ON (f, g, u, v, λ) -STRUCTURES INDUCED ON A HYPERSURFACE OF AN ODD-DIMENSIONAL SPHERE

KENTARO YANO

(Received Feb. 10, 1971, Revised June 10, 1971)

An orientable differentiable submanifold M^{2n} of codimension 2 with globally defined normal vectors of an even-dimensional Euclidean space E^{2n+2} admits what we call an (f, g, u, v, λ) -structure, [1, 2, 3, 4, 8, 9]. In [7] the present author studied (f, g, u, v, λ) -structures induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} and special metric f-structures with complemented frames which are closely related to these (f, g, u, v, λ) -structures. The main purpose of the present paper is to generalize some of results obtained in [7] and study further (f, g, u, v, λ) -structures with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} .

In § 1, we review some of known results on (f, g, u, v, λ) -structures naturally induced on hypersurfaces M^{2n} of an odd-dimensional unit sphere S^{2n+1} . In § 2, we study (f, g, u, v, λ) -structures naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} and obtain generalizations of some of results in [7]. In the last § 3, we study (f, g, u, v, λ) -structures with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} .

1. **Preliminaries**. Let M^{2n} be an orientable differentiable submanifold of codimension 2 of a (2n+2)-dimensional Euclidean space E^{2n+2} and assume that there exist two globally defined mutually orthogonal unit normals C and D to M^{2n} . Then the natural Kählerian structure of E^{2n+2} induces a structure on M^{2n} defined by a tensor field of type (1,1), a Riemannian metric g, two 1-forms u and v, and a function λ such that [1,2,8,9]

$$f^{2}X = -X + u(X)U + v(X)V,$$

$$g(fX, fY) = g(X, Y) - u(X)u(Y) - v(X)v(Y),$$

$$u(fX) = \lambda v(X), \quad v(fX) = -\lambda u(X),$$

$$u(U) = v(V) = 1 - \lambda^{2}, \quad u(V) = v(U) = 0,$$

for any vector fields X and Y, vector fields U and V being defined by

(1.2)
$$u(X) = g(U, X), \quad v(X) = g(V, X)$$

672 K. YANO

for any vector field X. Thus the third equations of (1, 1) can also be written as

$$(1.3) fU = -\lambda V, fV = \lambda U.$$

We call an (f, g, u, v, λ) -structure the set of f, g, u, v and λ satisfying (1.1). When the tensor field of type (1,2) defined by

$$(1.4) S(X, Y) = [f, f](X, Y) + du(X, Y)U + dv(X, Y)V$$

vanishes, where [f, f] is the Nijenhuis tensor formed with f, we say that the (f, g, u, v, λ) -structure is *normal*.

Now suppose that the M^{2n} is a hypersurface of an odd-dimensional sphere S^{2n+1} of radius 1 and choose the first normal C of M^{2n} as the opposite of the radius vector of S^{2n+1} . In this case, we say that the (f, g, u, v, λ) -structure is naturally induced on M^{2n} . Then, for the second fundamental tensor h and the Weingarten tensor H with respect to C and the third fundamental tensor l, we have

$$(1.5) h(X, Y) = g(X, Y), HX = X, l(X) = 0,$$

for any vector fields X and Y and consequently we obtain

$$(\nabla_{x}f)Y = -g(X, Y)U + u(Y)X - k(X, Y)V + v(Y)KX,$$

$$(\nabla_{x}u)(Y) = \omega(X, Y) - \lambda k(X, Y),$$

$$(\nabla_{x}v)(Y) = -k(X, fY) + \lambda g(X, Y),$$

$$\nabla_{x}\lambda = -v(X) + u(KX),$$

where k is the second fundamental tensor, K the Weingarten tensor with respect to D, and

$$(1.7) \qquad \omega(X, Y) = g(fX, Y)$$

a 2-form and consequently the tensor S defined by (1.4) takes the form

(1.8)
$$S(X, Y) = v(X)(fK - Kf)Y - v(Y)(fK - Kf)X.$$

In [7], we have proved

THEOREM A. In order that the (f, g, u, v, λ) -structure naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} be normal, it is necessary and sufficient that f and K commute, K being the Weingarten tensor.

If $\lambda = 0$ on M^{2n} , then (1.1) takes the form

(1.9)
$$f^{2}X = -X + u(X)U + v(X)V,$$

$$g(fX, fY) = g(X, Y) - u(X)u(Y) - v(X)v(Y),$$

$$u(fX) = 0, \quad v(fX) = 0,$$

$$u(U) = v(V) = 1, \quad u(V) = v(U) = 0,$$

and (1.3) the form

$$(1.10) fU=0, fV=0$$

and consequently the set (f, g, u, v, λ) defines a metric f-structure with complemented frames [5, 6] and (1, 6) becomes

$$(\nabla_{X}f)Y = -g(X, Y)U + u(Y)X - k(X, Y)V + v(Y)KX,$$

$$(\nabla_{X}u)(Y) = \omega(X, Y) \quad \text{or} \quad \nabla_{X}U = fX,$$

$$(\nabla_{X}v)(Y) = -k(X, fY) \quad \text{or} \quad \nabla_{X}V = fKX,$$

$$u(KX) = v(X) \quad \text{or} \quad KU = V.$$

In [7], we proved

THEOREM B. Consider the (f, g, u, v, λ) -structure with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} . In order that f and K commute, it is necessary and sufficient that V is a Killing vector field, or that the tensor field k satisfies

$$(1.12) k(X, Y) = k(fX, fY) + u(X)v(Y) + u(Y)v(X) + k(V, V)v(X)v(Y)$$

for any vector fields X and Y.

THEOREM C. Consider the (f, g, u, v, λ) -structure with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} . In order that f and K anticommute, it is necessary and sufficient that v is a harmonic 1-form, or that the tensor field k satisfies

$$(1.13) k(X,Y) = -k(fX,fY) + u(X)v(Y) + u(Y)v(X) + k(V,V)v(X)v(Y)$$

for any vector fields X and Y. In this csae, M^{2n} is a minimal hypersurface of S^{2n+1} if and only if k(V, V) = 0.

674 K. YANO

2. (f, g, u, v, λ) -structure induced on a hypersurface of an odd-dimensional unit sphere. Assume that f and K commute: fK - Kf = 0. This is equivalent to k(X, fY) + k(Y, fX) = 0 for any vector fields X and Y, and consequently we have, from the third equation of (1.6),

$$(\nabla_X v)(Y) + (\nabla_Y v)(X) = 2\lambda g(X, Y),$$

which shows that V is a conformal Killing vector field.

Conversely, suppose that V is a conformal Killing vector field, then we have

$$(\nabla_X v)(Y) + (\nabla_Y v)(X) = 2\rho g(X, Y),$$

 ρ being a function. Thus from the third equation of (1.6) and this equation, we find

$$-k(X, fY) - k(Y, fX) + 2\lambda g(X, Y) = 2\rho g(X, Y),$$

from which, by contraction $\lambda = \rho$, since k is symmetric and ω is skew-symmetric, and consequently k(X, fY) + k(Y, fX) = 0, that is, fK - Kf = 0.

Thus we have

THEOREM 2.1. For the (f, g, u, v, λ) -structure naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , in order that f and K commute, it is necessary and sufficient that V is a conformal Killing vector field.

Assume next that f and K anticommute: fK+Kf=0. This is equivalent to k(X, fY)-k(Y, fX)=0, and consequently we have, from the third equation of (1.6),

$$(\nabla_X v)(Y) - (\nabla_Y v)(X) = 0,$$

which shows that the 1-form v is closed. The converse being evident, we have

THEOREM 2.2. For the (f, g, u, v, λ) -structure naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , in order that f and K anticommute, it is necessary and sufficient that v is closed.

Suppose that $\lambda = 0$ on M^{2n} , then we have, from the third equation of (1.6), $\delta v = 0$, that is, v is coclosed. Conversely, if v is coclosed, we have, from the third equation of (1.6), $\lambda = 0$. Thus we have

THEOREM 2.3. For the (f, g, u, v, λ) -structure naturally induced on a

hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , in order that $\lambda = 0$, it is necessary and sufficient that v is coclosed.

From Theorems 2, 2 and 2, 3, we have

THEOREM 2.4. For the (f, g, u, v, λ) -structure naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , in order that f and K anticommute and $\lambda = 0$, it is necessary and sufficient that v is harmonic.

We now assume that the hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} is compact, and $\lambda = 0$. Then we have, from the fourth equation of (1.6), KU = V.

Conversely, if this holds, then we have $\nabla_X \lambda = 0$, from which $\lambda = \text{constant}$. But from the third equation of (1.6), we have, by contraction, div $V = 2 n \lambda$, since k(X, Y) is symmetric and $\omega(X, Y)$ is skew-symmetric, from which

$$0 = \int_{M^{2n}} \operatorname{div} V dS = 2n\lambda \int_{M^{2n}} dS,$$

dS being the surface element of M^{2n} , and consequently $\lambda = 0$. Thus we have

THEOREM 2.5. For the (f, g, u, v, λ) -structure naturally induced on a compact orientable hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , in order that $\lambda = 0$, it is necessary and sufficient that KU = V.

3. (f, g, u, v, λ) -structure with $\lambda = 0$ induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} . We now assume that the (f, g, u, v, λ) -structure induced on a hypersurface M^{2n} of an odd-dimensional sphere S^{2n+1} satisfies $\lambda = 0$.

If we denote by F the natural Kähler structure of the ambient E^{2n+2} , then $FC \cdot D = \lambda$, the dot denoting the inner product in E^{2n+2} and consequently $\lambda = 0$ means that FC is orthogonal to C and D, and is tangent to M^{2n} . If we denote by (φ, ξ, η) the Sasakian structure induced on S^{2n+1} , then FC is the vector field ξ on S^{2n+1} and $\lambda = 0$ means that ξ is always tangent to M^{2n} .

From the second equation of (1.11), we have, by taking account of fU = 0 and fV = 0,

$$(3.1) \nabla_{U}U=0, \nabla_{V}U=0.$$

From the third equation of (1.11), we have, by taking account of fV = 0 and KU = V,

$$(3.2) \nabla_{v}V = 0, \nabla_{v}V = fKV.$$

676 K, YANO

Thus we have

THEOREM 3.1. For the (f, g, u, v, λ) -structure with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , we have

$$(3.3) [U, V] = \nabla_{tt} V - \nabla_{tt} U = 0.$$

We now assume that $\nabla_v V = 0$, then we have fKV = 0, from which, applying f, we find -KV + u(KV)U + v(KV)V = 0. But, from KU = V, we have u(KV) = k(U, V) = v(KU) = v(V) = 1, and consequently we have KV = U + K(V, V)V. Conversely, if KV has this form, then we have

$$\nabla_{\mathbf{v}}V = fKV = f(U + K(V, V)V) = 0.$$

Thus we have

THEOREM 3.2. For the (f, g, u, v, λ) -structure with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , the vector field U is parallel in the direction of U and in the direction of V. The vector field V is parallel in the direction of U. In order that V is parallel in the direction of V, it is necessary and sufficient that

$$(3.4) KV = U + k(V, V)V.$$

Suppose that the vector field V is parallel in M^{2n} , then we have, from the third equation of (1,11),

$$(3.5) fKX = 0$$

for any vector field X, from which, applying f, we have

$$-KX + u(KX)U + v(KX)V = 0,$$

that is,

$$(3.6) KX = v(X)U + k(X, V)V$$

or

(3.7)
$$k(X, Y) = v(X)u(Y) + k(X, V)v(Y),$$

from which, k(X, Y) being symmetric,

$$v(X)u(Y) - v(Y)u(X) + k(X, V)v(Y) - k(Y, V)v(X) = 0.$$

Thus putting Y = V in this equation, we find

(3.8)
$$k(X, V) = u(X) + k(V, V)v(X).$$

Thus substituting (3.8) into (3.7), we find

(3. 9)
$$k(X, Y) = u(X)v(Y) + u(Y)v(X) + k(V, V)v(X)v(Y)$$
 or

(3. 10)
$$KX = v(X)U + u(X)V + k(V, V)v(X)V.$$

Conversely, if K has the form (3.10), then (3.5) is satisfied. Thus we have

THEOREM 3.3. For the (f, g, u, v, λ) -structure with $\lambda=0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , in order that the vector field V is parallel, it is necessary and sufficient that k has the form (3.9) or K has the form (3.10).

Now, from the first equation of (1.11), we have, by putting X = U,

$$(\nabla_{U}f)Y = -u(Y)U + u(Y)U - k(U, Y)V + v(Y)KU = 0$$

since KU = V and, by putting X = V,

$$(3.11) \qquad (\nabla_{v} f) Y = -v(Y) U + u(Y) V - k(V, Y) V + v(Y) KV.$$

Thus, in order that $\nabla_v f = 0$, we should have

$$-v(Y)U + u(Y)V - k(V, Y)V + v(Y)KV = 0,$$

from which, putting Y = V, KV = U + k(V, V)V.

Conversely if this is satisfied, then we see, from (3.11), that $\nabla_{\nu} f = 0$. Thus we have

THEOREM 3.4. For the (f, g, u, v, λ) -structure with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , the tensor field f is parallel in the direction of U. In order that the tensor field f is parallel also in the direction of V, it is necessary and sufficient that K satisfies

$$KV = U + k(V, V)V$$
.

Now, using (1.11), we have

(3. 12)
$$(\mathcal{L}_{U}f)Y = (\nabla_{U}f)Y + f\nabla_{Y}U - \nabla_{fY}U$$

$$= -g(U, Y)U + u(Y)U - k(U, Y)V$$

$$+ v(Y)KU + f^{2}Y - f(fY) = 0,$$

678 K. YANO

since KU = V, \mathcal{L}_U denoting the operator of Lie derivation with respect to U. On the other hand, we have

$$(\mathcal{L}_{v}f)Y = (\nabla_{v}f)Y + f\nabla_{Y}V - \nabla_{fY}V$$

= $-g(V, Y)U + u(Y)V - k(V, Y)V + v(Y)KV + f^{2}KY - f(KfY),$

that is,

$$(3.13) \qquad (\mathcal{L}_{v}f)Y = v(Y)(KV - U) + \{u(Y) - k(V, Y)\}V + f(fK - Kf)Y.$$

We first assume that our structure is normal, that is, f and K commute, then, by Theorem B, we have (1.12), from which, putting X=V,

(3. 14)
$$k(V, Y) = u(Y) + k(V, V)v(Y),$$

that is,

(3. 15)
$$KV = U + k(V, V)V,$$

and consequently, we have, from (3.13),

$$(\mathcal{L}_V f)Y = v(Y)k(V, V)V - k(V, V)v(Y)V = 0.$$

We next assume that our structure is antinormal, that is, f and K anticommute, then, by Theorem C, we have (1.13), from which we have (3.14) and (3.15), and consequently, we have, from (3.13),

$$(\mathcal{L}_{v}f)Y = 2f^{2}KY$$

= $2\{-KY + u(KY)U + v(KY)V\}$
= $-2\{KY - v(Y)U - u(Y)V - k(V, V)v(Y)V\}$

which shows that the vanishing of $\mathcal{L}_{v}f$ is equivalent to (3.9) or to (3.10).

Thus we have, taking account of Theorem 3.3,

THEOREM 3.5. For the (f, g, u, v, λ) -structure with $\lambda = 0$ naturally induced on a hypersurface M^{2n} of an odd-dimensional unit sphere S^{2n+1} , the Lie derivative of the tensor field f with respect to U vanishes. If the structure is normal, then the Lie derivative of the tensor field f with respect to V also vanishes. If the structure is antinormal, the Lie derivative of the tensor field f with respect to V vanishes if and only if k has the form (3.10), that is, the vector field V is parallel.

BIBLIOGRAPHY

- [1] D. E. BLAIR AND G. D. LUDDEN, On intrinsic structures similar to those on S^{2n} , to appear in Kōdai Math. Sem. Rep.
- [2] D. E. BLAIR, G. D. LUDDEN AND K. YANO, Induced structures on submanifolds, Kōdai Math. Sem. Rep., 22(1970), 188-198.
- [3] D. E. BLAIR, G. D. LUDDEN AND K. YANO, Hypersurfaces of an odd-dimensional sphere, J. Diff. Geom., 5(1971), 479–486.
- [4] D. E. BLAIR, G. D. LUDDEN AND K. YANO, On the intrinsic geometry of $S^n \times S^n$, to appear in Math. Ann.
- [5] H. NAKAGAWA, f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian, Kōdai Math. Sem. Rep., 18(1966), 161-183.
- [6] K. YANO, On a structure defined by a tensor field f of type (1, 1) satisfying $f^3 + f = 0$, Tensor N. S., 14(1963), 99-109.
- [7] K. YANO, On a special f-structure with complemented frames, to appear in Tensor.
- [8] K. YANO AND M. OKUMURA, On (f, g, u, v, λ)-structures, Kōdai Math. Sem. Rep., 22(1970), 401–423.
- [9] K. YANO AND M. OKUMURA, On normal (f, g, u, v, λ)-structures on submanifolds of codimennsion 2 in an even-dimensional Euclidean space, Kōdai Math. Sem. Rep, 23(1971), 172-197.

MICHIGAN STATE UNIVERSITY AND TOKYO INSTITUTE OF TECHNOLOGY