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1. Let {s,} denote the n-th partial sum of a given infinite series > _ ay.

Let {p,} be a sequence of constants, real or complex and let
Pn:P0+Pl+ ........... + P, P_lzp__l:O.

The sequence {¢,}, given by

1 <& 1 <
(1.1) th'P‘Z Pu-iSe=—"p— > P,y

n k=0 n k=0

defines the Norlund means of the sequence {s,} generated by the sequence {p,}.
Then, the series > a, is said to be summable |N, p,|, if the sequence {z,}

is of bounded variation, that is, the series

(1 2) thn—tn—l[
is convergent.
When the special cases in which p, _ Ntta) a>0, and p, = L
" Na)l'(n+1)’ ’ " on+l’

summability |N,p,| are the same as the summability |C,a| and the absolute
harmonic summability, respectively.

2. Let f(¢) be a periodic function with period 27 and Lebesgue integrable
over (—m, m). We assume, without any loss of generality, that the constant
term in the Fourier series of f(¢) is zero and that the Fourier series of f{(z)
is given by

2.1) 2 _(aqcos nt+b,sinnt) = > A,(2).

n=1 n=1
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We write

P = () = 5 [fla+D)+f@—0),
Mn) =N, and ANy =Ny —Npsy

Dealing with the |N,p,| summability of Fourier series, T.Singh [6] proved
the following theorem.

THEOREM A. If @(t) is a function of bounded variation in (0, w) then
the series

x 02 4,0

is summable |N, p,|, at t =z, where {p,} is a non-negative nonincreasing
sequence such that {(n+1)p,/P,} is of bounded wvariation and the sequence
{Ap,} is non-increasing.

In this paper, we prove the following theorem.

THEOREM. Let {p,} and {Ap,} are both non-negative and non-increasing
sequences. Let NMt), t>0, be a positive, non-decreasing .function satisfying
the condition {N,/P,} is non-increasing™.

If the conditions

(2.3) ;zk ﬁn;?;‘ -0 (_i‘;l;_)
and
@9 f a (T) |dg(t)] < oo

for some constant £>0 hold, then the series

oo

> 0P A0

n=0

*)  We may replace the condition “{A,/P5} is non-decreasing” by the conditions “A(27) =O(A(n))
and Ap=0(P,), as n—oo". The proof runs almost similar.
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is summable |N, p,| at t=x.
If A() is a constant function the condition (2.3) is satisfied automatically,

because

Therefore, our theorem includes Theorem A. Applying this theorem, we can
deduce several known and unknown theorems about Fourier series.

3. Proof of Theorem. We need some lemmas for the proof of our
theorem.

LEMMA 1 [3]. If {p.} is non-negative, non-increasing, then, for 0=a
=b=oco, 0=t =wm and any n, we have

{i pete| <P,
k=a

where 7=[1/t] and P, = py+p,+ ++++ + p,.
LEMMA 2 [6]. If {p.} and {Ap,} are both non-negative and non-
increasing then the sequence {(p.— pn)/(n—k)} is also non-increasing for

k<n.

LEMMA 3[6]. If {p.} is non-negative and non-increasing, then {(P,— P)
/(n—Fk)} is a non-increasing sequence for k<n.

LEMMA 4 [6]. Under the same assumptions as those of Lemma 1 the
sequeuce {(pr— pn)/ P} is non-increasing.

PROOF OF THEOREM. Using (1.1) we have

where t, = —}'1)*2 Pevy Mg g Ansi-i(8),

n k=9

v, = (_’H})l*)P" and A,(x)= 2 f " ¢t )cosntdt.
n T 0

Therefore,
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—~( P, P,
tp—tp = Z (_Pk_ - Pk 1) UMk An 1 x(2)

k=0
___f ¢(t) 1 Z(P,,p,c Pep)Un_iNp_y cos(n+1— L)t}
'” k=0
2 " 1 = +1—k)t

Thus, by (1.2), to prove our theorem, it is enough to show that

thn tai)

=2 [awto]

Considering the condition (2. 4), it suffices for our purpose to prove that

sm(n+1—kl1;~ —oq®).

ot nPIc Pkpn)vn Ic)'n -k n+l—k

1—k)t
Z()(Pnpk Plcpn)‘vn Icy\'n kSl%) l

= O()\, (—’:—)) , uniformly for 0 <t <<m.

Let us write 7=[«x/2t] and m =[n/2], where [x] denote the integral
part of .

Now, we observe that

1

ar -
3.2 <
G2 Z=Xpr,

nPe— ) 5%/ Y W

sin(n+1—k)t{
n+l—+Fk

> 1 sin(n+1—k)t
+ n~§+1 P P o }—/(P Pk Pkpn)vn k)\‘n k _|_1 k ‘

= 1 i sin(n+1— k)t\
+ n; P P k§+1Pn(Plc Pn)vn k)\'n k n+l k

S Pa = B sin(n+1—k)t‘
N n§ P, P k%u(P” Eeon-sha-s n+l—k

=ZI+Z2+23+E4, say.
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Since P, = py+p+ cececreeces +pn > (n+1)p,, |sin(n—k)t| = (n—k)t and N,
is non-decreasing, we get

= P xn +1—k) T M Pay
(3.3) . =Xp ZP",ﬁl k) =At3p
= n ’n 1x=g n=1 n—1

~ofx())

where A denote an absolute constant. For the inside summation of 3 , hy

Abel’s transformation, we get

k=0

k=0 k n-

e P Pn Mn— pn k:| - :
— P, — k k c _
Z [( P/c ) P V=ZO p,sin(n+1—p)t

+(P,,— ;Pn> P pn ,nzpsm(n—v+l)t

=1,+1,, say.

By virtue of Lemma 1 and the hypotheses of our theorem, we have

|I2{_P_ Z nmpnm

3.4 2 p

n=274+1 n=2T+1 P Pn -m
_ = AP _ K
_AP,E p.e _O(x( p ))

Since

— Pkp’n )\'n—k
A[(Pn D ) P, pn_k:l

— 7\"n—lc—IPn—k—l _ PkPn _ PkPn
P, ., A(P" Pr ) + (Pn Pr Pr-rA P,,_k
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Pt
Pn_ kEmn n—-k-— ]A s
( Pk ) n k-1 P "

we obtain

> g '”-AP[Z an,{ MZ

n=2r+1 = T M- n=2r+1

= «gk P’L AZ!;/‘L
+kz=o(Pn"— )Pn—k A(Pn—k)

Pr
(3- 5) = 22,1 + Zz,z + Zz,s ’ say.

| n-k-1

m-—1 P .
= (Pum Bor) et jap |

k=0

First we consider )_

) = Pn — 1P [Prern P )
= PT 9 s
(3.6) Zz,l AP 3 = —k-1 (Pk+l P

=APy L =0 (x (%))

because {N,/P,} is non-increasing and {P,/p,} is non-decreasing.
Obviously,

. = Pnpn—m—lm‘1 7\'n~k,—1 _ )"n—k
(3 7) 22'2 B APTn=§,.+1 PnPn—l kZ:', (Pn—-lc—-l Pn—k)
= K
a2 =op ()

It is easy to see that

(38) Zz,szAPT i

Z(pn k-1~ Pn-t)

nmko

Pe \| MaciorPaci-
A-Lx ) Ankm1Proks
(%)

439
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Observing that

S,= = pa—= T pp(LI+ILD,

n=21+1 - n=27+1

we have, by (8.4), (3.5), (3.6), (3.7) and (3. 8),

e

We now treat ) . Since
3

- 1
2, =2 p_

= Za.l + 23,2’ say,

n=27+1
where
J= Z (Be— D) An- "P" “Fsin(n+1—k)t
k=m+1 "
and

K= 2 (po— po) 2= kP" MaciProk oo 41— k),

k=n-7+1

it is enough to estimate )~ and Z“ respectively.

Using Abel’s transformation we have

I =

_i: AI:(jb,c - ]‘?‘_,sin(n+1—v)tjI

+|(pus — *”* Zsm(n+1 Y|+ (Prsr — p,,)—";"ﬂ’"—‘zsm(n k)t’
= —A_ Z [Pn—kA {Mﬁ_fgl +(Pk+l —pn)%k__l(Pn-k—l_Pn—k)]
t k=m+ 'n k ) n—k-1

A'r‘r Am’nm Nnm
P (Pn r_Pn)+ P?;P""jl ]

by Lemma 4 and the hypotheses of the theorem.
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Applying this to 3~ , we obtain

Ap, " A g Wi A PN,
Zs 1 P Z 2a ;giz Z (Pn—7_Pn—r+1)+ TZ ﬁ?, a

n=2r

(3.10) = ATEMe  ATPN py g ol

P, P2 P2
2 _ Kk
=o[ ) <o(+(7)).
because
T7+1

Pr-r—Pn = Z(Pn—k—pn—lﬁ-l) = 'T(Pn—-r“Pn--ru)-
k=1

Next,
y..= ﬁ A lk_:van (PP sin(n—k-+ 1|
(311) _ 4, §Pnf Bttt = AR5 (= ) = 0( ).

by Lemma 2 and v, = O(1).
We devide 24 into two parts.

4,1 49’

(3.12) 2. =2 1 P
where

I "Z: (P _P)v,on kglg(ﬂ-l-l k)t
o ,

and

n—1

M= Z (Pn"Pk)‘vn—kxn—k

k=n-7+1

sin(n+1—Fk)t
n+l—-%k °
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By the reason that {A,} is non-decreasing and {(P,— F,)/(n—k)} is non-

increasing,
- ! P,—P “ Mba(Pa—Par) o
=A _Pn n khn_ =A TN n —-T+1 1
24,2 n=§+1 P"Pn“1k=nz—r+1 n—k £ n§+l TP"‘l k= §1'+1

Before the estimation of 24 » we must calculate L.

By Abel’s lemma we have

L= Z (P, Pk
k=m+1
n—-7-1 k
= > A{(P P")P E pn_rt 2 sin(n+1—p)t
k=m+1 v=0

+{(P _P, ,)P’ ’nZsm(n+1 B)t— (Po—P,)- P" SZE mzsm(n+1 v)t}

nm

N n—-r-1
— Ar Z QL":J\'—"“(P;Hl“‘Pk)"—AT Z (P Pk)Pn k] (;n::),

k=m+1 n—k-1 k=m+1

n—7-1
+ At Z (Pn Pk)Pn = llAPn k|+AT{TP77\'P" T @L)Pmﬂ—m}

k=m+1 n-m

=L, +L,+L;+L,, say.

Therefore,
o R R ey e
(3.14) - ; Basys Morac 22 e _ ATZ £ gkpnf)m}ir.
=Az:fsz:f=9<>~(%>)-

And
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2 P"—lL»l D> 25T =B ()}::Z)

n=2 " n=27+1" "1 k=m+1

k=1 n=k k=7
_ - N M) _ ATPN, L
aw aen (3 - ) - A oo £)).

By the similar way, we have

=Afé }i Amé{é’% =Avék—17§i—(m—pk+l>
(3.16) 5 p,m)—ATpf O(x(ti)).
At last,
néﬂ_ﬂ ba— | Ll = Arv,h,é -Ifi:—z + A-rnéﬂf’ng’;”
(3.17) — O(\) O(TP*T’”’> - o(x(%))

From the results of (3.14), (3.15), (3.16) and (3.17), we get

(3.18) Z Z

n=2r+1 PP" 1\L\ ( (f—))

Summing up (3. 2), (3.3), (3.9), (3.10), (3.11), (3.13) and (3.18), we obtain

z=op())

This terminates the proof of our theorem.

4. Corollaries. Very recently, G. Dass and V.P. Srivastava [ 2] proved the
next theorem.
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THEOREM B. Let {g,} be a fositive non-decreasing sequence and let

. Mgﬁtﬂgl =0,1,2,++-°)
{Pn}Ejl : PR (n y Ly &y )

If

4.1) > lta=tani| = Olu),

then ) &,a, is summable |N, p,|, where

n=1

(4.2) Eppn = O(l)

(4.3) 2 (n+ D, | A%, | < oo.

n=1

Applying this theorem and our main theorem, we are able to obtain several

known and unknown results.
We observe that {p,} € ¥, then {Ap,} is non-decreasing because

AP,,—AP,,H = Pn—ZPnH +pn+2 ; Pn +pn+2_2'\/Pnpn+2
= (’\/E_ '\/Pn+2>2 g 0.
And, if p, = constant for n=1,2,---, then the condition (4.1) is reduced to
> |ta—ta-1| = O(1), that is to say, the series)_a, is summable |N, p,]|.
n=1

n=1

Considering the above mentions, we get the following corollaries.

COROLLARY 1 [4] If

f”t—a]dq,(t)] <oo,

0

then the series D n"A,(t) is summable |C,B| at t =x, where 0=a<B<1.
n=1
PROOF. In our theorem, we put

_ _L@+B) -
=R+l M
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(n+1)n" (n+1)n"
(n+8) n+B

then it is easy to see that ) A%, =0(1) and Y_&,a,

n=1 n=1

then {p,} € M and 3 A,(t) is summable |C,B|. Put, A, (2)
n+pB

n+1

=a, and &, =

M

n® A,(t) is summable |C,8], by Theorem B. By the similar way, we get

1

S
Il

COROLLARY 2. If 0<a<1, B=0 and

. 8
f (log%) |dg(t)| < oo, where k>,
0

then the seriesy_ (log n)*A,(t) is summable |Cat| at t= x.

n=2

This corollary coincides to L. S. Bosanquet [1] for =0 and R.Mohanty
[5] for 8=1, respectively.

COROLLARY 3. If, 1>a=0, =0, a+8<1 and

[ (105) 1avto) <o,

then the series

1
N. G52y log(nt 201 °

Aa(t) 1o is summable

;, {log(n+2)
For =8 =0 this corollary is proved by O.P. Vershney [7].

PROOF. Putting

1

Pn= Gy Tognrayer M= Uogle+2)1%,

we have

1 1 - {log(n+2)}**

P = 5log 2 * (1+2) (log(n+2)}* l—a
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and M\,/P, is non-increasing.
Moreover, it is easy to see that {p,} € M and

=\ paa _ g 1 _ 1
2P =0 G log(n i 2y~ O ( (log(k+2))l"“‘/’>

= o(ﬂ) . for 1—a—B>0.

Thus all assumptions of our theorem hold. Hence we have Z@LZ’?P—"&! AL(t)
n=0 n

is summable |N, p,|.
By some calculation, we see that

_ (log(n+2))=* , (log 2"

_W":P" l-a l-a

is positive bounded and decreasing sequence such that

1 L 1
AY, =0 ((71+2)2 log(n+1)> and A%y, =0 ((n+2)2 log(n+2)) '

Setting

P,
(n+2)pylog(n+2)°

= (n-—f-zfgp—nﬁfln(t), & =

n

1
G+ 2 log + 23
Therefore, by Theorem B, the proof is finished.

we get &, = O(1) and A%E, = O( ) . Thus (4. 2) and (4. 3) hold.

Following theorem holds, analogously.

COROLLARY 4. If
3 B
f (log log %) |dg(t)| <oo for 0=B<1
0
A,(t) 1

then the series E) fog(n+2) [log log(n + 2)# is summable| N, (n+2)log(n+2)

at t = x.
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