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An orientable differentiable submanifold M®* of codimension 2 with globally
defined normal vectors of an even-dimensional Euclidean space E?"*? admits what
we call an (f, g,u, v, A)-structure, [1,2,3,4,8,9]. In [7] the present author
studied (f 9> %, v, A)-structures induced on a hypersurface M?" of an odd-dimensional
unit sphere S?**! and special metric f-structures with complemented frames which
are closely related to these (f;g,u,v,A)-structures. The main purpose of the
present paper is to generalize some of results obtained in [7] and study further
(f> g>u, v, A)-structures with A=0 naturally induced on a hypersurface M?*" of an
odd-dimensional unit sphere S***!,

In § 1, we review some of known results on (f, g, u, v, A)-structures naturally
induced on hypersurfaces M*" of an odd-dimensional unit sphere S?"+!. In §2, we
study (f, > % v, A)-structures naturally induced on a hypersurface M?®*" of an odd-
dimensional unit sphere S***! and obtain generalizations of some of results in [7].
In the last § 3, we study (f, ¢, % v, A)-structures with A = 0 naturally induced on a
hypersurface M*" of an odd-dimensional unit sphere S?"*!,

1. Preliminaries. Let M?®® be an orientable differentiable submanifold of
codimension 2 of a (2n+2)-dimensional Euclidean space E?"*? and assume that there
exist two globally defined mutually orthogonal unit normals C and D to M.
Then the natural Kihlerian structure of E?"*? induces a structure on M?®" defined
by a tensor field of type (1,1), a Riemannian metric ¢, two 1-forms % and v, and
a function )\ such that [1,2, 8, 9]

X = —X+uX)U +vX)V,
9UfX, £Y) = g(X, Y) — ulX)u(Y) — o(X)o(¥),
u(fX) = M(X) o(fX) = —u(X),
uU) =v(V)=1—=2% uV)=2U) =0,

Il

(1.1)

for any vector fields X and Y, vector fields U and V being defined by

(L.2) uX)=9U, X), oX)=g(V, X)
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for any vector field X. Thus the third equations of (1.1) can also be written as
(1. 3) SU=—=\V, fV=nU.

We call an (f, g, 4, v, A)-structure the set of f, g, u,v and A satisfying (1.1).
When the tensor field of type (1,2) defined by

(1. 4) SX, Y)=1ffIX, Y)+duX, Y)U+dv(X, Y)V

vanishes, where [f, f] is the Nijenhuis tensor formed with f, we say that the
(f> g> 4> v, N)-structure is normal.

Now suppose that the M*®® is a hypersurface of an odd-dimensional sphere S27+!
of radius 1 and choose the first normal C of M?®** as the opposite of the radius
vector of S***!, In this case, we say that the (f,¢g,u, v, A)-structure is naturally
induced on M?". Then, for the second fundamental tensor A and the Weingarten
tensor H with respect to C and the third fundamental tensor /, we have

(L.5) X, Y)=gX, Y), HX = X, (X) = 0,
for any vector fields X and Y and consequently we obtain
(Vi)Y = — g(X, YU + u(Y)X — kX, Y)V +0(Y)KX,
(Va)(Y) = o(X, Y) — Nk(X, Y),
(Veo)(Y) = — KX, fY)+ (X, Y),
Van = —v(X) + u(KX),

where % is the second fundamental tensor, K the Weingarten tensor with respect to
D, and

(1.7) (X, Y) =9(fX, Y)
a 2-form and consequently the tensor S defined by (1.4) takes the form
(1.8) S(X, Y) =vX)(fK—Kf)Y —o(Y)(fK— Kf)X.
In [7], we have proved
THEOREM A. In ordef that the (f, g,u,v, N)-structure naturally induced

on a hypersurface M*™ of an odd-dimensional unit sphere S*™*' be normal, it
is necessary and sufficient that.f and K commute, K being the Weingarten tensor.
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If A=0 on M?®, then (1.1) takes the form

X =—-—X+4+uX)U+vX)V,
9UfX, fY)=9(X, Y) - u(X)u(Y) — o(X)o(Y),
ufX)=0  ofX) =0,

and (1. 3) the form

and consequently the set (f; g,u, v, A) defines a metric f-structure with complemented
frames [5, 6] and (1.6) becomes

(V)Y = — g(X, Y)U +u(Y)X — k(X, Y)V + o(Y)KX,
(Vau)(Y) = o(X, Y) or ViU=fX,
(Vo)Y) = — kX, fY) or ViV =fKX,
u(KX) =v(X) or KU=V.

(1.11)

In [7], we proved

THEOREM B. Consider the (f,g,u,v,\)-structure with N=0 naturally
induced on a hypersurface M*™ of an odd-dimensional unit sphere S*"*'. In
order that f and K commute, it is necessary and sufficient that V is a Killing
vector field, or that the tensor field k satisfies

(1.12) RX, Y)=k(fX, fY)+ u(Xw(Y) + uY)v(X) + k(V, V)o(X)0(Y)
Sfor any wvector fields X and Y.

THEOREM C. Consider the (f,g,u,v, \)-structure with A= 0 naturally
induced on a hypersurface M* of an odd-dimensional unit sphere S*™*'. In
order that f and K anticommute, it is necessary and sufficient that v is a
harmonic 1-form, or that the tensor field k satisfies

(1.13) E(X,Y) = — A(fX, fY) + u(X)(Y) + a(Y)o(X) + BV, V)o(X)o(Y)

Sor any vector fields X and Y. In this csae, M™ is a minimal hypersurface
of S™* if and only if k(V, V)= 0.
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2. (f,g,u,v,)\)-structure induced on a hypersurface of an odd-dimen-
sional unit sphere. Assume that f and K commute : fK—Kf=0. This is equivalent
to kX, fY)+k(Y, fX)=0 for any vector fields X and Y, and consequently we
have, from the third equation of (1.6),

(Vx)(Y) + (Ve)(X) = 209(X, Y),

which shows that V is a conformal Killing vector field.
Conversely, suppose that V is a conformal Killing vector field, then we have

(Vao)(Y) + (Vro)(X) = 2p9(X, Y),

p being a function. Thus from the third equation of (1.6) and this equation, we
find

— kX, fY)— kY, fX)+209(X, Y) = 2p9(X, Y),

from which, by contraction A = p, since % is symmetric and @ is skew-symmetric,
and consequently A(X, fY)+k(Y, fX)=0, that is, fK—Kf=0.
Thus we have

THEOREM 2.1. For the (f,g,u,v, \)-structure naturally induced on a
hypersurface M*™ of an odd-dimensional unit sphere S*™*, in order that f and
K commute, it is necessary and syfficient that V is a conformal Killing wvector

field.

Assume next that f and K anticommute: fK+Kjf=0. This is equivalent to
kX, fY)—k(Y, fX)=0, and consequently we have, from the third equation of
(1. 6),

(Vo) (Y) = (Vo) (X) = 0,
which shows that the 1-form v is closed. The converse being evident, we have
THEOREM 2.2. For the (f,g,u, v, \)-structure naturally induced on a
hypersurface M* of an odd-dimensional unit sphere S***', in order that f and
K anticommute, it is necessary and sufficient that v is closed.
Suppose that A =0 on M?", then we have, from the third equation of (1.6),
8 v=0, that is, v is coclosed. Conversely, if v is coclosed, we have, from the

third equation of (1.6), A =0. Thus we have

THEOREM 2.3. For the (f,g,u,v, \)-structure naturally induced on a
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hypersurface M*™ of an odd-dimensional unit sphere S*™*!, in order that » =0,
it is necessary and sufficient that v is coclosed.

From Theorems 2.2 and 2.3, we have

THEOREM 2.4. For the (f,g,u,v, \N)-structure naturally induced on a
hypersurface M of an odd-dimensional unit sphere S***!, in order that f
and K anticommute and N =0, it is necessary and sufficient that v is harmonic.

We now assume that the hypersurface M?" of an odd-dimensional unit sphere
S?"+1 js compact, and A =0. Then we have, from the fourth equation of (1.6),
KU=V. :

Conversely, if this holds, then we have VA =0, from which A = constant.
But from the third equation of (1.6), we have, by contraction, div V=2 n A,
since k(X, Y) is symmetric and o(X, Y) is skew-symmetric, from which

0= f divVdsS = 27 f ds,
M ‘ M2

dS being the surface element of M?", and consequently A = 0.
Thus we have

THEOREM 2.5. For the (f,g,u,v,\)-structure naturally induced on a
compact orientable hypersurface M of an odd-dimensional unit sphere S*™*!,
in order that A =0, it is necessary and sufficient that KU =YV,

3. (f, g, u, v, \)-structure with A =0 induced on a hypersurface M*" of
an odd-dimensional unit sphere S***!. We now assume that the (f, g, u v, \)-
structure induced on a hypersurface M?" of an odd-dimensional sphere S***! satisfies
A=0.

If we denote by F the natural Kihler structure of the ambient E*"*2, then
FC-D =), the dot denoting the inner product in E?"*? and consequently A =0
means that FC is orthogonal to C and D, and is tangent to M?®. If we denote
by (@, & ) the Sasakian structure induced on S$***!, then FC is the vector field £ on
S?"+1 and A =0 means that £ is always tangent to M®",

From the second equation of (1.11), we have, by taking account of fU=0

and fV =0,
(3. 1) VUU = 07 VVU = 0 .
From the third equation of (1.11), we have, by taking account of fV =0 and
KU=YV,
(3.2 VoV =0, ViV =fKV.
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Thus we have

THEOREM 3.1. For the (f, g,u,v, N)-structure with A=0 naturally induced
on a hypersurface M of an odd-dimensional unit sphere S*™*', we have

(3' 3) [U} V] = VUV_ vVU = O.

We now assume that Y,V =0, then we have fKV =0, from which,
applying f, we find —KV+u(KV)U+v(KV)V =0. But, from KU =YV, we have
u(KV)=k(U, V)=v(KU)=v(V)=1, and consequently we have KV=U+K(V,V)V.
Conversely, if KV has this form, then we have

VyV =fKV = flU+ K(V, V)V) =0.

Thus we have

THEOREM 3.2. For the (f, g,u,v, N)-structure with A=0 naturally induced
on a hypersurface M of an odd-dimensional unit sphere S*"*!, the wvector
JSield U is parallel in the direction of U and in the direction of V. The
vector field V is parallel in the direction of U. In order that V is parallel
in the direction of V, it is necessary and sufficient that

(3. 4) KV =U+kV, V)V.

Suppose that the vector field V is parallel in M®", then we have, from the
third equation of (1.11),

(3.5) KX =0
for any vector field X, from which, applying f, we have

— KX+ u(KX)U + »(KX)V = 0,

that is,

(3.6) KX = o X) U+ kX, V)V

or

(8.7 KX, Y) = o(X)uY)+ kX, V)(Y),

from which, £(X, Y) being symmetric,
v(X)u(Y) — v(Y)u(X) + kX, V)o(Y) — kY, V)o(X) =0.
Thus putting Y =V in this equation, we find

(3.8) kX, V) =uX)+ RV, V)v(X).
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Thus substituting (3. 8) into (3.7), we find

(3.9 EX,Y) = u(X)oY)+u)v(X)+ &V, Viu(X)v(Y)
or , '
(3.10) KX = o(X)U + u(X)V + &V, V)v(X)V.

Conversely, if K has the form (3. 10), then (3.5) is satisfied. Thus we have

THEOREM 3. 3. For the (f; g, u, v, N)-structure with A=0 naturally induced
on a hypersurface M*" of an odd-dimensional unit sphere S***', in order that
the vector field V is parallel, it is necessary and sufficient that k has the form
(8.9) or K has the form (3.10).

Now, from the first equation of (1.11), we have, by putting X ="U,
(VeNY = —u(Y)U +u(Y)U — kU, Y)V+0(Y)KU = 0
since KU =V and, by putting X =V,
(3.11) (Vo )Y = —o(Y)U+uY)V—kV,Y)V+oY)KV.
Thus, in order that ¥, f=0, we should have
—v(Y)WU+uY)V—k(V, Y)V+vY)KV =0,

from which, putting Y=V, KV =U+k(V, V)V.
Conversely if this is satisfied, then we see, from (3.11), that V,f=0. Thus
we have

THEOREM 3.4. For the (f; 9, u, v, N)-structure with A=0 naturally induced
on a hypersurface M* of an odd-dimensional unit sphere S*™*1, the tensor field
f is parallel in the direction of U. In order that the tensor field f is parallel
also in the direction of 'V, it is necessary and sufficient that K satisfies

KV =U+FkV, V)V.

Now, using (1.11), we have
(3.12) (Lof)Y = (V)Y +1VU = VU
‘ = —gU, YYU+uY)U - kU, Y)V

+o(Y)KU + Y —f(fY) =0,
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since KU =V, L, denoting the operator of Lie derivation with respect to U. On
the other hand, we have

(-CVf)Y = (VVf)Y +fVYV - V,YV

= —g(V, YYU+u(Y)V=FkV, Y)V+0(Y)KV+f:KY —f(KfY),
that is,
(8.13) (L)Y = oY) KV —=U) + {u(Y)—k(V, YIV+ASK - Kf)Y .

We first assume that our structure is normal, that is, f and K commute, then,
by Theorem B, we have (1.12), from which, putting X=V,

(3.14) RV, Y)=ulY)+kV, V{Y)
that is,
(8.15) KV =U+kV, V)V,

and consequently, we have, from (3. 13),

(L)Y = oX)k(V, V)V — E(V, V]u(Y)V = 0.

We next assume that our structure is antinormal, that is, f and K anticommute,
then, by Theorem C, we have (1.13), from which we have (3.14) and (3.15), and
consequently, we have, from (3.13),

(Lvf)Y = 2f°KY
= 2{— KY + u(KY)U + v(KY)V}
= —2{KY —o(Y)U — «(Y)V — k(V, V)u(Y)V}

which shows that the vanishing of _£}.f is equivalent to (3.9) or to (3.10).

Thus we have, taking account of Theorem 3.3,

THEOREM 3.5. For the (f, g, u, v, N)-structure with A=0 naturally induced
on a hypersurface M of an odd-dimensional unit sphere S®**!, the Lie
derivative of the tensor field f with respect to U vanishes. If the structure is
normal, then the Lie derivative of the tensor field f with respect to V also
vanishes. If the structure is antinormal, the Lie derivative of the tensor field
S with respect to V vanishes if and only if k has the form (3.10), that is, the
vector field V is parallel.
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