AUTOMORPHISMS OF L^*-ALGEBRAS*

V. K. BALACHANDRAN*

(Received Dec. 18, 1968)

In this paper we are concerned with some properties of (algebraic)*-automorphisms and *-isomorphisms of semi-simple L^*-algebras. As a consequence of the inner product uniqueness theorem for L^*-algebras established earlier ([4], see Theorem 1 below), it follows that every *-isomorphism φ of a semi-simple L^*-algebra L is necessarily topological and moreover φ is a semi-L^*-isomorphism if L is simple (Corollary to Theorem 1). From these results we deduce that a *-isomorphism of a semi-simple L^*-algebra can be expressed in terms of partial semi-L^*-isomorphisms (Theorem 2).

We give some conditions under which a *-automorphism is automatically unitary. While a *-automorphism of any finite-dimensional simple L^*-algebra is unitary (Corollary to Proposition 2), this result holds for an infinite-dimensional simple L^*-algebra provided it is of classical type (Theorem 3). Under additional conditions on the automorphism, the same result holds also for the general simple L^*-algebra (see §2). Actually, it is our conjecture that the result is valid even without the additional conditions.

We introduce a notion of regularity for automorphisms of semi-simple L^*-algebras and show by means of a category argument that such automorphisms exist whenever the L^*-algebras are separable (Theorem 4). For automorphisms which are inner, a criterion for regularity is obtained (Proposition 7) which coincides with the one given by Gantmacher for the regularity of automorphisms of semisimple Lie algebras.

1. Preliminaries and structure of *-isomorphisms. Let L be a real or complex Lie algebra of arbitrary dimension. L is called an L^*-algebra if (i) L is equipped with an inner product relative to which it is a Hilbert space; (ii) L is closed for a *-operation $x \rightarrow x^*$ which satisfies the connecting relation

$$<[x,y],z> = <y,[x^*,z]>,\]$$

where $[\cdot,\cdot]$ as usual stands for the Lie bracket.

If the centre of L (as a Lie algebra) is zero, L is called semi-simple. L is called simple if it is of dimension greater than one and contains no closed ideals other than $\{0\}$ and L.\footnote{The author is currently at the Institute for Advanced Study.}
If L is a real semi-simple L^*-algebra, its complexification $\overline{L} = L + \sqrt{-1} L$ can be made into a complex (semi-simple) L^*-algebra by extending to \overline{L} the operations of L in the following way. If $z_i = x_i + \sqrt{-1} y_i, (i=1,2), z = x + \sqrt{-1} y$ belong to \overline{L}, we set

(a) $[z_1, z_2] = [x_1, x_2] - [y_1, y_2] + \sqrt{-1} \{[x_1, y_2] + [y_1, x_2]\}$

(b) $<z_1, z_2> = <x_1, x_2> + <y_1, y_2> + \sqrt{-1} \{<x_1, y_2> - <x_2, y_1>\}$

(c) $z^* = x^* - \sqrt{-1} y^*$.

L is called a real form of the complex algebra \overline{L}.

Every semi-simple L^*-algebra L has an orthogonal decomposition $L = \sum \Phi L_i$, with L_i simple. (This has been established for complex L by Schue [8]. Though his proof (involving theory of complex Banach algebras) cannot apparently be adapted for real L, a proof for this case is easily obtained by using the simple decomposition of the complexification \overline{L}.)

Let L, L' be two semi-simple L^*-algebras (both real or both complex). A Lie algebra isomorphism ϕ of L onto L' is called a *-isomorphism if ϕ is a *-map, i.e., $(\phi x)^* = \phi x^*$ for all x in L. An isomorphism ϕ is called a semi-L^*-isomorphism if there exists a (positive) constant k such that

$<\phi x, \phi y> = k<x, y>$ for all x, y in L;

$g=k$ is called the gauge of ϕ.

A semi-L^*-isomorphism is automatically a *-isomorphism (cf. [3, Lemma 4]). If k (or g) = 1, the semi-L^*-isomorphism is called an L^*-isomorphism. Note that the L^*-isomorphisms of a semi-simple L^* algebra L are just its unitary Lie isomorphisms.

THEOREM 1. Let L be a real or complex centre-free Lie algebra closed for a *-operation. Let $<\cdot, \cdot>_1, <\cdot, \cdot>_2$ be two inner products on L such that relative to $<\cdot, \cdot>_1$, $<\cdot, \cdot>_2$ L is a (semi-simple) L^*-algebra L_1, L_2). Then $<\cdot, \cdot>_1$ and $<\cdot, \cdot>_2$ are topologically equivalent. Further, if L_1 is simple so is L_2 and the two inner products are multiples of each other.

The proof of these assertions when L is complex will be found in [4]. The extension of the first of these assertions for the case where L is real is easily obtained by passing to the complexification \overline{L}, while that for the second, though not deducible\(^{(1)}\) from that for \overline{L}, can be proved ab initio in exactly the same way as for the complex case.

\(^{(1)}\) because, when L is simple, L need not always be simple.
COROLLARY. Let L, L' be two semi-simple L^*-algebras. Every *-isomorphism φ of L onto L' is topological. Also, if L is simple φ is a semi-L^*-isomorphism.

PROOF. Introduce in L a second inner product $\langle \cdot, \cdot \rangle_1$ by setting $\langle x, y \rangle_1 = \langle \varphi x, \varphi y \rangle$. Then, by Theorem 1, $\langle \cdot, \cdot \rangle_1$ is equivalent to the original inner product of L, which means φ is topological. The second assertion of the corollary obviously follows from the corresponding assertion of Theorem 1.

DEFINITION 1. Let L, L' be two semi-simple L^*-algebras (both real or both complex). A map φ of L into L' is called a partial semi-L^*-isomorphism if there exists a closed ideal I of L such that the restriction φ_I (of φ to I) is a semi-L^*-isomorphism and if further φ maps the orthogonal complement I^\perp to $\{0\}$.

PROPOSITION 1. A partial semi-L^*-isomorphism φ of L is a *-homomorphism of L which is bounded; $\|\varphi\| = g$, g being the gauge of φ_I.

PROOF. Since I, as a closed ideal of L, is a semi-simple L^*-subalgebra, it follows that φ_I, and hence φ, is a *-map. Further, since $[I, I^\perp] = \{0\}$, if

$$x_i = x_i + y_i (x_i \in I, \ y_i \in I^\perp), \ i = 1, 2$$

then

$$\varphi[x_i + y_i, x_i + y_i] = \varphi[x_i, x_i] + [y_i, y_i].$$

The homomorphism property of φ now readily follows from this relation. Finally,

$$\|\varphi z\|^2 = \|\varphi x\|^2 + \|\varphi y\|^2 \leq \|\varphi_I x\|^2 + \|\varphi_I y\|^2 \leq g^2,$$

and consequently $\|\varphi\| = g$.

THEOREM 2. A *-isomorphism φ of a semi-simple L^*-algebra L has the form

$$\varphi = \Sigma \varphi_i,$$

where φ_i are partial semi-L^*-isomorphisms.
PROOF. Let $L = \Sigma \oplus L_i$ be the orthogonal decomposition of L with L_i simple. By Theorem 1, φ is topological and its restriction to L_i is a semi-L^*-isomorphism. Now define a linear mapping by setting

$$\varphi; x = \varphi(x) \quad \text{if} \quad x \in L_i, \quad \varphi; x = 0 \quad \text{if} \quad x \perp L_i.$$

Then it is clear that φ_i is a partial semi-L^*-isomorphism of L and $\varphi = \Sigma \varphi_i$.

2. Unitariness conditions for $*$-automorphisms. We begin with

PROPOSITION 2. If an automorphism φ of a finite-dimensional simple L^*-algebra L leaves the class of Cartan subalgebras (in the L^*-sense\(^{(1)}\)) invariant, then φ is $*$-preserving and unitary.

PROOF. First of all, since L is simple, by a result due to Schue [8, 2.5], the inner product $< \cdot , \cdot >$ of L and the Cartan scalar product $\cdot \cdot$ are connected by the relation

$$(1) \quad <x, y^* > = \varepsilon(x, y), \quad (x, y \in L)$$

where ε is some positive number independent of x, y. (Though this result has been established by Schue only when L is complex, his proof applies equally to the real case.) We next observe that if L is real then

$$(1') \quad <z, w^* > = \varepsilon(z, w), \quad (z, w \in \bar{L})$$

even though \bar{L} may fail to be simple. This observation follows from (1) and the first part of Lemma 6.1 [7, p. 154].

We now make the following notational convention. \bar{L} will denote the complexification of L if L is real and L itself if L is complex. $\bar{\varphi}$ will denote accordingly the extension of φ to \bar{L} ($\bar{\varphi}(x + \sqrt{-1} y) = \varphi x + \sqrt{-1} \varphi y$) or φ itself. It is now clearly sufficient to prove the assertions of Proposition 2 for $\bar{\varphi}$.

To prove $\bar{\varphi}$ is $*$-preserving it is enough, in view of linearity of $\bar{\varphi}$, to show that $\bar{\varphi}$ maps self-adjoint elements into self-adjoint elements. Let z be a self-adjoint element of \bar{L}. Then there exists a Cartan subalgebra \bar{H} containing z. Let $\Delta = \{\alpha\}$ be the root system relative to \bar{H}. Then there are elements $h_\alpha, \hat{h}_\alpha \in H$ with

$$(2) \quad \alpha(h) = <h, h_\alpha> = (h, \hat{h}_\alpha),$$

\(^{(1)}\) these are also Cartan subalgebras in the Lie algebra sense (see [8, p. 71]).
where \(h_\alpha \) is known to be self-adjoint \([8, \text{p. 72}]\). Since (1'), (2') imply \(\hat{h}_\alpha = \epsilon h_\alpha \), it follows that \(\hat{h}_\alpha \) is also self-adjoint. Now \(\varphi \) being an automorphism, \(\varphi \hat{h}_\alpha = \hat{h}_\alpha \), where \(\alpha' \) is a root relative to \(\varphi \hat{H} \). Thus \(\varphi \hat{h}_\alpha \) is self-adjoint for each \(\hat{h}_\alpha \), and since the \(\hat{h}_\alpha \) span \(\hat{H} \), it is clear that \(\varphi \alpha \) is self-adjoint, as we wished to show.

It remains to prove that \(\varphi \) is unitary. But this now readily follows from (1') since \(\varphi \) is \(\ast \)-preserving.

COROLLARY. Every \(\ast \)-automorphism of \(L \) is unitary.

The rest of the present section is concerned with some generalisations of the above corollary to infinite-dimensional simple \(L^\ast \)-algebras.

THEOREM 3. Let \(L \) be either a complex simple \(L^\ast \)-algebra of classical type or a real form of such an algebra. Then a \(\ast \)-automorphism \(\varphi \) of \(L \) is unitary.

PROOF. We adopt the notational convention introduced in Proposition 2. \(\overline{L} \) is therefore a complex simple \(L^\ast \)-algebra of classical type and so, by definition, is semi-\(L^\ast \)-isomorphic (say under a map \(\psi \)) to one of the standard algebras \(L_A, L_B, L_C \). (For the definitions of the standard algebras see \([5]\), or \([8, \text{Theorem 3}] \) (separable case).) By Theorem 1, \(\overline{\varphi} \) is a semi-\(L^\ast \)-automorphism of \(\overline{L} \).

Let \(\Delta = \{ \alpha \} \) be the root system of \(\overline{L} \) relative to a Cartan subalgebra \(\overline{H} \) of \(\overline{L} \), and \(g_\alpha \) the gauge of \(\psi \). Denote by \(\rho(\overline{H}) \) the range of values of \(||\alpha|| (= ||h_\alpha||) \) as \(\alpha \) varies in \(\Delta \). Then, using explicitly the root systems for \(L_A, L_B, L_C \) determined in \([5]\), we obtain

\[
\rho(\overline{H}) = \begin{cases}
\left(\frac{\sqrt{2}}{g_\alpha} \right) & \text{if } \overline{L} \text{ is of type } A, \\
\left(\frac{1}{g_\alpha}, \frac{1}{g_\alpha \sqrt{2}} \right) & \text{if } \overline{L} \text{ is of type } B \text{ and } \overline{H} \text{ of type 1}, \\
\left(\frac{1}{g_\alpha} \right) & \text{if } \overline{L} \text{ is of type } B \text{ and } \overline{H} \text{ of type 2}, \\
\left(\frac{1}{g_\alpha}, \frac{\sqrt{2}}{g_\alpha} \right) & \text{if } \overline{L} \text{ is of type } C.
\end{cases}
\]

Since with \(\overline{H} \), \(\varphi \overline{H} \) is also a Cartan subalgebra (of the same type too), it follows that

\[
\rho(\varphi \overline{H}) = \rho(\overline{H}) .
\]
On the other hand, if $\phi h = h$, then

\[\|\alpha\| = g\|\alpha'\|, \]

where g is the gauge of ϕ. The relations (1), (2) can clearly subsist only if $g = 1$. This means ϕ, and hence ϕ, is unitary.

COROLLARY. Every *-automorphism of a separable simple L^*-algebra is unitary.

This follows from Theorem 3 and Schue’s result that every separable (infinite-dimensional) simple L^*-algebra is of classical type [8, Theorem 3].

PROPOSITION 3. Let ϕ be a *-automorphism of a complex simple L^*-algebra L such that ϕ leaves some Cartan subalgebra H of L set-wise invariant, $H = \phi H$. Then ϕ is unitary.

PROOF. As in Theorem 3, we obtain the relation

\[\|\alpha\| = g\|\alpha'\| \]

where $\Delta = \{\alpha\}$ is the root system relative to $H = H$, g the gauge of $\phi = \phi$ and $\alpha \rightarrow \alpha'$ is now a bijective mapping of Δ onto itself. By Corollary 1 to Proposition 2 of [1], we have for any two roots $\alpha, \beta \in \Delta(\|\alpha\| \geq \|\beta\|)$

\[(2') \|\alpha\| = \|\beta\| \text{ or } \sqrt{2} \|\beta\| \]

(assuming here, as we may, that L is infinite-dimensional). The relations (2), (2') clearly imply that $g = 1$, i.e., that ϕ is unitary.

PROPOSITION 4. Let L be a complex simple L^*-algebra. A *-automorphism ϕ (of L) whose spectrum contains a number λ_0 of unit modulus is unitary. In particular, any *-automorphism ϕ admitting a non-zero fixed point is unitary.

PROOF. By the Corollary to Theorem 1, ϕ is a semi-L^*-automorphism:

\[\langle \phi x, \phi y \rangle = g^2 \langle x, y \rangle, \ (x, y \in L). \]

It follows that ϕ is unitary, so that $\phi \phi^* = g^2 I = \phi^* \phi$, where I is the identity operator. The last equations imply that ϕ is normal. Since $\lambda_0 \in \sigma(\phi)$, the spectrum
of \(\varphi \), it results from the spectral mapping theorem that

\[|\lambda_0|^t \in \sigma(\varphi \varphi^*) = \{ g^t \}. \]

Therefore \(g = |\lambda_0| = 1 \), whence \(\varphi \) is unitary.

3. Semi-regular and regular automorphisms.

Definition 2. Let \(L \) be a semi-simple \(L^* \)-algebra. Let \(D \) be a bounded derivation (in the Lie algebra sense) of \(L \). We set

\[e^D = I + D + \frac{D^2}{2!} + \cdots, \quad (I = \text{identity}) \]

Then \(e^D \) is a bounded operator which is moreover, by a standard reasoning, an automorphism of \(L \). In particular, for \(D = \text{ad} \alpha (\alpha \in L) \) we write \(\varphi_\alpha \) for \(e^{\text{ad} \alpha} \).

If \(\alpha \) is a normal element (i.e., \([\alpha, \alpha^*] = 0\)), we call \(\varphi_\alpha \) an inner automorphism.

Definition 3. An automorphism \(\varphi \) of \(L \) is called semi-regular if 1 is an eigenvalue of \(\varphi \) and further the 1-eigensubspace \(L_1 \) contains a maximal abelian subalgebra of \(L \). (Observe that the 1-eigensubspace of an automorphism is always a subalgebra.)

Let \(\varphi_\alpha \) be an inner automorphism. Since \(\alpha \) is normal, it is contained in a Cartan subalgebra \(H \). Since \(H \) is abelian it is clear that \(L_1 \supseteq H \), and a Cartan subalgebra being maximal abelian \([8, \text{p. 70}]\), \(\varphi_\alpha \) is semi-regular. More generally, if \(D \) is a bounded derivation annihilating some Cartan subalgebra, then \(e^D \) is semi-regular.

Proposition 5. Every semi-regular \(* \)-automorphism \(\varphi \) of a semi-simple \(L^* \)-algebra \(L \) is unitary.

Proof. The hypothesis on \(\varphi \) clearly implies that the 1-eigensubspace \(L_1 \) of \(L \) contains a Cartan subalgebra \(H \). Then, with the notational convention in Theorem 2, \(\tilde{H} \) is a Cartan subalgebra of \(\tilde{L} \). Let

\[\tilde{L} = \tilde{H} \oplus \mathbb{R} \oplus \tilde{V}_s \quad (\oplus \text{ denoting orthogonal sum}) \]

be the root space (or Cartan) decomposition of \(\tilde{L} \) relative to \(\tilde{H} \) (see [9]). Since \(\tilde{\varphi} \) leaves \(\tilde{H} \) element-wise invariant, it follows that

\[\tilde{\varphi} h_s = h_s, \quad \tilde{\varphi} \tilde{V}_s = \tilde{V}_s, \]
where \(h_a \) is the vector of \(\widetilde{H} \) such that \(\chi(h) = \langle h, h_a \rangle \) for all \(h \) in \(\widetilde{H} \). Now choose for each positive root \(\alpha \) a vector \(v_\alpha \in \widetilde{V}_\alpha \) with \(\|v_\alpha\| = 1 \), then \(v_\alpha^* \in \overline{\widetilde{V}}_{-\alpha} \) ([8, p. 73]). Let

\[
\varphi v_\alpha = \lambda_\alpha v_\alpha, \quad \varphi v_\alpha^* = \lambda_{-\alpha} v_\alpha^*.
\]

Then

\[
\lambda_\alpha \lambda_{-\alpha} [v_\alpha, v_\alpha^*] = \varphi [v_\alpha, v_\alpha^*] = \varphi h_\alpha = h_\alpha = [v_\alpha, v_\alpha^*].
\]

Therefore \(\lambda_\alpha \lambda_{-\alpha} = 1 \). Again \(\overline{\varphi} v_\alpha^* = (\overline{\varphi} v_\alpha)^* = \overline{\lambda_\alpha} v_\alpha^* \), whence \(\lambda_{-\alpha} = \overline{\lambda_\alpha} \). Hence \(|\lambda_\alpha| = 1 \), which means \(\|\overline{\varphi} v_\alpha\| = 1 \). On the other hand, since \(\overline{\varphi} h = h \), we have trivially \(\|\overline{\varphi} h\| = \|h\| \) for all \(h \in \widetilde{H} \). These conclusions plus the mutual orthogonality of the \(\widetilde{V}_\alpha \) and \(\widetilde{H} \) imply that \(\overline{\varphi} \) (and so \(\varphi \)) is unitary.

PROPOSITION 6. For an inner automorphism \(\varphi_{h_\alpha} \) of a semi-simple \(L^* \)-algebra \(L \), the following assertions are equivalent:

(i) \(\varphi_{h_\alpha} \) is a \(*\)-map;

(ii) \(\varphi_{h_\alpha} \) is unitary;

(iii) \(h_\alpha \) is skew-adjoint.

PROOF. That (i) \(\Rightarrow \) (ii) follows from the previous proposition, while (ii) \(\Rightarrow \) (i) is just a particular case of the general fact that an \(L^* \)-isomorphism (or even a semi-\(L^* \)-isomorphism) is automatically a \(*\)-map.

We shall now prove that (i) \(\Rightarrow \) (iii). With the previous notational convention, if (i) holds then \(\varphi_{h_\alpha} \) is a \(*\)-map of \(L \). Further, it is clear that if \(v_\alpha \in \widetilde{V}_\alpha \) then

\[
\varphi_{h_\alpha}(v_\alpha) = e^{\alpha(h_\alpha)} v_\alpha, \quad \varphi_{h_\alpha}(v_\alpha^*) = e^{-\bar{\alpha}(h_\alpha)} v_\alpha^*.
\]

But \(\varphi_{h_\alpha}(v_\alpha^*) = (\varphi_{h_\alpha}(v_\alpha))^* \), so that \(e^{\alpha(h_\alpha)} = e^{-\bar{\alpha}(h_\alpha)} \). Therefore

\[
\alpha(h_\alpha) + \overline{\alpha(h_\alpha)} = 0, \quad \text{or } \alpha(h + h_\alpha^*) = 0.
\]

The arbitrariness of the root \(\alpha \) and the ‘total’ property of the set \(\Delta = [\alpha] \) of roots [1, Lemma 6] now imply \(h_\alpha^* = -h_\alpha \).

To complete the proof of the theorem we have only to show that (iii) \(\Rightarrow \) (ii). But this readily follows since (assuming (iii))

\[
\varphi_{h_\alpha}^{-1} = \varphi_{-h_\alpha} = \varphi_{h_\alpha^*} = (\varphi_{h_\alpha})^*.
\]

q. e. d.

In view of the above proposition we call an inner automorphism \(\varphi_{h_\alpha} \) with
DEFINITION 4. A semi-regular automorphism \(\varphi \) of \(L \) is called regular if the 1-eigensubspace \(L_1 \) is a maximal abelian subalgebra.

PROPOSITION 7. An inner automorphism \(\varphi_h \) is regular if and only if the 1-eigensubspace \(L_1 \) of \(L \) is abelian (cf. [6, Theorems 5, 8]).

PROOF. Suffices to prove that if \(L_1 \) is abelian then \(\varphi_h \) is regular. Since \(h_0 \) is a normal element there exists a Cartan subalgebra \(H \) of \(L \) containing \(h_0 \). Since \(H \) is abelian, \(\varphi_h \) leaves \(H \) pointwise invariant, and therefore \(H = L_1 \). But \(H \) as a Cartan subalgebra is maximal abelian. Consequently \(H = L_1 \) and \(\varphi_h \) is regular.

COROLLARY. For a regular inner automorphism \(\varphi_h \) the 1-eigensubspace \(L_1 \) is a Cartan subalgebra.

PROPOSITION 8. An inner automorphism \(\varphi_h \) of a semi-simple \(L \) is regular if and only if for some Cartan subalgebra \(H \) (of \(L \)) containing \(h_0 \) we have

\[
\frac{\alpha(h_0)}{2\pi\sqrt{-1}} \equiv 0 \pmod{1}, \text{ for all } \alpha \in \Delta,
\]

where \(\Delta \) is the root system of \(\bar{L} \) relative to \(\bar{H} \). In particular, if \(\varphi_h \) is regular then \(h_0 \) is a regular element in the sense of [2] (i.e., the null space \(N_0 \) of \(\text{ad} \ h_0 \) in \(\bar{L} \) is a Cartan subalgebra).

PROOF. Suppose first that \(\varphi_h \) is regular. Then by Corollary to Proposition 7, \(\bar{L}_1 = \bar{H} \) is a Cartan subalgebra of \(\bar{L} \). If the condition in Proposition 8 is not satisfied for \(H \), we must have

\[
e^{\alpha(h_0)} = 1 \text{ for some } \alpha \in \Delta.
\]

It follows that if \(v_\alpha \in \bar{V}_\alpha \), then

\[
e^{\alpha(h_0)}v_\alpha = e^{\alpha(h_0)}v_\alpha = v_\alpha.
\]

This means \(\bar{V}_\alpha \subseteq \bar{L}_1 = \bar{H} \), which is absurd. Hence the condition must hold.

Next, suppose the condition holds relative to some Cartan subalgebra \(\bar{H} \). Then in particular, \(\alpha(h_0) \neq 0 \) for all \(\alpha \in \Delta \) so that by Theorem 1 of [2], \(h_0 \) is
a regular element. Further $\tilde{N}_0 \supset \tilde{H}$, whence by maximality property of Cartan subalgebras $\tilde{N}_0 = \tilde{H}$. This clearly implies that $\bar{L}_1 \supset \bar{H}$. Let now

$$\bar{L} = \bar{H} \oplus \Sigma \oplus \bar{V}.$$

be the root space decomposition of \bar{L}. For $x \in \bar{L}_1$, we can write

$$x = h + \Sigma \nu_\alpha (\nu_\alpha \in \bar{V}).$$

Then

$$h + \Sigma \nu_\alpha = x = e^{\text{ad } h} x = h + \Sigma e^{\alpha(h)} \nu_\alpha.$$

It follows that $e^{\alpha(h)} \nu_\alpha = \nu_\alpha$ for all α. But by our supposition $e^{\alpha(h)} \neq 1$. Hence $\nu_\alpha = 0$, $x = h \in \bar{H}$, and $\bar{L}_1 = \bar{H}$. Thus φ_h is regular as we wished to show.

Theorem 4. Let L be a separable semi-simple L^*-algebra. Then there exist regular inner automorphisms of L. If L is compact$^{(3)}$ or complex, then there exist even regular inner L^*-automorphisms.

Proof. First let L be real and \bar{L} be its complexification. Let \bar{H} be a Cartan subalgebra which is the complexification of a Cartan subalgebra H of L, and Δ the root system of \bar{L} relative to \bar{H}. Since L is separable, so is \bar{L}, and consequently $\Delta = \{\alpha_i\}$ is countable. Define

$$P_{n,i} = \{ h \in H : \alpha_i(h) = 2n\pi\sqrt{-1} \},$$

where n runs through all integers. Each $P_{n,i}$ is either empty or a hyperplane of H. In any case $P_{n,i}$ is non-dense (see footnote in [2, p. 162]). It follows by Baire’s category theorem that we can choose an $h_i \in H$ with $\alpha_i(h_i) \neq 2n\pi\sqrt{-1}$ for any i or n. Then by Proposition 8, φ_{h_i} is a regular inner automorphism of L.

Next, let L be compact. Then $h_i^* = -h_i$ and φ_{h_i} is a regular inner L^*-automorphism (Proposition 6). Finally, if L is complex we take its compact from L_k, i.e., the real L^*-algebra L_k of all skew-adjoint elements of L ([3, p. 523]). Choose a $h_i \in L_k$ as above. Then $\varphi_{h_i} = e^{\text{ad } h_i}$ taken over L, gives a regular inner L^*-automorphism of L.

Remark. It was shown in [2] that a non-separable type A complex simple L^*-algebra L_A contains no regular element. More generally, it can be shown,

$^{(3)}$ i.e., every element of L is skew-adjoint.
using Bessel's inequality and the criterion for regular element [2, Theorem 1], that every complex semi-simple \(L^*-\)algebra admitting an uncountable subset of mutually orthogonal roots contains no regular element. The \(L^*-\)algebras \(L\) admitting such an orthogonal subset of roots include besides the non-separable simple algebras \(L_A, L_B, L_C\) also all semi-simple \(L\) with uncountably many simple components. In view of Proposition 8 none of these algebras — which are all, of course, non-separable — has a regular inner automorphism.

REFERENCES

THE RAMANUJAN INSTITUTE
UNIVERSITY OF MADRAS
MADRAS, INDIA