n} be the left projection of $x_{n} e_{n}$; we show that $\left\{f_{n}\right\}$ is an SDD. If $m<n$, then $f_{n}\left(x_{m} e_{m}\right)=f_{n} x_{n} e_{m}=f_{n} x_{n} e_{n} e_{m}=x_{n} e_{n} e_{m}$ $=x_{m} e_{m}$ shows that $1-f_{n} \leqq 1-f_{m}$, that is, $f_{m} \leqq f_{n}$. Since the invertibility of x_{n} implies that by the above lemma, $1-f_{n}=1-R P\left(e_{n}\left(x_{n}\right)^{*}\right)=\left(\left(x_{n}\right)^{*}\right)^{-1}[1$ $\left.-e_{n}\right]=1-\left(\left(x_{n}\right)^{-1}\right)^{-1}\left[e_{n}\right] \leqslant 1-e_{n}$, by the same way as that used in the proof of Lemma 3.1, we have $1-f_{n} \in \mathfrak{M}$ and $f_{n} \uparrow 1$. Putting $y_{n}=\left(x_{n}\right)^{-1}$, if $m<n$, then $f_{n} y_{m}=y_{m} f_{m}$; for

$$
\begin{aligned}
x_{m} e_{m} & =x_{n} e_{m}, \\
y_{n} x_{m} e_{m}=y_{n} x_{n} e_{m} & =e_{n} e_{m}=y_{m} x_{m} e_{m}, \\
\left(y_{n}-y_{m}\right) x_{m} e_{m} & =0, \\
\left(y_{n}-y_{m}\right) f_{m} & =0 .
\end{aligned}
$$

Similarly on putting $\left.g_{n}=L P\left(x_{n}\right) * e_{n}\right)$, we have that $\left\{g_{n}\right\}$ is an SDD and $\left(y_{n}\right) * g_{m}=\left(y_{m}\right)^{*} g_{m}$ when $m<n$; hence if $h_{n}=f_{n} \wedge g_{n}$, then $\left\{y_{n}, h_{n}\right\}$ is an EMO, and it is evident that $\boldsymbol{y}=\left[y_{n}, h_{n}\right]$ satisfies $\boldsymbol{x} \boldsymbol{y}=\boldsymbol{y} \boldsymbol{x}=1$. This completes the proof.

Lemma 4.2. If $\boldsymbol{x}^{*}=\boldsymbol{x}$, then we may write $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ with $\left(x_{n}\right)^{*}=x_{n}$.
Proof. If $\boldsymbol{x}=\left[y_{n}, f_{n}\right]$, then $\boldsymbol{x}=(1 / 2)\left(\boldsymbol{x}+\boldsymbol{x}^{*}\right)=\left[\left(\left(x_{n}\right)^{*}+x_{n}\right) / 2, f_{n}\right]$.
Corollary 4.1. If $\boldsymbol{x}^{*}=\boldsymbol{x}$, then $\boldsymbol{x}+i 1$ is invertible.
Proof. Let $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ with $\left(x_{n}\right)^{*}=x_{n}$; then $\boldsymbol{x}+i 1=\left[x_{n}+i 1, e_{n}\right]$ and each $x_{n}+i 1$ is invertible. The assertion is clear from Lemma 4.1.

Lemma 4.3. Let $\boldsymbol{u}=\left[u_{n}, e_{n}\right]$, with $u_{n} \in M_{u}$ for all n; then there is a unique unitary element $u \in M$ such that $\boldsymbol{u}=\bar{u}$.

Proof. The proof is the same as that of ([1], Lemma 3.3). But for the sake of completeness, we sketch it. Put $w_{n}=u_{n} e_{n}$: since $\left(w_{n}\right) * w_{n}=e_{n}, w_{n}$ is a partial isometry, so $f_{n}=w_{n}\left(w_{n}\right)^{*}=u_{n} e_{n}\left(u_{n}\right)^{*}$ is the left projection of w_{n}. As shown in the proof of Lemma 4.1, $\left\{f_{n}\right\}$ is an SDD. Set $v_{n}=w_{n}-w_{n-1}=u_{n} e_{n}-u_{n-1} e_{n-1}=u_{n} e_{n}-u_{n} e_{n-1}=u_{n}\left(e_{n}-e_{n-1}\right)$, where u_{0} $=w_{0}=e_{0}=0 ; v_{n}$ is a partial isometry with initial projection $e_{n}-e_{n-1}$, and the final projection is $u_{n}\left(e_{n}-e_{n-1}\right)\left(u_{n}\right)^{*}=u_{n} e_{n}\left(u_{n}\right)^{*}-u_{n-1} e_{n-1}\left(u_{n-1}\right)^{*}=f_{n}-f_{n-1}$, where $f_{0}=0$. Since the v_{n} have orthogonal initial projections and orthogonal final projections, by ([4], Lemma 20) there is an element $u \in M_{p i}$ such that
$u^{*} u=\sup \left\{\sum_{i=1}^{n}\left(e_{i}-e_{i-1}\right), n \geqq 1\right\}=1 u u^{*}=1$, and $u\left(e_{n}-e_{n-1}\right)=v_{n}=u_{n}\left(e_{n}-e_{n-1}\right)$. By mathematical induction, $u e_{n}=u_{n} e_{n}$ for all n. Then $e_{n} u e_{n}=e_{n} u_{n} e_{n}$, for fixed $m, n>m$ implies $e_{m}\left(e_{n} u e_{n}\right)=e_{m}\left(e_{n} u_{n} e_{n}\right), e_{m} u e_{n}=e_{m} u_{m} e_{n},\left(e_{m} u-e_{m} u_{m}\right) e_{n}$ $=0$, hence $u^{*} e_{m}=\left(u_{m}\right)^{*} e_{m}$, that is, $\{u, 1\} \equiv\left\{u_{n}, e_{n}\right\}$. The Lemma follows.

Lemma 4.4. If $\boldsymbol{x}, \boldsymbol{y}, \cdots, \boldsymbol{z} \in \mathcal{C}$ and $\boldsymbol{x}^{*} \boldsymbol{x}+\boldsymbol{y}^{*} \boldsymbol{y}+\cdots+\boldsymbol{z}^{*} \boldsymbol{z}=0$, then $\boldsymbol{x}=\boldsymbol{y}=\cdots=\boldsymbol{z}=0$.

PROOF. If $\boldsymbol{x}=\left[x_{n}, e_{n}\right], \boldsymbol{y}=\left[y_{n}, f_{n}\right], \cdots$ and $\boldsymbol{z}=\left[z_{n}, g_{n}\right]$, then there is an SDD $\left\{h_{n}\right\}$ such that $e_{n} \wedge f_{n} \cdots \wedge g_{n} \geqq h_{n}$ and $\left(\left(x_{n}\right)^{*} x_{n}+\left(y_{n}\right)^{*} y_{n}+\cdots\right.$ $\left.+\left(z_{n}\right)^{*} z_{n}\right) h_{n}=0 h_{n}, h_{n}\left(\left(x_{n}\right)^{*} x_{n}+\left(y_{n}\right) * y_{n}+\cdots+\left(z_{n}\right)^{*} z_{n}\right) h_{n}=0, x_{n} h_{n}=y_{n} h_{n}$ $=\cdots=z_{n} h_{n}=0$. Then, for fixed $m, n>m$ implies $h_{m} x_{n} h_{n}=h_{m} x_{m} h_{n}=0$, $h_{m} x_{m}=0,\left(x_{m}\right)^{*} h_{m}=0$. Similarly $\left(y_{m}\right) * h_{m}=\cdots=\left(z_{m}\right)^{*} h_{m}=0, \quad \boldsymbol{x}=\boldsymbol{y}=\cdots$ $=\boldsymbol{z}=0$.

Lemma 4.5. Let $\boldsymbol{x}=\left[x_{n}, f_{n}\right] \in \mathcal{C}$ and for some $\operatorname{SDD}\left\{e_{n}\right\} \boldsymbol{x} e_{n}=0$ for all n; then $\boldsymbol{x}=0$.

Proof. By the Remark following Theorem 3.1, we have $\boldsymbol{x}\left(\overline{e_{n} \wedge f_{n}}\right)$ $\overline{x_{n}\left(e_{n} \wedge f_{n}\right)}=\boldsymbol{x} \overline{e_{n}\left(e_{n} \wedge f_{n}\right)}=0$. Thus $x_{n}\left(e_{n} \wedge f_{n}\right)=0$ for all n. For fixed $m, n>m$, implies $\left(e_{m} \wedge f_{m}\right) x_{n}\left(e_{n} \wedge f_{n}\right)=\left(e_{m} \wedge f_{m}\right) x_{m}\left(e_{n} \wedge f_{n}\right)=0$, and $\left(e_{m} \wedge f_{m}\right) x_{m}$ $=0$, that is, $\left(x_{m}\right)^{*}\left(\mathrm{e}_{m} \wedge f_{m}\right)=0$. This implies $\boldsymbol{x}=0$. The lemma follows.
5. Spectral theory for \mathcal{C}. The next lemma is elementary :

Lemma 5.1. ([1], Lemma 4.1.) Let \mathscr{B} be an associative algebra with unit 1 over the complex numbers, with involution ${ }^{*}$, and such that $x+i 1$ is invertible if $x^{*}=x$. Then the formulae

$$
\begin{aligned}
& u=(x-i 1)(x+i 1)^{-1} \\
& x=i(1+u)(1-u)^{-1}
\end{aligned}
$$

define mutually inverse one to one correspondences between the self-adjoint elements $x\left(x^{*}=x\right)$, and the unitary elements $u\left(u^{*} u=u u^{*}=1\right)$ such that $1-u$ is invertible.

If x, u are related as in Lemma 5.1, we call u the Cayley transform of x; it is evident that an element of \mathscr{B} will commute with x if and only if it commutes with u. We can apply Lemma 4.1 to the algebra \mathcal{C} (Corollary 4.1), as well as to the algebra M. Then we have the following:

Theorem 5.1. The formulae

$$
\begin{aligned}
& \boldsymbol{u}=(\boldsymbol{x}-i 1)(\boldsymbol{x}+i 1)^{-1} \\
& \boldsymbol{x}=i(1+\boldsymbol{u})(1-\boldsymbol{u})^{-1}
\end{aligned}
$$

define mutually inverse one to one correspondences between the self-adjoint elements $\boldsymbol{x} \in \mathcal{C}$, and the unitary elements $\boldsymbol{u} \in \mathcal{C}$ such that $1-\boldsymbol{u}$ is invertible. The unitary elements \boldsymbol{u} which so occur are those of the form $\boldsymbol{u}=\bar{u}$ for some $u \in M_{u}$. Moreover let $u \in M_{u}$, write $\{u\}^{\prime \prime}=C(\Omega)$ with Ω a Stone space ([2]), and let Ω_{0} be the open set $\Omega_{0}=\{\omega ; \omega \in \Omega, u(\omega) \neq 1\}$. Then $1-\bar{u}$ is invertible if and only if Ω_{0} is dense in Ω and there exist clopen (open and closed) sets Ω_{n} such that $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega_{0}$, and the characteristic functions of $\left(\Omega_{n}\right)^{c}$ (the complement of $\left.\Omega_{n}\right)$ are in \mathfrak{M}.

Proof. If $\boldsymbol{x}^{*}=\boldsymbol{x} \in \mathcal{C}$, we can write $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ with $\left(x_{n}\right)^{*}=x_{n}$; then the Cayley transform of \boldsymbol{x} is $\boldsymbol{u}=\left[\left(x_{n}-i 1\right)\left(x_{n}+i 1\right)^{-1}, f_{n}\right]$ where $\left\{f_{n}\right\}$ is a suitable SDD. As each $u_{n}=\left(x_{n}-i 1\right)\left(x_{n}+i 1\right)^{-1}$ is unitary, by Lemma 4.3, we get $\boldsymbol{u}=\bar{u}$ for some $\boldsymbol{u} \in M_{u}$. Conversely if $\boldsymbol{u} \in C$ is unitary and $1-\boldsymbol{u}$ is invertible, then we can define $\boldsymbol{x}=i(1+\boldsymbol{u})(1-\boldsymbol{u})^{-1}$; since \boldsymbol{u} is the Cayley transform of \boldsymbol{x}, by the above argument we have that $\boldsymbol{u}=\bar{u}$ for some $u \in M_{u}$.

Next we suppose Ω_{0} is dense in Ω and there are clopen sets Ω_{n} such that $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega_{0}$, and the characteristic functions of $\left(\Omega_{n}\right)^{c}$ are in \mathfrak{M}; since we may suppose Ω_{n} increasing, if e_{n} is the characteristic function of Ω_{n}, then $1-e_{n} \in \mathfrak{M}$ and the density shows $e_{n} \uparrow 1$, thus $\left\{e_{n}\right\}$ is an SDD. Define numerical function $G(\omega)=(1-u(\omega))^{-1}\left(\omega \in \Omega_{0}\right) ; G$ is continuous on Ω_{0}. Setting $y_{n}=G e_{n}$, we have clearly $y_{n} \in\{u\}^{\prime \prime}$ and $\left\{y_{n}, e_{n}\right\}$ is an EMO. As $(1-u) y_{n}=e_{n}$ $=1 e_{n},\left[y_{n}, e_{n}\right]$ is the inverse of $1-\bar{u}$. Conversely, if $1-\bar{u}$ is invertible, then \bar{u} is the Cayley transform of the self-adjoint element $\boldsymbol{x}=i(1+\bar{u})(1-\bar{u})^{-1}\left(\in C^{*}\right)$, and we can write $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ with $\left(x_{n}\right)^{*}=x_{n}$ and $\boldsymbol{u}=\left[\left(x_{n}-i 1\right)\left(x_{n}+i 1\right)^{-1}, e_{n}\right]$. Taking an increasing sequence $\left\{r_{n}\right\}$ of positive numbers satisfying $\left\|x_{n}\right\|<r_{n}$ and $r_{n} \uparrow \infty(n \uparrow \infty)$, we define clopen set $\Omega_{n}=\left\{\omega ;|u(\omega)-1|>2 /\left(\left(r_{n}\right)^{2}+1\right)^{1 / 2}\right\}^{-}$ (where A^{-}is the closure of a set A) ([2]). Noting that $2 /\left(\left(r_{n}\right)^{2}+1\right)^{1 / 2} \downarrow 0(n \uparrow \infty)$ and

$$
\begin{aligned}
&\left\{\omega ;|u(\omega)-1|>2 /\left(\left(r_{n}\right)^{2}+1\right)^{1 / 2}\right\} \\
& \subset\left\{\boldsymbol{} \subset \boldsymbol{\omega} ;|u(\omega)-1|>2 /\left(\left(r_{n}\right)^{2}+1\right)^{1 / 2}\right\}^{-} \\
&\left\{\omega(\omega)-1 \mid \geqq 2 /\left(\left(r_{n}\right)^{2}+1\right)^{1 / 2}\right\} \subset\left\{\omega ;|u(\omega)-1|>2 /\left(\left(r_{n+1}\right)^{2}+1\right)^{1 / 2}\right\},
\end{aligned}
$$

we have $\Omega_{n} \uparrow$ and $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega_{0}$. If $\boldsymbol{\Omega}_{0}$ is not dense, $\boldsymbol{\Omega}-\boldsymbol{\Omega}_{0}^{-}$is a non-empty
clopen set, whose characteristic function e is a non-zero projection. Since $u(\omega)=1$ for $\omega \in \Omega-\Omega_{0}^{-}$, we have $u e=e$, that is, $(1-\bar{u}) \bar{e}=0$, contradicting the invertibility of $1-\bar{u}$. Let f_{n} be the characteristic function of $\left(\Omega_{n}\right)^{c}$. We show that $e_{n} \wedge f_{n}=0$. If the contrary holds,

$$
\begin{aligned}
\left\|(1-u)\left(f_{n} \wedge e_{n}\right)\right\| & =\left\|(1-u) f_{n}\left(f_{n} \wedge e_{n}\right)\right\| \\
& \leqq\left\|(1-u) f_{n}\right\| \leqq 2 /\left(\left(r_{n}\right)^{2}+1\right)^{1 / 2},
\end{aligned}
$$

while by Lemma 4.3,

$$
\begin{aligned}
(1-u)\left(f_{n} \wedge e_{n}\right) & =(1-u) e_{n}\left(f_{n} \wedge e_{n}\right) \\
& =\left\{1-\left(x_{n}-i 1\right)\left(x_{n}+i 1\right)^{-1}\right\} e_{n}\left(f_{n} \wedge e_{n}\right)
\end{aligned}
$$

and noting that the numerical function $f(\eta)=4 /\left(\eta^{2}+1\right)$ is strictly monotone decreasing for $\eta \geqq 0$, we have

$$
\begin{aligned}
4\left(e_{n} \wedge f_{n}\right) & \geqq\left(e_{n} \wedge f_{n}\right)\left\{1-\left(x_{n}-i 1\right)(x+i 1)^{-1}\right\} *\left\{1-\left(x_{n}-i 1\right)\left(x_{n}+i 1\right)^{-1}\right\}\left(e_{n} \wedge f_{n}\right) \\
& \geqq 4 /\left(\left\|x_{n}\right\|^{2}+1\right)\left(e_{n} \wedge f_{n}\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left\|(1-u)\left(e_{n} \wedge f_{n}\right)\right\| & =\left\|\left\{1-\left(x_{n}-i 1\right)\left(x_{n}+i 1\right)^{-1}\right\}\left(e_{n} \wedge f_{n}\right)\right\| \\
& \geqq 2 /\left(\left\|x_{n}\right\|^{2}+1\right)^{1 / 2}>2 /\left(\left(r_{n}\right)^{2}+1\right)^{1 / 2} .
\end{aligned}
$$

Hence this is a contradiction. By ([3], Theorem 5.4), we have $f_{n}=f_{n}-e_{n} \wedge f_{n}$ $\sim e_{n} \vee f_{n}-e_{n} \leqq 1-e_{n} \in \mathfrak{M}$, as desired.

Remark. In finite case, as Berberian showed in ([1], Lemma 4.2), it is sufficient for $1-u$ to be invertible that Ω_{0} is dense in Ω, but in infinite case, as the following example shows, we cannot drop the last condition: there exist clopen sets Ω_{n} such that $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega_{0}$, and the characteristic function of $\left(\Omega_{n}\right)^{c}$ is in \mathfrak{M}. Let \mathfrak{F} be an infinite dimensional separable Hilbert space, $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ an orthonormal basis for it, and \boldsymbol{M} be the full operator algebra on \mathfrak{g}. Then we know that \mathfrak{M}_{p} is the set of all projections of finite rank. For a sequence $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ of positive numbers $\left(\lambda_{i} \uparrow \infty(i \uparrow \infty)\right.$), setting $\mathscr{D}(T)=\{\xi$; $\left.\sum_{i=1}^{\infty}\left(\lambda_{i}\right)^{2}\left|\left(\xi, \xi_{i}\right)\right|^{2}<\infty\right\}$, then $\mathfrak{D}(T)$ is a dense linear manifold in \mathfrak{H}. Define linear operators T on $\mathfrak{D}(T)$ and $E_{\lambda}(-\infty<\boldsymbol{\lambda}<\infty)$ on \mathfrak{F} by ;

$$
T \xi=\sum_{i=1}^{\infty} \lambda_{i}\left(\xi, \xi_{i}\right) \xi_{i} \quad \xi \in \mathscr{D}(T),
$$

and

$$
E_{\lambda} \xi=P_{\left[5,1,5_{2}, \ldots, 5_{n-1}\right]} \xi \quad \xi \in \mathfrak{G}
$$

(where n is the minimal n such that $\lambda_{n} \geqq \lambda, \xi_{0}=0$, and $P_{\left[\xi_{1}, \cdots, \xi_{n-1}\right]}$ is the orthogonal projection on the linear manifold $\left[\xi_{1}, \cdots, \xi_{n-1}\right]$), then T is a densely defined self-adjoint operator and $\left\{E_{\lambda}\right\}_{-\infty<\lambda<\infty}$ is the resolution of unity for T. If T is measurable in the sense of [9], then there exists a projection $P \in \boldsymbol{M}$ such that $T P$ is bounded and $1-P \in \mathfrak{M}$. Let $\|T P\|<\lambda_{0}$, we have that $P \wedge\left(1-E_{\lambda_{0}}\right)=0$. If otherwise, there is a non-zero $\xi \in \mathfrak{H}$ with $\left(P \wedge\left(1-E_{\lambda_{0}}\right)\right) \xi$ $=\xi . \quad\|T \xi\|=\|T P \xi\|<\lambda_{0}\|\xi\|$, while $\|T \xi\|=\left\|T\left(1-E_{\lambda_{0}}\right) \xi\right\| \geqq \lambda_{0}\|\xi\|$. This is a contradiction. Since for every projection $Q, R \in \boldsymbol{M}, Q-Q \wedge R \sim Q \vee R-R$, we have $1-E_{\lambda_{0}}=\left(1-E_{\lambda_{0}}\right)-P \wedge\left(1-E_{\lambda_{0}}\right) \sim P \bigvee\left(1-E_{\lambda_{0}}\right)-P \leqq 1-P \in \mathfrak{M}$, contradicting the definition of $E_{\lambda_{0}}$, that is, T is a non-measurable self-adjoint operator. Let U be the Cayley transform of $T,\{U\}^{\prime \prime}=C(\Omega)$ with Ω a Stone space, and Ω_{0} be the set $\{\omega ; U(\omega) \neq 1\}$. For $1-U$ is one to one, we have that Ω_{0} is dense in Ω. But $1-U$ is not invertible in \mathcal{C} (The preceding Remark of Theorem 3.2). For if $1-U$ is invertible in \mathcal{C}, then $T=i(1+U)(1-U)^{-1}$ is in \mathcal{C}, contradicting the above argument.

The rest of our discussions in this section is the slight modifications of ([1], sections 4,5 and 6), but for the sake of completeness, we sketch them.

As a spectral theorem for a self-adjoint MO, we have:
Theorem 5.2. Let \boldsymbol{x} be a self-adjoint element of $\mathcal{C}, \boldsymbol{u}=\bar{u}$ its Cayley transform. We can write $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ with $x_{n}, e_{n} \in\{u\}^{\prime \prime},\left(x_{n}\right)^{*}=x_{n}, x_{n} e_{n}=x_{n}$ and $\left(x_{n}\right)^{2} \uparrow$.

Proof. Write $\{u\}^{\prime \prime}=C(\Omega)$, where Ω is a Stone space, by Theorem 5.1, there exists an increasing family of clopen sets $\left\{\Omega_{n}\right\}$ such that $\bigcup_{n=1}^{\infty} \Omega_{n}=\{\omega$; $u(\omega) \neq 1\}\left(\equiv \Omega_{0}\right),\left(\bigcup_{n=1}^{\infty} \Omega_{n}\right)^{-}=\Omega$, and the characteristic function of $\left(\Omega_{n}\right)^{c}$ is in \mathfrak{M}, thus the family $\left\{e_{n}\right\}$ of the characteristic functions of Ω_{n} is an SDD. Let F and G be the numerical functions defined for $\omega \in \Omega_{0}$ by

$$
\begin{aligned}
& G(\omega)=(1-u(\omega))^{-1} \\
& F(\omega)=i(1+u(\omega))(1-u(\omega))^{-1}
\end{aligned}
$$

it is clear that F is real valued. Put $x_{n}=F e_{n}$, and $y_{n}=G e_{n}$, then $\left(x_{n}\right)^{*}=x_{n}$
$=x_{n} e_{n},\left\{x_{n}, e_{n}\right\}$ and $\left\{y_{n}, e_{n}\right\}$ are EMO, and $\left[y_{n}, e_{n}\right]$ is the inverse of $1-\boldsymbol{u}$. As $x_{n}=F e_{n}=i(1+u) G e_{n}=i(1+u) y_{n}$, we have $\left[x_{n}, e_{n}\right]=i(1+\bar{u})(1-\bar{u})^{-1}=\boldsymbol{x}$. If $m<n$, then $\left(x_{m}\right)^{2}=\left(x_{n} e_{m}\right)^{2}=\left(x_{n}\right)^{*} e_{m} x_{n} \leqq\left(x_{n}\right) *\left(x_{n}\right)=\left(x_{n}\right)^{2}$. This completes the proof of Theorem 5.2.

Next, we characterize \bar{M} as a subalgebra of \mathcal{C}, in terms of the algebraic structure of \mathcal{C}.

THEOREM 5.3. If $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$, with $\left\|x_{n}\right\| \leqq k$ for all n, then there is a unique element $x \in M(\|x\| \leqq k)$ such that $\boldsymbol{x}=\bar{x}$.

Proof. Considering that $\left\|(1 / 2)\left(\left(x_{n}\right)^{*}+x_{n}\right)\right\| \leqq k$, we may assume $\boldsymbol{x}^{*}=\boldsymbol{x}$. If $\boldsymbol{u}=\bar{u}$ is the Cayley transform of \boldsymbol{x}, then by Theorem 5.2 , we can write $\boldsymbol{x}=\left[y_{n}, f_{n}\right]$ with $y_{n}, f_{n} \in\{u\}^{\prime \prime},\left(y_{n}\right)^{*}=y_{n}$ and $\left(y_{n}\right)^{2} \uparrow$. Now we show that $\left\|y_{n}\right\| \leqq k$ for all n. Since $\left\{y_{n}, f_{n}\right\} \equiv\left\{x_{n}, e_{n}\right\}$, there exists an $\operatorname{SDD}\left\{g_{n}\right\}$ such that $y_{n} g_{n}=x_{n} g_{n}$ for all n; then also $g_{n}\left(y_{n}\right)^{2} g_{n}=g_{n}\left(x_{n}\right) * x_{n} g_{n}$. The assumption $\left(x_{n}\right)^{*} x_{n} \leqq k^{2} \cdot 1$ implies $g_{n}\left(x_{n}\right)^{*} x_{n} g_{n} \leqq k^{2} g_{n}$, and then $g_{n}\left(y_{n}\right)^{2} g_{n}$ $\leqq k^{2} g_{n}$. For fixed $m, n>m$ implies $\left(y_{m}\right)^{2} \leqq\left(y_{n}\right)^{2}, g_{n}\left(y_{m}\right)^{2} g_{n} \leqq g_{n}\left(y_{n}\right)^{2} g_{n} \leqq k^{2} g_{n}$, $g_{n}\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right) g_{n} \geqq 0$; we may write $\left\{k^{2} \cdot 1-\left(y_{m}\right)^{2}\right\}^{\prime \prime}$ as the algebra $C(\Gamma)$ of continuous complex-valued functions on a Stone space Γ ([2], section 4). Assume that $\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right)(\gamma)<0$ for some $\gamma \in \Gamma$; choose a non-zero projection $g \in\left\{k^{2} \cdot 1\right.$ $\left.-\left(y_{m}\right)^{2}\right\}^{\prime \prime}$, and a real number $\delta<0$ such that $g\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right) \leqq \delta g$. Since $\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right)^{-1}[g]$ is the largest projection right-annihilating $(1-g)\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right)$, clearly $g \leqq\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right)^{-1}[g]$. Put $f_{n}^{\prime}=g_{n} \wedge\left(\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right)^{-1}[g]\right)$, so that $(1-g)\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right) f_{n}^{\prime}=0, \quad\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right) f_{n}^{\prime \prime}=g\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right) f_{n}^{\prime}, \quad f_{n}^{\prime}\left(k^{2} \cdot 1-\right.$ $\left.\left(y_{m}\right)^{2}\right) f_{n}^{\prime}=f_{n}^{\prime} g\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right) f_{n}^{\prime}$. Since $0 \leqq f_{n}^{\prime}\left(g_{n}\left(k^{2} \cdot 1-\left(y_{m}\right)^{2}\right) g_{n}\right) f_{n}^{\prime}=f_{n}^{\prime}\left(k^{2} \cdot 1-\right.$ $\left.\left(y_{m}\right)^{2}\right) f_{n}^{\prime} \leqq \delta f_{n}^{\prime} g f_{n}^{\prime} \leqq 0$, necessary $\delta f_{n}^{\prime} g f_{n}^{\prime}=0, g f_{n}^{\prime}=0,0=g \wedge f_{n}^{\prime}=g \wedge g_{n}$ for all n. By ([3], Theorem 5.4), $g=g-g \wedge g_{n} \sim g_{n} \vee g-g_{n} \leqq 1-g_{n} \in \mathfrak{M}$. By the same argument used in the proof of Lemma 3.1, we have that $g=0$, contradicting the above result $g \neq 0$. $k^{2} \cdot 1-\left(y_{m}\right)^{2} \geqq 0$ follows, thus $\left\|y_{n}\right\| \leqq k$ for all n.

Let $y_{n}=w_{n} r_{n}$ be the polar decomposition of y_{n} where, $w_{n}, r_{n} \in\{u\}^{\prime \prime}$, $\left(w_{n}\right)^{*} w_{n}=w_{n}\left(w_{n}\right)^{*}=R P\left(y_{n}\right), r_{n}=\left(y_{n}\right)^{1 / 2}([11]$, Lemma 2.1). The uniqueness of this decomposition, together with the fact that $y_{n} e_{m}=y_{m}$ when $m<n$, shows that $w_{n} f_{m}=w_{m}$ and $r_{n} f_{m}=r_{m}$; thus $\left\{w_{n}, f_{n}\right\}$ and $\left\{r_{n}, f_{n}\right\}$ are EMO, and we have $\left[y_{n}, f_{n}\right]=\left[w_{n}, f_{n}\right]\left[r_{n}, f_{n}\right]$. Thus it is sufficient to show that $\left[w_{n}, f_{n}\right]=\bar{w}$ and $\left[r_{n}, f_{n}\right]=\bar{r}$ with $w, r \in M$. Modifying the proof of Lemma 4.3, we have that there exists a partial isometry $w \in\{u\}^{\prime \prime}$ such that $\left[w_{n}, f_{n}\right]=\bar{w}$. Finally since $r_{n} \uparrow$ and $r_{n} \leqq k 1$, by [2], we can find $r=\sup \left\{r_{n}, n \geqq 1\right\}$ in the quasi complete lattice of self-adjoints of $\{u\}^{\prime \prime}$; since we may write $\{u\}^{\prime \prime}$ as the algebra $C(\Omega)$ of continuous complex-valued functions on a Stone space, and $r_{n}(\omega) \uparrow r(\omega)$ except on a set of first category, we have $r f_{n}=r_{n},\left[r_{n}, f_{n}\right]=\bar{r}$ with $\|r\| \leqq k$. This completes the proof.

COROLLARY 5.1. If $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ with $\left\|e_{n} x_{n} e_{n}\right\| \leqq k$ for all n, then $\boldsymbol{x}=\bar{x}$ for some $x \in M$ with $\|x\| \leqq k$.

Proof. Setting $y_{n}=e_{n} x_{n} e_{n}$, and $f_{n}=e_{n} \wedge\left(\left(x_{n}\right)^{-1}\left[e_{n}\right]\right) \wedge\left(\left(\left(x_{n}\right)^{*}\right)^{-1}\left[e_{n}\right]\right)$, $\left\{y_{n}, f_{n}\right\}$ is an EMO equivalent to $\left\{x_{n}, e_{n}\right\}$; hence $\boldsymbol{x}=\left[y_{n}, f_{n}\right]$ with $\left\|y_{n}\right\| \leqq k$ for all n. This completes the proof of Corollary 5.1.

Next we introduce the partial ordering of self-adjoints.
Definition 5.1. An element $\boldsymbol{x} \in \mathcal{C}$ is positive $(\boldsymbol{x} \geqq 0)$, if $\boldsymbol{x}=\boldsymbol{y}^{*} \boldsymbol{y}$ for some $\boldsymbol{y} \in \mathcal{C}$. If $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}$ are self-adjoint, write $\boldsymbol{x} \leqq \boldsymbol{y}$ in case $\boldsymbol{y}-\boldsymbol{x} \geqq 0$.

Lemma 5.2. If $\boldsymbol{x}^{*} \boldsymbol{x} \leqq 1$, then $\boldsymbol{x}=\bar{x}$ for some $x \in M$ and $\|x\| \leqq 1$.
Proof. By assumption, $\boldsymbol{x}^{*} \boldsymbol{x}+\boldsymbol{y}^{*} \boldsymbol{y}=1$ for some $\boldsymbol{y} \in \mathcal{C}$. Thus there exists an $\operatorname{SDD}\left\{g_{n}\right\}$ such that $\left(\left(x_{n}\right)^{*} x_{n}+\left(y_{n}\right)^{*} y_{n}\right) g_{n}=1 g_{n} ; g_{n}\left(x_{n}\right)^{*} x_{n} g_{n} \leqq g_{n}\left(x_{n}\right)^{*} x_{n} g_{n}$ $+g_{n}\left(y_{n}\right)^{*} y_{n} g_{n}=g_{n} \leqq 1,\left\|x_{n} g_{n}\right\| \leqq 1,\left\|g_{n} x_{n} g_{n}\right\| \leqq 1$. Since by remarks following Definition 3.3, we may suppose $\left\{x_{n}, g_{n}\right\}$ is an EMO, our assertion follows from Corollary 5.1.

An element $\boldsymbol{e} \in \mathcal{C}$ is a projection if $\boldsymbol{e}^{*}=\boldsymbol{e}=\boldsymbol{e}^{2} ; \boldsymbol{w} \in \mathcal{C}$ is a partial isometry if $\boldsymbol{w}^{*} \boldsymbol{w}$ is a projection. The following theorem shows that \mathcal{C} contains no new projections.

THEOREM 5.4. In \mathcal{C} ', every partial isometry has the form $\boldsymbol{w}=\bar{w}$ with $w \in M_{p i}$. In particular every projection \boldsymbol{e} has the form $\boldsymbol{e}=\overline{\boldsymbol{e}}$ with $\boldsymbol{e} \in M_{p}$. Hence the projection of \mathcal{C} form a complete lattice which is isomorphic to the projection lattice of M via the mapping $\boldsymbol{e} \rightarrow \bar{e}$.

Proof. Suppose $\boldsymbol{w} \in \mathcal{C}, \boldsymbol{w}^{*} \boldsymbol{w}=\boldsymbol{e}, \boldsymbol{e}$ a projection. Then $1-\boldsymbol{w}^{*} \boldsymbol{w}=1-\boldsymbol{e}$ $=(1-\boldsymbol{e})^{*}(1-\boldsymbol{e})$, hence $\boldsymbol{w}^{*} \boldsymbol{w} \leqq 1$. The assertion is clear from Theorem 3.1 and Lemma 5.2.

In the numerical Cayley transform $\alpha=i(1+\lambda)(1-\lambda)^{-1}, \lambda=(\alpha-i)(\alpha+i)^{-1}$,

$$
\begin{array}{ll}
\alpha=0 & \text { when } \lambda=-1 \\
\alpha>0 & \text { when } \\
\alpha \in\left\{e^{i \theta}:-\pi<\theta<0\right\} \tag{3}\\
\alpha<0 & \text { when } \\
\lambda \in\left\{e^{i \theta}: 0<\theta<\pi\right\}
\end{array}
$$

This is the basis of our theory of order in \mathcal{C}. If $\boldsymbol{x} \geqq 0$, and $\alpha \geqq 0$ is a real number, then $\alpha \boldsymbol{x} \geqq 0$. If $\boldsymbol{x} \geqq 0$ and $-\boldsymbol{x} \geqq 0, \boldsymbol{x}=0$; for if $\boldsymbol{x}=\boldsymbol{y}^{*} \boldsymbol{y}$ and
$-\boldsymbol{x}=\boldsymbol{z}^{*} \boldsymbol{z}$, then $\boldsymbol{y}^{*} \boldsymbol{y}+\boldsymbol{z}^{*} \boldsymbol{z}=0$, by Lemma 4.4, $\boldsymbol{y}=0$, that is, $\boldsymbol{x}=0$. If $\boldsymbol{x} \geqq 0$ and $\boldsymbol{z} \in \mathcal{C}$ is arbitrary, then $\boldsymbol{z}^{*} \boldsymbol{x} \boldsymbol{z} \geqq 0$. To show that the self-adjoint elements of \mathcal{C} form a partially ordered real linear space with respect to the ordering defined in Definition 5.1, we have only to see: if $\boldsymbol{x} \geqq 0$ and $\boldsymbol{y} \geqq 0$, then $\boldsymbol{x}+\boldsymbol{y} \geqq 0$. This is clear from condition (2) of the following :

TheOrem 5.5. Let \boldsymbol{x} be a self-adjoint element of $\mathcal{C}, \boldsymbol{u}=\bar{u}$ its Cayley transform. Then the following four conditions are equivalent:
(1) $\boldsymbol{x} \geqq 0$;
(2) we can write $\boldsymbol{x}=\left[y_{n}, f_{n}\right]$ with $y_{n} \geqq 0$;
(3) the spectrum of u is contained in $\left\{e^{i \theta}:-\pi \leqq \theta \leqq 0\right\}$;
(4) we may write $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$ with $x_{n}, e_{n} \in\{u\}^{\prime \prime}, x_{n} \geqq 0$ and $x_{n} e_{n}=x_{n}$.

Proof. (1) \rightarrow (2) is clear from Definition 5.1.
$(2) \rightarrow(3)$. Suppose $\lambda=e^{i \theta}$ with $0<\theta<\pi$; we must show that $u-\lambda 1$ has an inverse in M. Write $\lambda=(\alpha-i)(\alpha+i)^{-1}$, and $\alpha<0, \alpha=i(1+\lambda)(1-\lambda)^{-1}$. An easy calculation shows that $\boldsymbol{u}-\lambda 1=(1-\lambda)(\boldsymbol{x}-1)(\boldsymbol{x}+i 1)^{-1}$, thus $\boldsymbol{u}-\lambda 1=$ $(1-\lambda)\left[\left(y_{n}-\alpha 1\right)\left(y_{n}+i 1\right)^{-1}, g_{n}\right]$ for a suitable SDD $\left\{g_{n}\right\}$. As $y_{n} \geqq 0$ for all n, each $y_{n}-\alpha 1$ is invertible in M; by Lemma $4.1 \boldsymbol{u}-\lambda 1$ is invertible in \mathcal{C}, and $(\boldsymbol{u}-\lambda 1)^{-1}=(1-\lambda)^{-1}\left[\left(y_{n}+i 1\right)\left(y_{n}-\alpha 1\right)^{-1}, h_{n}\right]$ for a suitable $\operatorname{SDD}\left\{h_{n}\right\}$. The numerical function $f(\eta)=\left(\eta^{2}+1\right)(\eta-\alpha)^{-2}$ defined for $\eta \geqq 0$ is bounded, say $f(\eta) \leqq k$; look at the functional representation for y_{n}, and we have that $\left\|\left(y_{n}+i 1\right)\left(y_{n}-\alpha 1\right)^{-1}\right\|^{2} \leqq k$ for all n. By Theorem 5.3, $(\boldsymbol{u}-\lambda 1)^{-1}=\vec{x}$ for some $x \in M$, thus $u-\lambda 1$ is invertible in M.
(3) \rightarrow (4). By assumption (3) and the proof of Theorem 5.2, the assertion is clear.
(4) \rightarrow (1). Put $z_{n}=\left(x_{n}\right)^{1 / 2}$; if $m<n$ then $x_{n} e_{n}=x_{m}$, from the unicity of positive square roots we have $z_{n} e_{m}=z_{m}$. Hence $\left\{z_{n}, e_{n}\right\}$ is an EMO, and putting $\boldsymbol{y}=\left[z_{n}, e_{n}\right]$ we show that $\boldsymbol{y}^{*}=\boldsymbol{y}, \boldsymbol{x}=\boldsymbol{y}^{2} ;$ thus $\boldsymbol{x} \geqq 0$. This completes the proof.

Corollary 5.2. If $\boldsymbol{x} \geqq 0$, then there is a unique $\boldsymbol{y} \geqq 0$ such that $\boldsymbol{x}=\boldsymbol{y}^{2}$; we have $\boldsymbol{y} \in\{\boldsymbol{x}\}^{\prime \prime}$.

PROOF. From the above proof of (4) \rightarrow (1), we have $\boldsymbol{x}=\boldsymbol{y}^{2}$ with $\boldsymbol{y} \geqq 0$, and $\boldsymbol{y} \in\{\boldsymbol{x}\}^{\prime \prime}$ follows from Theorem 5.2. Thus assuming $\boldsymbol{z} \geqq 0$, we must
show that $\boldsymbol{y}=\boldsymbol{z}$. Clearly $\boldsymbol{x z}=\boldsymbol{z x}$, thus also $\boldsymbol{y} \boldsymbol{z}=\boldsymbol{z} \boldsymbol{y}$; then $(\boldsymbol{y}+\boldsymbol{z})(\boldsymbol{y}-\boldsymbol{z})$ $=\boldsymbol{y}^{2}-\boldsymbol{z}^{2}=0,(\boldsymbol{y}-\boldsymbol{z})(\boldsymbol{y}+\boldsymbol{z})(\boldsymbol{y}-\boldsymbol{z})=0$. Write $\boldsymbol{y}=\boldsymbol{r}^{*} \boldsymbol{r}, \boldsymbol{z}=\boldsymbol{s}^{*} \boldsymbol{s}$ for some $\boldsymbol{r}, \boldsymbol{s} \in \mathcal{C}$, and we have $0=(\boldsymbol{y}-\boldsymbol{z})\left(\boldsymbol{r}^{*} \boldsymbol{r}+\boldsymbol{s}^{*} \boldsymbol{s}\right)(\boldsymbol{y}-\boldsymbol{z})=\{\boldsymbol{r}(\boldsymbol{y}-\boldsymbol{z})\}^{*}\{\boldsymbol{r}(\boldsymbol{y}-\boldsymbol{z})\}+$ $\{\boldsymbol{s}(\boldsymbol{y}-\boldsymbol{z})\}^{*}\{\boldsymbol{s}(\boldsymbol{y}-\boldsymbol{z})\}$. By Lemma 4.4, $\boldsymbol{r}(\boldsymbol{y}-\boldsymbol{z})=\boldsymbol{s}(\boldsymbol{y}-\boldsymbol{z})=0$, thus $\boldsymbol{r}^{*} \boldsymbol{r}(\boldsymbol{y}-\boldsymbol{z})$ $=\boldsymbol{s} * \boldsymbol{s}(\boldsymbol{y}-\boldsymbol{z})=0, \boldsymbol{y}(\boldsymbol{y}-\boldsymbol{z})=\boldsymbol{z}(\boldsymbol{y}-\boldsymbol{z})=0,(\boldsymbol{y}-\boldsymbol{z})^{*}(\boldsymbol{y}-\boldsymbol{z})=0$.

DEFINITION 5.2. If $\boldsymbol{x} \geqq 0$ write $\boldsymbol{y}=\boldsymbol{x}^{1 / 2}$ for the unique $\boldsymbol{y} \geqq 0$ such that $\boldsymbol{x}=\boldsymbol{y}^{2}$. For $\boldsymbol{x} \in \mathcal{C}$, write $|\boldsymbol{x}|=\left(\boldsymbol{x}^{*} \boldsymbol{x}\right)^{1 / 2}$.

REmARK. Let \boldsymbol{x} be a positive element of \mathcal{C}, and, \bar{u} the unique Cayley transform of \boldsymbol{x}. Then by Theorem 5.2, we can write $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$, with $x_{n}, e_{n} \in\{u\}^{\prime \prime}$, and we have $\boldsymbol{x}=\left[x_{n} e_{n}, e_{n}\right]$. Looking at the functional representation of the elements of $\{u\}^{\prime \prime}, m<n$ implies $\left(x_{n} e_{n}\right)^{p} e_{m}=\left(x_{m} e_{m}\right)^{p} e_{m}$ for an arbitrary non-negative real number p. Set $\boldsymbol{y}=\left[\left(x_{n} e_{n}\right)^{p}, e_{n}\right]$ and if $\boldsymbol{x}=\left[\left(x_{n}\right)^{\prime},\left(e_{n}\right)^{\prime}\right]$ with $\left(x_{n}\right)^{\prime},\left(e_{n}\right)^{\prime} \in\{u\}^{\prime \prime}$, then $x_{n} e_{n}\left(e_{n} \wedge\left(e_{n}\right)^{\prime}\right)=\left(x_{n}\right)^{\prime}\left(e_{n}\right)^{\prime}\left(e_{n} \wedge\left(e_{n}\right)^{\prime}\right)$. By the same reason as above, we have that $\left(x_{n} e_{n}\right)^{p}\left(e_{n} \wedge\left(e_{n}\right)^{\prime}\right)=\left(\left(x_{n}\right)^{\prime}\left(e_{n}\right)^{\prime}\right)^{p}\left(e_{n} \wedge\left(e_{n}\right)^{\prime}\right)$, and hence $\left[\left(x_{n} e_{n}\right)^{p}, e_{n}\right]=\left[\left(\left(x_{n}\right)^{\prime}\left(e_{n}\right)^{\prime}\right)^{p},\left(e_{n}\right)^{\prime}\right]$, that is, \boldsymbol{y} is independent of the representation of \boldsymbol{x} in $\{\boldsymbol{u}\}^{\prime \prime}$ and is therefore unambiguously defined. We denote \boldsymbol{y} by \boldsymbol{x}^{p} (Note that $\boldsymbol{x}^{p} \in\{\boldsymbol{x}\}^{\prime \prime}$).

6. Algebraic structure of \mathcal{C}.

Theorem 6.1. Let $\boldsymbol{x} \in \mathcal{C}, \boldsymbol{x} \geqq 0$, and \bar{u} be the Cayley transform of \boldsymbol{x}, writing $\{u\}^{\prime \prime}$, as the algebra $C(\Omega)$ of continuous complex-valued functions on a Stone space $\Omega([2]), \Omega_{0}^{+}$be the set $\left\{\omega ; \omega \in \Omega, i(1+u(\omega))(1-u(\omega))^{-1}>0\right\}$ $=\left\{\omega \in \Omega ; u(\boldsymbol{\omega})=e^{i \theta}, \quad-\pi<\theta<0\right\}$. Then there is an element $\boldsymbol{y} \in \mathcal{C}$ and a projection $\bar{e} \in \mathcal{C}$, such that

$$
\begin{align*}
& \boldsymbol{x} \boldsymbol{y}=\bar{e}, \quad \bar{e} \boldsymbol{x}=\boldsymbol{x}, \quad \bar{e} \boldsymbol{y}=\boldsymbol{y}, \tag{1}\\
& \boldsymbol{y}, \bar{e} \in\{\boldsymbol{x}\}^{\prime \prime}, \quad \boldsymbol{y} \geqq 0, \tag{2}
\end{align*}
$$

if and only if there exists a family of clopen sets $\left\{\Gamma_{n}\right\}$ such that $\bigcup_{n=1}^{\infty} \Gamma_{n}$ $=\Omega_{0}^{+}$and the characteristic function of $\left(\Omega_{0}^{+}\right)^{-}-\Gamma_{n}$ is an element of \mathfrak{M} for all n (where E^{-}is the closure of a set E).

Proof. Let $\boldsymbol{x}=\left[x_{n}, e_{n}\right]$, notation as in the proof of Theorem 5.2. If f_{n} (resp. f) is the characteristic function of Γ_{n} (resp. $\left.\left(\bigcup_{n=1}^{\infty} \Gamma_{n}\right)^{-}=\left(\Omega_{0}^{+}\right)^{-}\right)$, we have $f_{n} \uparrow f$ and $f-f_{n} \in \mathfrak{M}$. Put $g_{n}=f_{n}+(1-f)$, so that $g_{n} \uparrow 1$ and $1-g_{n}=f-f_{n} \in \mathfrak{M}$. Define $z_{n}=F f_{n}$; since $F(\omega)=0$ for $\Omega_{0} \bigcap\left(\Omega-\left(\Omega_{0}^{+}\right)^{-}\right)$, we easily see that $\left\{z_{n}\right.$,
$\left.g_{n}\right\}$ is an EMO, and that the $\operatorname{SDD}\left\{e_{n} g_{n}\right\}$ implements $\left\{x_{n}, e_{n}\right\} \equiv\left\{z_{n}, g_{n}\right\}$, thus $\boldsymbol{x}=\left[z_{n}, g_{n}\right]$. As $z_{n}(\omega)>0$ for $\omega \in \Gamma_{n}$ (compact set), there exists a unique $y_{n} \in\{u\}^{\prime \prime}$ such that $z_{n} y_{n}=f_{n}, y_{n} f_{n}=y_{n}$. By the unicity we show that $y_{n} g_{m}=y_{m}$ when $m<n$, hence $\left\{y_{n}, g_{n}\right\}$ is an EMO. Then $\boldsymbol{y}=\left[y_{n}, g_{n}\right]$ and $e=f$ satisfy (1) and (2).

Conversely, suppose that there are \boldsymbol{y} and \bar{e} satisfying (1) and (2). Let \bar{u} be the Cayley transform of \boldsymbol{x}, and setting $\boldsymbol{w}=((\boldsymbol{x}+i 1) / 2) \boldsymbol{y}$, an easy calculation shows that

$$
\begin{aligned}
\bar{e} \boldsymbol{w}=\boldsymbol{w} \bar{e} & =\boldsymbol{w}, \quad \boldsymbol{w} \in\{\boldsymbol{x}\}^{\prime \prime}, \\
\boldsymbol{w}(1+\overline{\boldsymbol{u}}) & =(1+\bar{u}) \boldsymbol{w}=\bar{e},
\end{aligned}
$$

and e is the characteristic function of $\{\omega ;(1+u)(\boldsymbol{\omega}) \neq 0\}^{-}$. Setting $\boldsymbol{w}_{n}=\boldsymbol{\omega} \overline{\boldsymbol{e}}_{n}$, we have

$$
\boldsymbol{w}_{n} \bar{e}=\bar{e} \boldsymbol{w}_{n}=\boldsymbol{w}_{n}
$$

and

$$
(*) \quad \boldsymbol{w}_{n}(1+\bar{u})=(1+\bar{u}) \boldsymbol{w}_{n}=\bar{e}_{n} \bar{e}
$$

Let $\boldsymbol{w}_{n}=\left[w_{m}^{n}, g_{m}^{n}\right]$, and $\left\|w_{m}^{n}\right\|<r_{m}^{n}$ where r_{m}^{n} is a real number such that $r_{m}^{n} \uparrow \infty(m \uparrow \infty)$. Noting that

$$
\left\{\omega ;|(1+u)(\omega)|>1 / r_{m}^{n}\right\} \subset\left\{\omega ;|(1+u)(\omega)|>1 /\left(r_{m+1}^{n}\right)\right\},
$$

the set $H_{m}^{n}=\left\{\omega ;|(1+u)(\omega)|>1 / r_{m}^{n}\right\}^{-}$is a clopen set ([2]) and putting $H_{m}^{n} \bigcap \Omega_{n}$ $=\Omega_{m}^{n}$, an easy calculation shows that

$$
\begin{aligned}
\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \Omega_{m}^{n} & =\{\omega ;(1+u)(\omega) \neq 0\} \bigcap\{\omega ;(1-u)(\omega) \neq 0\} \\
& =\Omega_{0}^{+} .
\end{aligned}
$$

Set h_{m}^{n} is the characteristic function of $\left(\Omega_{m}^{n}\right)^{c}$, and by the equation (*), we can choose an SDD $\left\{g_{m}^{n}\right\}_{m=1}^{\infty}$ such that

$$
w_{m}^{n}(1+u) g_{m}^{n}=(1+u) w_{m}^{n} g_{m}^{n}=e_{n} e g_{m}^{n} .
$$

If $\left(e_{n} e\right) \wedge g_{m}^{n} \wedge h_{m}^{n}\left(\equiv f_{m}^{n}\right) \neq 0$, then

$$
w_{m}^{n}\left(1+u \backslash f_{m}^{n}=(1+u) w_{m}^{n} f_{m}^{n}=f_{m}^{n},\right.
$$

and we have

$$
1=\left\|(1+u) w_{m}^{n} f_{m}^{n}\right\|=\left\|w_{m}^{n}(1+u) f_{m}^{n}\right\| \leqq\left\|w_{m}^{n}\right\|\left\|(1+u) f_{m}^{n}\right\|,
$$

and since

$$
\left\|(1+u) f_{m}^{n}\right\|=\left\|(1+u) h_{m}^{n} f_{m}^{n}\right\| \leqq 1 / r_{m}^{n}
$$

we get $\left\|w_{m}^{n}\right\| \geqq r_{m}^{n}$. This is a contradiction and so $\left(e_{n} e h_{m}^{n}\right) \wedge g_{m}^{n}=0$. Thus $e_{n} e h_{m}^{n}=e_{n} e h_{m}^{n}-\left(e_{n} e h_{m}^{n}\right) \wedge g_{m}^{n} \sim\left(e_{n} e h_{m}^{n}\right) \bigvee g_{m}^{n}-g_{m}^{n} \leqq 1-g_{m}^{n} \in \mathfrak{M}$, and $e-e_{n} e\left(1-h_{m}^{n}\right)$ $=e-e e_{n}+e e_{n} h_{m}^{n} \leqq 1-e_{n}+e e_{n} h_{m}^{n} \in \mathfrak{M}$ ([3], Theorem 4.2). $\left\{\Omega_{m}^{n}\right\}_{n, m=1}^{\infty}$ meets all requirements.

Theorem 6.2. \mathcal{C} is regular in the sense of ([10], Part II, Chap. II, Definition 2.2) if and only if M is finite.

Proof. Suppose M is finite, then by ([1], Corollary 7.1), \mathcal{C} is regular. But for the sake of completeness, we sketch the proof. Since M is finite, for $|\boldsymbol{x}|(\boldsymbol{x} \in \mathcal{C})$, the condition of Theorem 6.1 is always satisfied and hence there exist $\boldsymbol{s} \geqq 0$, and a projection \boldsymbol{e}, such that $|\boldsymbol{x}| \boldsymbol{s}=\boldsymbol{e}, \boldsymbol{e}|\boldsymbol{x}|=|\boldsymbol{x}|$, and $\boldsymbol{e s}=\boldsymbol{s}$. Since $\boldsymbol{e}=\boldsymbol{s}^{2}|\boldsymbol{x}|^{2}=\left(\boldsymbol{s}^{2} \boldsymbol{x}^{*}\right) \boldsymbol{x}$, we have $\mathcal{C} \boldsymbol{e} \subset \mathcal{C} \boldsymbol{x} ;$ conversely $|\boldsymbol{x}| \boldsymbol{e}=|\boldsymbol{x}|$, $|\boldsymbol{x}|^{2}(1-\boldsymbol{e})=0, \quad \boldsymbol{x} * \boldsymbol{x}(1-\boldsymbol{e})=0, \quad(1-\boldsymbol{e}) \boldsymbol{x}^{*} \boldsymbol{x}(1-\boldsymbol{e})=0, \quad \boldsymbol{x}(1-\boldsymbol{e})=0, \quad \boldsymbol{x} \boldsymbol{e}=\boldsymbol{x}$, thus $\mathcal{C} \boldsymbol{x} \subset \mathcal{C}$.

Conversely suppose that \mathcal{C} is regular. By ([3], Theorem 4.2), there exists a central projection e such that $M(1-e)$ is finite algebra, $e=0$, or $M e$ is a properly infinite algebra and $M=M e \oplus M(1-e)$. If $e \neq 0$, then $M e$ is properly infinite and by ([3], Lemma 4.4), there is a family of increasing projections $\left\{e_{i}\right\}_{i=1}^{\infty}\left(\subset M_{p}\right)$ such that $1-e_{i} \notin \mathfrak{M}$ and $e_{i} \uparrow 1$. Taking an increasing sequence $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ of positive real numbers such that $\lambda_{i} \uparrow \infty(i \uparrow \infty)$, we define s_{n} by;

$$
s_{n}=\sum_{i=2}^{n}\left(1 / \lambda_{i}\right)\left(e_{i}-e_{i-1}\right)+\left(1 / \lambda_{1}\right) e_{1} \quad(\in M)
$$

Then, as $\lambda_{i} \uparrow \infty(i \uparrow \infty), s_{n} \leqq\left(1 / \lambda_{1}\right) 1$ for all n, and $\left\{s_{n}\right\}$ is the family of mutually commuting increasing positive elements majorized by $\left(1 / \lambda_{1}\right) \cdot 1$. Considering a maximal commutative subalgebra $A(=C(\Delta)$, the algebra of all continuous complex-valued functions on a Stone space $\Delta[2])$ generated by $\left\{e_{n}\right\}$, $\left\{s_{n}\right\}$ has the least upper bound s in A, and the right projection of s is 1 ; for if $s e=0, e \in M_{p}$, then e commutes with s and $e \in A$, and since $s_{n}(\delta) \uparrow s(\delta)$ without on a set of first category, we have that

$$
e_{n} s e=e e_{n} s=e s_{n}=0
$$

and

$$
\left(1 / \lambda_{n}\right) e e_{n} \leqq e s_{n}=0, \text { that is, } e e_{n}=0 \text { for all } n .
$$

By Lemma ([3], Lemma 2.2), $e=0$. By the regularity of \mathcal{C}, we can choose a projection $e\left(e \in M_{p}\right)$ such that $\mathcal{C} \bar{s}=C \bar{e}$. An easy computation shows that
$e=1$ and \bar{s} is invertible in \mathcal{C}. Let \boldsymbol{y} be the inverse of \bar{s}, we can write $\boldsymbol{y}=\left[x_{n}, f_{n}\right]$ with $\left(x_{n}\right)^{*}=x_{n}$. Then there exists an SDD $\left\{g_{n}\right\}$ such that

$$
x_{n} s g_{n}=s x_{n} g_{n}=g_{n} \quad \text { for all } n .
$$

Taking an increasing sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ of positive real numbers such that $\left\|x_{n}\right\|<\mu_{n}$ and $\mu_{n} \uparrow \infty(n \uparrow \infty)$, let m_{p} be the largest integer k such that $\lambda_{k} \leqq \mu_{p}$. If $\left(1-e_{m_{n}}\right) \wedge g_{n} \neq 0$, then by the same reason as above, we have

$$
\begin{aligned}
x_{n} s\left(\left(1-e_{m_{n}}\right) \wedge g_{n}\right) & =x_{n}\left[\sup \left\{\sum_{i=2}^{n}\left(1 / \lambda_{i}\right)\left(e_{i}-e_{i-1}\right)+\left(1 / \lambda_{1}\right) e_{1}, n \geqq 1\right\}\right]\left(\left(1-e_{m_{n}} \wedge g_{n}\right)\right. \\
& =x_{n}\left[\sup \left\{\sum_{i=m_{n}+1}^{p}\left(1 / \lambda_{i}\right)\left(e_{i}-e_{i-1}\right), p \geqq m_{n}+1\right\}\right]\left(\left(1-e_{m_{n}}\right) \wedge g_{n}\right) \\
& =\left(1-e_{m_{n}}\right) \wedge g_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|x_{n}\right\|\left\|\sup \left\{\sum_{i=m_{n}+1}^{p}\left(1 / \lambda_{i}\right)\left(e_{i}-e_{i-1}\right) \quad p \geqq m_{n}+1\right\}\right\| \\
& \geqq\left\|x_{n}\left[\sup \left\{\sum_{i=m_{n}+1}^{p}\left(1 / \lambda_{i}\right)\left(e_{i}-e_{i-1}\right), \quad p \geqq m_{n}+1\right\}\right]\right\| \\
& =1
\end{aligned}
$$

Noting that $0<\left(g_{n} \wedge\left(1-e_{m_{n}}\right)\right)\left[\sup \left\{\sum_{i=m_{n}+1}^{p}\left(1 / \lambda_{i}\right)\left(e_{i}-e_{i-1}\right)\right\}\right]^{2}\left(g_{n} \wedge\left(1-e_{m_{n}}\right)\right)$ $\leqq\left(1 / \lambda_{m_{n}+1}\right)^{2}\left(g_{n} \wedge\left(1-e_{m_{n}}\right)\right)$, we have that

$$
\begin{aligned}
\left\|x_{n}\right\| & \geqq 1 /\left\|\left[\sup \left\{\sum_{i=m_{n}+1}^{p}\left(1 / \lambda_{i}\right)\left(e_{i}-e_{i-1}\right), \quad p \geqq m_{n}+1\right\}\right]\left(\left(1-e_{m_{n}}\right) \wedge g_{n}\right)\right\| \\
& \geqq \lambda_{m_{n}+1}>\mu_{n},
\end{aligned}
$$

and contradicting the inequality $\left\|x_{n}\right\|<\mu_{n}$. Thus $\left(1-e_{m_{n}}\right) \wedge g_{n}=0$. $\left(1-e_{m_{n}}\right)$ $=\left(1-e_{m_{n}}\right)-\left(1-e_{m_{n}}\right) \wedge g_{n} \sim g_{n} \vee\left(1-e_{m_{n}}\right)-g_{n} \leqq 1-g_{n} \in \mathfrak{M}$, and contradicting the choice of $\left\{e_{n}\right\}$, that is, M is a finite algebra. This completes the proof of Theorem 6.2.

The polar decomposition of measurable operators is one of the important tools in the construction of non-commutative integration theory, and next we show that the decomposition is true in \mathcal{C}.

THEOREM 6.3. Let $\boldsymbol{x} \in \mathcal{C}, \bar{u}($ resp. $\bar{v})$, the Cayley transform of $\boldsymbol{x}^{*} \boldsymbol{x}($ resp. $\left.\boldsymbol{x} \boldsymbol{x}^{*}\right), e=L P(1+u)$ and $f=L P(1+v)$. Then we can write $\boldsymbol{x}=\boldsymbol{w}|\boldsymbol{x}|$ with
\boldsymbol{w} a partial isometry such that $\boldsymbol{w}^{*} \boldsymbol{w}=\bar{e}, \boldsymbol{w}^{*}=\bar{f}$. In particular $e \sim f$.
Proof. The proof is a modification of the argument used in ([11], Lemma 2.1). By [2], we can write $\{u\}^{\prime \prime}\left(\right.$ resp. $\left.\{v\}^{\prime \prime}\right)$ as the algebra $C(\Omega)$ (resp. $C(\Gamma)$) of continuous complex-valued functions on a Stone space $\Omega($ resp. Γ). Then an easy calculation shows that $e($ resp. f) is the characteristic function of the set $\{\boldsymbol{\omega} ; u(\boldsymbol{\omega}) \neq-1\}^{-}$(resp. $\left.\{\boldsymbol{\gamma} ; v(\gamma) \neq-1\}^{-}\right)$. By Theorem 5.2, we may write $\boldsymbol{x}^{*} \boldsymbol{x}=\left[y_{n}, e_{n}\right], y_{n}, e_{n} \in C(\Omega), \quad\left\{e_{n}\right\} \quad$ an $\mathrm{SDD}, 0 \leqq y_{n} \leqq y_{n+1}$, and $y_{n} e_{m}$ $=y_{m} e_{m}=y_{m}$, when $m<n$. For $n, m=1,2, \cdots$, there are positive elements c_{m}^{n} and projections $e_{m}^{n}(\in C(\Omega))$ with the following properties:

$$
\begin{align*}
& y_{n}\left(c_{m}^{n}\right)^{2} \text { is a projection } \leqq e e_{n}, y_{n}\left(c_{m}^{n}\right)^{2}=e_{m}^{n} . \tag{1}\\
& y_{n} \leqq(1 / m) e_{m}^{n}, \text { and } y_{n} \leqq(1 / m)\left(e-e_{m}^{n}\right) \text { in }\left(e-e_{m}^{n}\right) e_{n} . \tag{2}\\
& c_{1}^{n} \leqq c_{2}^{n} \leqq c_{3}^{n} \leqq \cdots \text { for all } n \text { and } c_{m-1}^{n}\left(c_{m}^{n}-c_{m-1}^{n}\right)=0 \tag{3}\\
& \quad \text { for } m=2,3, \cdots \text { for all } n .
\end{align*}
$$

$$
\begin{align*}
& c_{m}^{1} \leqq c_{m}^{2} \leqq c_{m}^{3} \leqq \cdots \text { for all } m \text { and } c_{m}^{k} e_{k}=c_{m}^{n} e_{k}(k<n) m=1,2, \cdots . \tag{4}\\
& e_{m}^{j} e_{i}=e_{m}^{i} \text { if } j>i \text { for all } m . \tag{5}
\end{align*}
$$

Because, setting e_{m}^{i} is the characteristic function of the set $\left\{\boldsymbol{\omega} ; \boldsymbol{\omega} \in \Omega_{i}\right.$, $\left.y_{i}(\boldsymbol{\omega})>(1 / m)\right\}^{-}$and $c_{m}^{i}(\boldsymbol{\omega})=\left(1 / y_{i}(\boldsymbol{\omega})\right)^{1 / 2} e_{m}^{i}(\boldsymbol{\omega}),\left\{\boldsymbol{e}_{m}^{i}, c_{m}^{i}\right\}$ meets all requirements. By the Remark following Theorem 3.1, we have

$$
\begin{aligned}
\left(\overline{\boldsymbol{x} \overline{c_{m}^{n}}}\right)^{*}\left(\overline{\left.\boldsymbol{x} \overline{c_{m}^{n}}\right)}\right. & =\overline{c_{m}^{n}} \boldsymbol{x} * \overline{\boldsymbol{x} c_{m}^{n}}=\boldsymbol{x} * \overline{\boldsymbol{x}\left(c_{m}^{n}\right)^{2}}=\left[y_{i}, e_{i}\right]\left[\left(c_{m}^{n}\right)^{2}, 1\right] \\
& =\left[y_{i}, e_{i}\right]\left[e_{n}, 1\right]\left[\left(c_{m}^{n}\right)^{2}, 1\right] \quad(\text { by }(5)) \\
& =\left[y_{n} e_{n}, 1\right]\left[\left(c_{m}^{n}\right)^{2}, 1\right] \\
& =\left[y_{n}\left(c_{m}^{n}\right)^{2}, 1\right]=\left[e_{m}^{n}, 1\right]=\overline{e_{m}^{n}}
\end{aligned}
$$

and by Theorem 5.3, there is a partial isometry $w_{m}^{n}\left(\in M_{p i}\right)$ such that $\overline{\boldsymbol{x} c_{m}^{\bar{n}}}=\overline{\boldsymbol{w}_{m}^{n}}$ and $\left(w_{m}^{n}\right)^{*} w_{m}^{n}=\boldsymbol{e}_{m}^{n}$. Since

$$
\boldsymbol{x} \boldsymbol{x}^{*}(1-\bar{f})=i(1+\bar{v})(1-\bar{v})^{-1}(1-\bar{f})=i(1+\bar{v})(1-\bar{v})^{-1}=0,
$$

we have $\bar{f} \boldsymbol{x}=\boldsymbol{x}$ and putting $w_{m}^{n}\left(w_{m}^{n}\right)^{*}=f_{m}^{n}\left(\in M_{p}\right)$,

$$
\bar{f} \overline{f_{m}^{n}}=\bar{f} \boldsymbol{x}\left(\overline{\left.c_{m}^{n}\right)^{2}} \boldsymbol{x}^{*}=\boldsymbol{x}\left(\overline{c_{m}^{n}}\right)^{2} \boldsymbol{x}^{*}=\overline{w_{m}^{n}\left(w_{m}^{n}\right)^{*}}=\overline{f_{m}^{n}}\right.
$$

and

$$
\begin{aligned}
\overline{f_{m-1}^{n} f_{m}^{n}} & =\boldsymbol{x}\left(\overline { c _ { m - 1 } ^ { n }) ^ { 2 } } \boldsymbol { x } ^ { * } \boldsymbol { x } \left(\overline{\left.c_{m}^{n}\right)^{2}} \boldsymbol{x}^{*}=\boldsymbol{x} \overline{\left(c_{m-1}^{n}\right)^{2}} e_{m}^{\bar{n}} \boldsymbol{x}^{*}\right.\right. \\
& =\boldsymbol{x}\left(\overline{\left.c_{m-1}^{n}\right)^{2}} \boldsymbol{x}^{*}=\overline{f_{m-1}^{n}},\right.
\end{aligned}
$$

thus we have $f_{m-1}^{n} \leqq f_{m}^{n} \leqq f$. Set $f_{n}=\sup \left\{f_{m}^{n}, m \geqq 1\right\}$ and noting that $\left(c_{m}^{i}\right)^{2} \leqq\left(c_{m}^{j}\right)^{2}(i<j)$, we see $f_{n} \uparrow$, and we write $f^{\prime}=\sup \left\{f_{n}, n \geqq 1\right\}(\leqq f)$. Put $v_{m}^{n}=w_{m}^{n}\left(e_{m}^{n}-e_{m-1}^{n}\right)$, where $f_{0}^{n}=e_{0}=v_{0}^{n}=w_{0}^{n}=0$ for all n, and considering that $\overline{w_{m}^{n} e_{m-1}^{n}}=\boldsymbol{x} \overline{c_{m}^{n} e_{m-1}^{n}}=\boldsymbol{x} \overline{c_{m-1}^{n}}=\overline{w_{m-1}^{n}}$, we have

$$
\begin{aligned}
\left(v_{m}^{n}\right)^{*} v_{m}^{n} & =e_{m}^{n}-e_{m-1}^{n}, \\
v_{m}^{n}\left(v_{m}^{n}\right)^{*} & =w_{m}^{n}\left(e_{m}^{n}-e_{m-1}^{n}\right)\left(w_{m}^{n}\right)^{*} \\
& =w_{m}^{n} e_{m}^{n}\left(w_{m}^{n}\right)^{*}-w_{m}^{n} e_{m-1}^{n}\left(w_{m}^{n}\right)^{*} \\
& =f_{m}^{n}-f_{m-1}^{n} .
\end{aligned}
$$

By ([4], Lemma 20), we can choose a partial isometry $w_{n} \in M_{p i}$ such that

$$
\begin{aligned}
& \left(w_{n}\right)^{*} w_{n}=e_{n} e, \quad w_{n}\left(w_{n}\right)^{*}=f_{n} \\
& w_{n}\left(e_{m}^{n}-e_{m-1}^{n}\right)=v_{m}^{n}, \\
& \left(w_{n}\right)^{*}\left(f_{m}^{n}-f_{m-1}^{n}\right)=\left(v_{m}^{n}\right)^{*},
\end{aligned}
$$

and

$$
w_{n}\left(e_{m}^{n}-e_{m-1}^{n}\right)=w_{m}^{n}\left(e_{m}^{n}-e_{m-1}^{n}\right) .
$$

Since $w_{m}^{n} e_{n-1} e=w_{m}^{n-1}$, we have

$$
\begin{aligned}
w_{n}\left(e_{m}^{n-1}-e_{m-1}^{n-1}\right) & =w_{m}^{n}\left(e_{m}^{n-1}-e_{m-1}^{n-1}\right) \quad\left(e_{m}^{n}-e_{m-1}^{n} \geqq e_{m}^{n-1}-e_{m-1}^{n-1}\right) \\
& =w_{m}^{n-1}\left(e_{m}^{n-1}-e_{m-1}^{n-1}\right) \\
& =w_{n-1}\left(e_{m}^{n-1}-e_{m-1}^{n-1}\right) .
\end{aligned}
$$

By ([3], Lemma 2.2) we have

$$
w_{n} e_{n-1} e=w_{n-1} e_{n-1} e
$$

Set $v_{n}=w_{n}\left(e_{n}-e_{n-1}\right) e$, it follows that

$$
\begin{aligned}
&\left(v_{n}\right)^{*} v_{n}=\left(e_{n}-e_{n-1}\right) e, \\
& \begin{aligned}
v_{n}\left(v_{n}\right)^{*} & =w_{n}\left(e_{n}-e_{n-1}\right) e\left(w_{n}\right)^{*}=w_{n} e_{n} e\left(w_{n}\right)^{*}-w_{n} e_{n-1} e\left(w_{n}\right)^{*} \\
& =w_{n} e_{n} e\left(w_{n}\right)^{*}-w_{n-1} e_{n-1} e\left(w_{n-1}\right)^{*}=f_{n}-f_{n-1} .
\end{aligned}
\end{aligned}
$$

Again by ([4], Lemma 20), there is a partial isometry $w \in M_{p i}$ such that

$$
\begin{aligned}
& w^{*} w=\sup \left\{e_{n} e, n \geqq 1\right\}=e, \\
& w w^{*}=\sup \left\{f_{n}, n \geqq 1\right\}=f^{\prime}, \\
& w\left(e_{n}-e_{n-1}\right) e=w_{n}\left(e_{n}-e_{n-1}\right) e \quad \text { where } e_{0}=0,
\end{aligned}
$$

and

$$
w^{*}\left(f_{n}-f_{n-1}\right)=\left(w_{n}\right)^{*}\left(f_{n}-f_{n-1}\right) \quad \text { where } f_{0}=0 .
$$

By mathematical induction we have $w e_{n} e=w_{n} e_{n} e$.
Next we show $\boldsymbol{x}=\overline{\boldsymbol{w}}|\boldsymbol{x}|$. By Lemma 4.5, it is sufficient to prove that $(\boldsymbol{x}-\bar{w}|\boldsymbol{x}|) \bar{e}_{n}=0$ for all n. Since

$$
\begin{aligned}
\left(\boldsymbol{x}-\overline{w^{2}}|\boldsymbol{x}|\right) \overline{e_{n}}= & \left(\boldsymbol{x}-\overline{w_{m}^{n}}|\boldsymbol{x}|+\overline{w_{m}^{n}}|\boldsymbol{x}|-\bar{w}|\boldsymbol{x}| \overline{e_{n}}\right. \\
= & \left(\boldsymbol{x}-\overline{w_{m}^{n}}|\boldsymbol{x}| \overline{e_{n}}+\left(\overline{w_{m}^{n}}-\overline{w^{n}}\right)|\boldsymbol{x}| \overline{e_{n}}\right. \\
= & \boldsymbol{x}\left(\bar{e}-\overline{c_{m}^{n}}|\boldsymbol{x}| \overline{e_{n}}+\left(\overline{w_{m}^{n}}-\overline{w_{n}}\right)|\boldsymbol{x}| \overline{e_{n}}\right. \\
& \left(\text { by }|\boldsymbol{x}| \overline{e_{n}}=\overline{e_{n}}|\boldsymbol{x}| \text { and } \overline{w_{m}^{n}}=\boldsymbol{x} \overline{c_{m}^{n}}\right) \\
= & \boldsymbol{x}\left(\bar{e}-\overline{e_{m}^{n}}\right) \overline{e_{n}}+\left(\overline{w_{m}^{n}}-\overline{w_{n}}\right)|\boldsymbol{x}| \overline{e_{n}} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left\{\boldsymbol{x}\left(\bar{e}-\overline{e_{m}^{n}}\right) \overline{e_{n}}\right\}^{*}\left\{\boldsymbol{x}\left(\bar{e}-\overline{e_{m}^{n}}\right) \overline{e_{n}}\right\} & =\left(\bar{e}-\overline{e_{m}^{n}}\right) \overline{e_{n}} \boldsymbol{x} * \boldsymbol{x}\left(\bar{e}-\overline{e_{m}^{n}}\right) \\
& =\boldsymbol{x}^{*} \boldsymbol{x}\left(\overline{e_{n}} \bar{e}-\overline{e_{m}^{n}}\right)=\left[y_{n}\left(e_{n} e-e_{m}^{n}\right), 1\right]
\end{aligned}
$$

and noting that $w_{n} e_{m}^{n}=w_{m}^{n} e_{m}^{n}=w_{m}^{n}$, we have

$$
\left\{\left(\overline{w_{m}^{n}}-\overline{w_{n}}\right)|\boldsymbol{x}| \overline{e_{n}}\right\} *\left\{\left(\overline{w_{m}^{n}}-\overline{w_{n}}\right)|\boldsymbol{x}| \overline{e_{n}}\right\}=\overline{e_{n}}|\boldsymbol{x}|\left(\overline{e_{n}}-\overline{e_{m}^{n}}\right)|\boldsymbol{x}|=\boldsymbol{x} * \boldsymbol{x}\left(\overline{e_{n}} \bar{e}-\overline{e_{m}^{n}}\right)
$$

By Theorem 5.3 and (2), we see that there exist elements $x_{(m)}, y_{(m)}(m=$ $1,2, \cdots)$ such that $(\boldsymbol{x}-\bar{w}|\boldsymbol{x}|) \bar{e}_{n}=\left[x_{(m)}+y_{(m)}, 1\right] \quad$ and $\left\|x_{(m)}\right\| \leqq(1 / m)^{1 / 2}$, $\left\|y_{(m)}\right\| \leqq(1 / m)^{1 / 2}(m=1,2, \cdots)$. By Theorem 3.1, we can easily show that $(\boldsymbol{x}-\bar{w}|\boldsymbol{x}|) \overline{e_{n}}=0$.

To see that $f^{\prime}=f$, by the same way as in the case of $\boldsymbol{x} * \boldsymbol{x}$, choosing for $\boldsymbol{x} \boldsymbol{x}^{*}$ families $\left\{\left(c_{m}^{n}\right)^{\prime}\right\}\left\{\left(f_{m}^{n}\right)^{\prime}\right\}$ satisfying the conditions (1)-(5), we have only to show that $f^{\prime}\left(f_{m}^{n}\right)^{\prime}=\left(f_{m}^{n}\right)^{\prime}$ for all m, n. Considering that $\boldsymbol{x} \boldsymbol{x}^{*} \overline{\left(f^{\prime}\right)}=\boldsymbol{x} \boldsymbol{x}^{*}$, the assertion is clear. Hence $f^{\prime} \geqq f$, that is, $f^{\prime}=f$.

Finally we shall prove the uniqueness. Let $\boldsymbol{x}=\boldsymbol{w}_{1} \boldsymbol{y}$ with $\boldsymbol{y} \geqq 0$, $\left(\boldsymbol{w}_{1}\right)^{*} \boldsymbol{w}_{1}=\bar{e}, \bar{e} \boldsymbol{y}=\boldsymbol{y}$, then $\boldsymbol{x}^{*} \boldsymbol{x}=\boldsymbol{y} \bar{e} \boldsymbol{y}=\boldsymbol{y}^{2}$ and by Corollary 5.2, $\boldsymbol{y}=|\boldsymbol{x}|$, and $\boldsymbol{w}_{1}|\boldsymbol{x}|=\bar{w}|\boldsymbol{x}|$ implies $\boldsymbol{w}_{1}|\boldsymbol{x}| \overline{c_{m}^{n}}=\bar{w}|\boldsymbol{x}| \overline{c_{m}^{n}}, \boldsymbol{w}_{1} \overline{e_{m}^{n}}=\bar{w} \overline{e_{m}^{n}}$ for all $m, n, \boldsymbol{w}_{1} \bar{e}=\bar{w} \bar{e}$, that is, $\boldsymbol{w}_{1}=\overline{\boldsymbol{w}}$. This completes the proof of Theorem 6.3.

THEOREM 6.4. \mathcal{C} is a Baer*-ring in the sense of ([6], Definition 2), that is, if S is any subset of \mathcal{C}, the right annihilator of S has the form $e \mathcal{C}$, e a projection.

Proof. For $\boldsymbol{x} \in S$, using the same notation as in the proof of Theorem 6.3, $\boldsymbol{x} * \boldsymbol{x}(1-\bar{e})=0$, that is, $\boldsymbol{x}=\boldsymbol{x} \bar{e}$. Thus the right annihilator of \boldsymbol{x} includes $(1-\bar{e}) \mathcal{C}$. Conversely if $\boldsymbol{x} \boldsymbol{y}=0$, then $\boldsymbol{x}^{*} \boldsymbol{x} \boldsymbol{y} \boldsymbol{y}^{*}=0, \overline{c_{m}^{n}} \boldsymbol{x}^{*} \boldsymbol{x} \boldsymbol{y} \boldsymbol{y}^{*}=0, \overline{e_{m}^{n}} \boldsymbol{y} \boldsymbol{y}^{*}=0$ for all m, n. Choosing a family $\left\{d_{m}^{n}, g_{m}^{n}, g\right.$ where $d_{m}^{n} \geqq 0, g_{m}^{n}$ and g are projections $\}$ for $\boldsymbol{y} \boldsymbol{y}^{*}$ satisfying the conditions (1)-(5), $e_{m}^{n} g_{m^{\prime}}^{n^{\prime}}=0$ for all n, m, n^{\prime} and $m^{\prime}, e \leqq 1-g,(1-\bar{e}) \boldsymbol{y}=(1-\bar{e}) \bar{g} \boldsymbol{y}=\bar{g} \boldsymbol{y}=\boldsymbol{y}$, and $\boldsymbol{y} \in(1-\bar{e}) \mathcal{C}$. Since the right annihilator of S is the intersection of all the right annihilator of $\boldsymbol{x} \in S$, an easy calculation shows that the annihilator of $S=\bar{e} \mathcal{C}$ for some projection e. This completes the proof of Theorem 6.4.

REmARK. By above Theorem 6.4, the projection $e($ resp. f) defined in Theorem 6.3 is the right (resp. left) projection of \boldsymbol{x} in the sense of ([3], p.244), and $R P(\boldsymbol{x}) \sim L P(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{C}$.

References

[1] S. K. Berberian, The regular ring of a finite $A W^{*}$-algebra, Ann. of Math., 65(1957), 224-240.
[2] J. Dixmier, Sur certains espaces considèrès par M. H. Stone, Summa Brasil. Math., 2(1951), 151-182.
[3] I. Kaplansky, Projections in Banach algebras Ann. of Math., 53(1951), 235-249.
[4] I. Kaplansky, Algebras of type I, Ann. of Math., 56(1952), 460-472.
[5] I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math., 61(1955), 524-541.
[6] I. KAPLANSKY, Rings of operators (Note prepared by S. K. Berberian with an appendix by R. Blattner), Univ. of Chicago Notes, 1955.
[7] T. Ogasawara and K. Yoshinaga, A non-commutative theory of integration for operators, J. Sci. Hiroshima, 18(1955), 311-347.
[8] S. Sakai, The theory of W^{*}-algebras, Mimeographed note, Yale Univ., 1962.
[9] I. E. SEgal, A non-commutative extension of abstract integration, Ann. of Math., 57(1953), 401-457.
[10] J. von. Neumann, Continuous geometry, Princeton, 1960.
[11] Ti Yen, Trace on finite $A W^{*}$-algebras, Duke Math. J., 22(1955), 207-222.

```
Mathematical Institute
TÔHOKU UNIVERSITY
Sendai, Japan
```

