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Let k be a field, and let a and b be indeterminates. In the following we want
to determine the Galois group of an equation

(1) Xn - aX + b = 0 .

Let al9 Λ2> >̂ n be the roots of this equation, and let K—k(a,b,aί,a2y' '',(Xn).
The Galois group G of K over k(a, b) is considered as a permutation group of
[oLl9a29 ,cίn). Let p be the characteristic of k. If p = 0, G is known to be a
symmetric group Sn [4, Corollary 2]. More generally we prove

THEOREM 1. If the characteristic p is not a divisor of n(n — l), G is
equal to Sn.

When p is a divisor of n or n — 1, we have not succeeded to determine G
except n=pm or n=pn-\-l (Theorem 2). But we have some interesting examples.
Above notations are used throughout this paper.

1. Let D be the discriminant of the equation (1). Then it holds [4, p. 222]

J D = Π (<*ι " ^ ) 2 = ( - l)n{n-l)/2{nnbn-1 -{n- l)n~ιan) .

L E M M A 1. G is doubly transitive.

PROOF. The equation (1) is irreducible over k(a9 b). If a is a root of (1),

Xn-an

X-a

is irreducible over k(a,b,aή = k(a,a). So G is doubly transitive.
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Now we prove Theorem 1. As G is primitive by the above lemma, it suffices
to show that G contains a transposition [5, Theorem 13. 3]. In the field k(a9 b)
we consider k(a) as a constant field. Then D is prime in k(a)(b), and it is ramified
in k(a,b,cCι) or also in K> because

D = {(a,-a,) - • - (ai-an)V{(a2-a3) • • (Λ.., - α j } 2 .

We determine the inertia group of D. We put

f(X) = Xn-aX+b.

As

Xf{X) - nf(X) = (n - l)aX - nb ,

g.c.d. of f(X) andf'(X) = nXn-1-a mod D is equal to (n-l)αX-nb. Namely
there exists a factorization

f(X) = ((n - l)αX - nbγf,{X) . fr{X) (mod D),

where fι(X) are prime to {n — l)αX—nb mod D. Let k(α,b)D be the completion
of £(<*)(£) by D. Then /(X) is split as

f(X)=fι(X)A(X) ~fτ(X)

in k(α,b)D by HenseΓs lemma, where /i(X) is of degree 2 and fi[X)=:fi[X)
{modD) for /g:2. Let KD be a completion of K by some divisor of D. Then as

iC^ = k(α, b)D(αu tf2, , On)

and as/i(X)=0 for z'^2 generate unramified extensions of k(α,b)D, the inertia
group of D is generated by the transposition of the roots of fi(X) = 0 . Then G
contains a transposition, so the proof of Theorem 1 is completed.

COROLLARY 1. // the characteristic p is odd or if n is odd, the Galois
group of an equation

(2) Xn

is equal to Sn, where α, b and c are indeterminates.

PROOF. If p is not a divisor of n(n — l)9 this is shown by specializing a to
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0. If p is a divisor of n — 1, we specialize b to 0. We can show similarly to the
proof of the theorem that the Galois group of the equation

Xn + aX2 + c = 0

is a symmetric group Sn. This time we consider the ramification of prime c in
k(a)(c). Now if >̂ is not 2 and >̂ is a divisor of n, >̂ is not a divisor of (n — l)(n—2).
Then the Galois group of

is a symmetric group Sn-λ, If we consider k(ayb) as a constant field of k(a9b,c)9

residue field extension mod c has Galois Sn-X .Then the Galois group of ( 2 ) contains
a transposition.

COROLLARY 2. Let k be any field and let α, b9 c and d be indeterminates.
Then the Galois group over k(a, b, c, d) of an equation

( 3 ) Xn + αX3 + bX2 + cX + d - 0

is a symmetric group Sn.

PROOF. If the characteristic p of k is not 2, or if n is odd, assertion follows
from Corollary 1. If p=2 and n is even, the residue class field extension mod d
is obtained by the equation

Then its Galois group contains a transposition by Corollary 1, so the Galois group
of ( 3 ) is a symmetric group.

2. In this section we deal with the case n=pm or n = pm-}-l.

THEOREM 2. Let k be a field of characteristic p. Let F be a finite field
with pm elements, and ζ be a primitive (pm — l)-st root of unity.

(A) If ?ι= pm in the equation (1) , the Galois group G is isomorphic to
the group of the transformations of I1 of type

x —> cxs + d ,
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where c(Φ0) and d are elements of F and s is an automorphism of F which
fixes the elements of kΠF.

(B) If n— pm 4-1, the Galois group is isomorphic to the group of the
transformations of projective space PX{F) of type

(x0, xx) -> (cxo

s 4- dxx\ exo

s + fχλ*) ,

where c, d, e and f are elements of F such that cf—deΦO, and s is as above.

PROOF. (A) Let a and β be two roots of (1). Then from

ctpU-act + b = 0

and

it follows that

Therefore K is equal to k(ct, β, ζ). Now let γ be any root of (1) and we put

x - β-a

This runs over F when γ runs over the roots of (1). Let σ be an element of G.
Then the transformation

Xy X(T{y)

is given by

Xy —• axy

s + b .

Here

βσ-cf , (f-CL

and 5 is the restriction of σ on F. The degree of K over k(a, b) is equal to
pm(pm — l) [k(ζ) : k\ Hence all transformations ς>f this type are obtained by th§
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elements of G.
(B) Let a, 8 and γ be three roots of (1). It follows that

a~ y-a *" y-β

Then it holds

which is equivalent to

or

As the right hand side is independent of y, the ratio

S-β m y-β

δ—a' y—a

represents an element of Fu {oo} for any root δ of (1). So

h-β y-β

becomes a homogeneous coordinate of P\(F). The transformation

is equal to the transformation

where

K f ) K ( ) ( β ) φ ) { β ) { ) ( β )
(cd\
Kef)
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As the extension degree [K: k(a9 b)] = [k(cc, β, γ, ξ) : k(a, b)] is equal to the number

of the transformations of this type, (B) is proved.

3. In the case which are not included in the preceding argument, it seems

too difficult to determine G. There exists another special case.

PROPOSITION 1. When the characteristic p — 2 and n = 2m — l, G is a

subgroup of GL{m, 2) = PSL(m, 2).

PROOF. The roots of ( 1 ) and 0 make an abelian group of type (2,2, •••, 2),

because they are the roots of

X2" - aX2 + bX = 0 .

As every element of G induces an automorphism of this group, G is contained in

GL(m,2).

When n = 7, G is equal to GL(3,2). But we do not know whether G =

GL(m, 2) in general or not. When pΦ2, following proposition shows whether G

contains an odd permutation or not.

PROPOSITION 2. When pΦ2, the discriminant D is square only in the

following cases'.

(i) Ap\n or Ap\n — 1

(ii) 2p\n or 2p\n—l, and —1 is square in k.

PROOF. Obvious from the form of D.

We now give some examples for small n.

EXAMPLES, (i) Galois groups are symmetric groups Sn or alternating groups

An in the following cases:

p = 2, n = 10, 11, 12, 13 or 14

p = 3, n = 6 or 7

p =z 5, n = 10 or 11.

These are examined by specializing a and b to elements of the ground field.

(ii) When p = 2 and n = 6, the Galois group is isomorphic to A5 if the

ground field contains the cubic roots of unity. If we put a and β two roots of
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Xΰ - aX + b = 0 ,

then

holds, where £2 + f + l = 0. If γ is a root of third factor of right hand side,

δ = a + βζ + γ£

is a root of fourth factor. Hence K is equal to k(a,8,y). Then it holds

[K:£(α, &)] = [k(a, β9 γ) :£(α, b)] = 60 .

As the Galois group is not solvable (all the doubly transitive solvable groups are
known by Huppert [2, or 3. Chap. 111-19]), it is isomorphic to A5.

(iii) If p — 3 and n = 12, the Galois group is isomorphic to Mathieu group
Mu. We have a factorization

(3) X 1 2 -αX + &= {X* +cX* +dX* -c2X2 Λ-cdX-d* -c*)

x(X*-cX*-dX*-c*Xt+cdX-d*+c*)

for a— —cd^b^d^ — c15. As c and d are polynomials of the roots, k(c, d) is contained
in K. If we show G = M n in the case & = F 3 is a prime field, it holds in general
as Mιι is a simple group. From now on we assume that k is a prime field. We
will determine the order of the Galois group G. It is easily shown that [k(c> d):
k(a, b)] = 22. Now we consider the first factor in the right hand side of ( 3 ). It
is irreducible over k(c,d), and it is factorized into the factors of degree 1 and
degree 5 when c — d = 1. Then its Galois group is doubly transitive, and it is not
solvable. As its determinant is equal to c6d6, the Galois group is isomorphic to AQ

or A5. Two factors of ( 3 ) have same Galois group, as they are transposed by
(c9d)-+( — c, —d). Therefore the Galois group of K over k(c,d) is isomorphic to
one of AQXAQ, AΓixA5, A6 and A5. Sylow 5-groups of A6xA6 and A5xA5 are of
order 52. Then Sylow 5-groups of G are Sylow 5-groups of Sι2- Hence G contains
a 5-cycle, and G contains A12 [5, Theorem 13. 9]. But the above argument shows
that G does not contain any element of order 7. It is a contradiction. Therefore the
Galois group of K over k(c, d) is isomorphic to Aβ or A5. Then the order of G is
equal to

(I) 22x (A6:1) = 22 6 5 4 3 -12-11-10-6 = 11-10-9-8
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or

(II) 22x(Λ
5
:l) = 22 5 4 3 = 12 ll 10.

Now we show that G is triply transitive. As it is doubly transitive it suffices to
show that

( 4) X10 + (a+β)X9 + [a1 +aβ+β2)X8 + + {cclΰ +a9β + +a10)

is irreducible over k(cc,β), where a and β are two roots of Xl2 — aX + b = 0. We

assume it is reducible. As

X l ϋ + X 9 + . . . + X + l

is factorized to two irreducible factors of degree 5 over k, ( 4 ) is also a product

of factors of degree 5. As ( 4) is symmetric for a and β,

or

g(,3,ct,X) =ife/3,X)

holds. If the latter is true, ( 4 ) must be a square when we put d—β. But this is

not the case. In the former case, its constant term is a symmetric form of a and

β of degree 5. Then it is a multiple of a + β. But a -f β is not a factor of

Λ10H-Λ3/ί3 + +/β 1 0 . This is a contradiction. Therefore ( 4 ) must be irreducible. In

the case (II), k(%β,y) must be equal to K for any root γ of (4). If we put

a—β in ( 4 ) , we have

X10 - aX° + a?X~ ~ Λ 4 X 8 + cίQX' - aJX* + # 9X - a10

Then ( 4) has a factor of degree 1 and a factor of degree greater that 1 in the

complete field k(a)(β)/3_a. So the case (II) does not hold. Therefore we have.

(G:l) = 12-11 10-6 =11-10-9-8,
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Let a be a root of X12 — aX+b = 0, and let Ga be a subgroup of G fixing a. As
G is triply transitive, Gα is doubly transitive of order 11 10 6. Then it is not

solvable, and by considering its order it must be a simple group. Then G is also a
simple group by [3. Proposition 4. 5]. As c2 satisfies an irreducible equation

and as G is simple, the splitting field of this equation is K. Namely G is
represented as a permutation group of degree 11. Then it must be isomorphic to
Mathieu group M n by [ 1 ]. Above argument and [1] also shows that the Galois
group of X11 4- aX2 -\-b = 0 is isomorphic to Mu.
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