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1. Introduction. K.Nomizu [2] studied the effect of the condition

Q) R(X,Y)-R = 0 for any tangent vectors X and Y

for hypzrsurfaces M™ of the Euclidean space E™*!, where R denotes the
Riemannian curvature tensor and R(X,Y) op=rates on the tensor algsbra at each
point as a derivation. P.J.Ryan [4] treated the same condition for hypzrsurfaces
of spaces of non-zero coastant curvature. On the other hand, one of the authors
[6] discussed the effect of the condition

(*%) R(X,Y):R, =0 for any tangent vectors X and Y

for hypersurfaces of the Euclidean space, where R, denotes the Ricci curvature
tensor.

The condition (¥) implies the condition (*¥).

Recently, P.J.Ryan informed one of the authors that the conditions (*) and
(**) are equivalent if the ambient space is of non-zero constant curvature.

In this note we prove

THEOREM. Let M™, m=4, be an m-dimensional connected and complete
Riemannian manifold which is isometrically immersed in a sphere S™'(¢)

of curvature ¢ . Then M™ satisfies the condition (*¥), if and only if M™ is
one of the following spaces :

(i) Mm™ = S™(é); great sphere.
(ii) M™ = S8™(c); small sphere, where ¢ > ¢,

(i) M™ = S?(c,) X S™?(c,), where p, m—p=2 and ¢,>¢, ¢c;> ¢ such
that ci* + ¢;' = &',



SOME HYPERSURFACES OF A SPHERE 213

(iv) M™ = M' X S™'(c), where ¢ > ¢ and M" is a covering space (E'/(2nrz)
for an integer 2) of a circle of radius r = (€ — ¢c™*)"V2.

If M™ has the parallel Ricci teasor, then (¥¥) is satisfied. Conversely, if a
certain hypersurface M™ in S"*!'(¢) has propzrty (¥¥), then the theorem says
that the Ricci tensor is parallel (precisely, M™ is (lozally) symmetric).

2. Reduction of the condition (**). Let M be an m-dimensional connected
Riemannian manifold which is isometrically immersed in an (m+1) -dimensional

Riemannian manifold of constant curvaturz ¢ #0, and let g be the Riemannian
metric of M. Then the equation of Gauss is

@.1) RX,Y)=¢XANY + AX N AY,

where, in general, X A'Y denotes the endomorphism which maps Z upon
9(Z, X — g(Z,X)Y. The type number #(x) is, by definitioa, the rank of the
second fundameatel form operator A at a point x of M. For a point = of M,
take an orthorormal basis {e,, -+, e,} of the tangent space M, at x such that

Ae, = Me,, a=1,+++, m, where \,’s are eigenvalues of A at z. Then (2.1)
is equivalent to

2.2) R(es, e5) = (€ + Nap)es A e,
and the condition (*¥*) is equivalent to
(2.3) (¢ + NaMs) (Rua — Rip) =0,

where R,; are the components of the Ricci tensor R, with respect to the basis.
Taking account of (2.2), we get

(2.4 Ry = (m — 1) 3.5 + Nadasl — Nadas s
where 6 = trace A =3, \,. In particular, we have

(2.5) Rye =(m —1)¢ + 0N, — NS
Thus (2.3) becomes

(2.6) (& + M) (Na — X)) (6 — e — M) = 0.

 Now, suppose My, Az, o+, A,#0and Npyy=+++ =N, =0 at x of M, and
suppose 1=r=<m—1. Then (2.6) for b=m implies ¢A.(6 — N\;)=0 and hence
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—n,=0fora=1,---, - Thus we have (» — 1) =0. If # =0, then 4 — A,
=0 implies A, =0. Hence we have r=1. Thus

LEMMA 1. Let M be an m-dimensional connected Riemannian manifold
which is isometrically immersed in an (m + 1)-dimensional Riemannian
manifold M of constant curvature é +0 and satisfies the condition (¥%).
Then the type number {(x)=1 or t(x)=m at each point x of M.

Suppose there are three distinct principal curvatures, say A,, A. and A, at
a point. Then (2.6) implies

C+ Ay =00r 6 =n,+ N, for (a,0) = (1,2), (1,3), (2,3).

But these three conditions do not hold simultaneously. Hence there are at most
two distinct principal curvatures at each point. We put A =min {A,} and
#=max {\,} at each point. A and u are locally defined functions with respect
to unit normal vector fields. Ap is globally defined. Now let

U={xeM; t{x)=m},
and let U, be a component of U. Then U, is open. Let
V=1{xelU,; ¢ + a0},

and let V, be a component of V. Then V, is open. Suppose U, and V, are
non-empty. Then (2.3) and (2.4) imply that V, is an Einstein hypersurface of
M. On the other hand, we have

LEMMA 2. (A.Fialkow[l]) Let M™ (m=3) be an Einstein hypersurface

(R, = Kg) of a Riemannian manifold of constant curvature &. Then we

have
(1) if K>(0m —1)¢, then M™ is totally wumbilic, and of constant
curvature ,
(1) 2f K=(m — 1)Z, then {X)=1 on M™,
Gil) if K< (m — 1)¢, then there are exactly two distinct and constant

principal curvatures v and p, of multiplicity =2, satisfying ¢ +vp =0.

Therefore, in our case, if m =3, V, is totally umbilic and of constant
curvature. Hence A = u is constant on V, and on the closure of V,. Conseque-
ntly, we get V, = U, = M. Thus, we have
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<

LEMMA 3. Let M and M be as in Lemma 1. If m=3, and if ¢ + aAp#0
at x, where t(x,) =m, then ¢ + Ap#=0 and t(x)=m hold on M and M is
totally umbilic (n = p).

By Lemma 3, f U# @ and if V= ¢, then ¢ + Ap =0 on U and hence on
the closure U of U. Since é#0 and #(x)=1 imply é + Ap#0, ¢ + Ap=0 on
U implies #(x)=m on U. Thus we get U = M and we have

LEMMA 4. Let M and M be as in Lemma 1. If m=3 and if ¢ + A =0
at x, where H{(x,) =m, then ¢ + Ap=0 and t(x)=m hold on M.

Combining Lemmas 1, 3, and 4, we get

LEMMA 5. Let M and M be as in Lemma 1. If m=3, then we have
one of the followings:

(a) t(x)=1on M,
by t(x)=m and ¢ + ap = 0 on M.
(¢) t(xy=m and ¢ + ap=0o0on M.
3. Local theorems.

THEOREM 1. Let M be an m-dimensional connected Riemannian manifold
which s isometrically immersed in an (m + 1)-dimensional Riemannian
manifold M of constant curvature ¢, where m=3 and ¢>0. If M satisfies
the condition (**), then we have one of the followings:

(1) #x)=1 on M and hence M is of constant curvature ¢,
(i1) M i: totally umbilic and of constant curvature >¢,

(i) M is locally a product of two spaces of constant curvature > T
and of dimension =2,

(iv) M is locally a product of E' and an (m — 1)-dimensional space of
constant curvature >¢C,

(v) M is a manifold such that the Ricci tensor has two eigenvalues 0
and v of multiplicity 1 and m — 1, respectively, where v is a non-
constant positive function.
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PROOF. Lemma 5 says that we have either #(x)=1 on M or #(x) = m on
M. If {(x)=1 on M, then (i) holds. In the following we assume #(x)=m on
M. If T+axp#0 on M, then Lemma 3 says that M is of type (ii). If
¢+ap =0 on M, thsn we have Ap<<0, since ¢>0. And we have A<0<p
on M. Thus the multiplicities of A and g are constant. If the multiplicities of A
and p are not smaller than 2, then A and g are constant, as is well known
(cf. Prop. 2.3, [4]), and this is of typz (iii). Suppose the multiplicity of A or
pis 1. If A or p is constant, then the rest is also constant and this is of type
(iv). If A or p is not constant, then the rest is neither constant. If, for example,
the multiplicity of A is 1, then (2.5) implies

R,y =(m —1)T+ A0 — A?
=(m—1)(T+ ) =0,
Ry=(m—1)T+ pb — u*
= (m —2)(T+ p),

where Ae, = Ae, and Ae, = pe, i =2,---, m. This is of type (v).

THEOREM 2. Let M be an m-dimensional connected Riemannian
manifold which is isometrically immersed in an (m + 1)-dimensional Riem-
annian manifold of constant curvature ¢, where m=3 and T <0. If M
satisfies the condition (**), then we have one of the followings:

(i) Hx)=1 on M and M is of constant curvature ¢,
(ii) M is totally umbilic and of constant curvature><,

(iii) M is locally a product of two spaces of constant curvature>¢T and
of dimension=2,

(iv) M is locally a product of E' and an (m — 1)-dimensional space of
constant curvture><¢,

(v) M is a manifold such that the Ricci tensor has at most two distinct
eigenvalues at each point. They are not constant and if there are two
distinct eigenvalues at a point, then one of them is 0 with
multiplicity 1.

PrOOF. For (i), (ii), the proof is the same as that of (i), (ii) of Theorem 1.
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So, in the following, we assume #(x) =m and T+Ap=0o0on M. If A< p at a
point and if the multiplicities of N and x are not smaller than 2 at the point,
then N and u are constant on M and this is of type (iii). If one of the principal
curvatures is simple and if N or p is constant, thea the rest is also coastant and
this is of type (iv). The remaining possibilities are (a)  or p is simple at some
point and A and p are not constant, and (b) N = g on M. The case (a) implies
the type (v) as in Theorem 1, and the case (b) implies the type (ii).

4. Conullity operator. We apply A.Rosenthal’s method [5]. Let F(M), 6%,
w,® be the frame bundle, solder forms, and connexion forms. We denote by N,
and C, the nullity space at x and the conullity space at x:

N, ={XeM,; R(A,B)YX =0 for any A,B <M,},
C,={Y eM,; gX,Y)=0 for any X € N,}.

Assume dim N, =1 on an open set U. An orthoaormal frame (e;, -+, e,) at
x is called an adapted frame if ¢, € N, and ¢; € C, (1 = 2,++-, m). Let Fy(U)
be the set of adapted frames over U. We deaole 6%, w,* restricted on Fy(U) by
the same letters. Then

wi' = A} 6 + B, 67,

w,' = A}, 6'+ B}/,

where 7, j € (2,++, m). The conullity operator T" = T, :C,—C,, for ¢, € N,
is defined by T'e, = Bie;,. Then we have the followings (Theorem 2.3, Cor.2.4,
Theorem 3.1, [5]):
LEMMA 6. (A) A, = — A}, =0 (the nullity varieties are totally gecdesic).
(B) If dim N,=m —3 on U, then T satisfies
RX,Y)TZ)+ RY,Z2)(TX)+R(Z,X)(TY) =0 for X.Y,Z € C,.

(C) If M is complete, then the real eigenvalues of T vanish.

5. Proof of the main theorem. First we show

LEMMA 7. In Theorem 1, if M is complete and m =4, then the case (v)
does not occur. '
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In Theorem 2, if M is complete, m=4, and the scalar curvature S is
positive or negative on M, the case (V) does not occur.

PROOF. Let M be a manifold stated in (v). Assume that the multiplicity of
A is 1 and Ae, = Ne,, Ae; = pe; (j =2,-+- m). Since T+ ap =0, by (2.2) we
have R(e,e;)e, = 0. Again by (2.2) we have R(e;e.)e; =0. Hence we have
R(X,Y)e, = 0 for any tangent vectors X and Y. Furthermore, we have

(5.1) Rleje) =(C+p’) e;Ner  2=j, k=m.

It ©>0, then €+p*+#0 on M. On the other hand, by (2.5) the scalar
curvature S is given by

S =32R,, = (m—1)(m —2)(T+p?),

and so S>0 or S<O0 implies T + p*# 0. Thus M has constant nullity, and by
Lemma 6 (B) we have

R(e;,ex)(Te;) + R(ex, e;)(Te;) + R(e, e;)(Te,) = 0.
If we put Bj; = B/, then Te; = B,"e, and we have
(Bi*e; — Bie,) + (Bj'e, — Bjke;) + (Bile; — Ble;) = 0.

Thus we have Bi*=B,', and T is symmetric. Consequently, all eigenvalues are
real. By Lemma 6 (C) we have T = 0. T = 0 (Bi, = — B}; = 0) together with
Lemma 6 (A) implies w;,' = —w," =0. That is locally a product space
E'x M™'(m—1=3). By (5.1) M™"! is of constant curvature ¢ + p?. In particular,
A and w are constant on M. This is a contradiction and the case (v) does not
occur.

For (i) of the main theorem, we need the following lemma :
LEMMA 8. (B.ONeill and E.Stiel [3]) An m-dimensional complete
Riemannian manifold of constant curvature ¢>0 which is isometrically

immersed in an (m + 1)-dimensional Riemannian manifold of constant
curvature ¢ 1is totally geodesic.

Now (i) follows from Theorem 1 and Lemma 8.
For (ii), (iii) and (iv), we need the following:

LEMMA 9. (P.J.Ryan [4]) Let f and f be isometric immersions of an
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m-dimensional connected Riemannian manifold *M, into an (m + 1)-dimen-
sional simply connected real space form M. If t(x)>3 at each point of
*M, then there is an isometry ® of M such that ®-f=7.

Let *M be the universal covering manifold of M (7x: *M—M) and let .
M = S™ (7). Then for @: M—M, we have f = @-m: *M—M. On the other
hand, we have the standard immersions f of S™c), S*(c,) X S™ ?(c,) (ci+cs
=T™), and E' X S™(¢) into S™*(T). Thus, we have (ii), (iii) and (iv) from
Lemma 9 (f, f; congruent) and Theorem 1.

REMARK.
(1) This theorem is a generalization of Theorem 4.10 of P.J.Ryan [4].

(2) If m = 3 and the scalar curvature S is constant, then we have the
similar results (i), (ii) and (iv).

(3) N = A or p and the discussion in § 1 imply that condition (*¥) is
equivalent to (*). (In fact, recall that (¥) is equivalent to (AgAs+T)(Na—Ap)Ae =0
for distinct a, b, c, [4]).
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