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We have shown that there exist only a finite number of imaginary
abelian number fields with relative class number 2, = 1[12 or 138]. There
an upper bound of the conductors of such fields could be effectively
determined, except for biquadratic fields of type (2, 2). Now Baker’s
and Stark’s papers [3 and 10] show that an upper bound can be effectively
determined also for those fields, because biquadratic fields of type (2, 2)
with h, =1 are generated by imaginary quadratic fields with 2, =1 or
2. So it is a problem of finite amount of calculation to determine all the
imaginary abelian number fields with %, = 1. But an upper bound we
can now obtain is too large to solve this problem explicitly. In this
paper, we restrict ourselves to the class number (not the relative class

number) one problem, and we give some remarks and upper bounds for
some cases.

1. In this section we give some remarks which will be useful for the
class number one problem. They are not essentially new results, but it
will be convenient to remark here.

We define a field of type I to be an imaginary abelian number field
which is generated by subfields of prime power conductors. When we
write as K= KK, --- K, for a field of type I, we always mean that
K, are subfields of prime power conductors which are relatively prime.
First proposition which is a corollary of genus theory shows that an
imaginary abelian number field with class number one is of type I.

PROPOSITION 1. Let K be an abelian number field of finite degree.
Let k = piipg ««- pir be its conductor. If K has strict class mumber one,

K 1is gemerated by subfields K, whose conductors are pi. Ewvery K; also
has strict class mumber one.

Proor. K is contained in the field L of the k-th roots of unity.
Let E, be the field of the p#-th roots of unity, and let E, be the field
of the pg ... pr-th roots of unity. Let T be the inertia subfield of K
with respect to p,. Then it holds T = KN E,, and the Galois group of
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K/T is isomorphic to that of KE,/FE,. As the Galois group of L/E; is
isomorphic to that of E, over the rationals, there exists a subfield K, of
E, corresponding to KE,. Then it holds K,E, = KE,, so p, is not ramified
at K. K/K. It is clear that any other finite prime is not ramified at
K, K/K. Then K, must be contained in K, because K has strict class
number one. Hence K = K,T. If K, or T has unramified (with respect
to the finite primes) extension, K also has such an extension because the
conductors of K, and T are relatively prime. Therefore both K, and T
should have strict class numbers one. It is seen by induction that 7T is
generated by subfields K,, ---, K,.

Relative class number formula by Hasse contains a unit index as a
factor. Criteria for determining unit indices are complicated in general
[4], but it is easy for the fields of type I.

PROPOSITION 2. Let K be a totally imaginary algebraic number field
of finite degree. We assume that K contains a totally real subfield K,
such that [K: K] = 2. Let E and E, be unit groups of K and K, res-
pectively. Let W be a group of the roots of unity in K. Then the unit
index

= (EB:EW)<2.

Let G denote the Galois group of K over K,. Then it is mecessary and
suffictent for ¢ =1 that H' (G, E) + 0.

Proor. First assertion was proved in [12]. If we assume cohomology
theory of finite groups, we have a following easier proof. E/W is a
finitely generated free abelian group. (E/W)® is a subgroup of finite
index because it is known that ¢ < «. Then it should be (E/W)¢ = E/W.
As the sequence

l1-W—-FE—->E/W-—1
is exact, and as H'(G, E/W) = 0, the sequence
(1) E,— E/W— H(G, W)— HYG, E)—0

is exact. It is easy to show the order of H'(G, W) is equal to 2. Then
q = (E: E;W) <2 is clear. It is also clear that ¢ =1 if and only if
H'G, E) + 0. For the proof of next proposition, we note that H'(G, E)
is of order < 2.

PropoSITION 3. Let K = KK, --- K, be a field of type I. Then unit
wndex ¢ =1 of and only if only one of K; is imaginary.

Proor. Let K, be imaginary and let K,, ---, K, be real. Let p: be
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the conductor of K,. As K, is contained in the field of the pf-th roots
of unity, the prime divisor p of p, in K, is a principal ideal. We put
p = (7). Let K* be the multiplicative group of K, and let P be a group
of the principal ideals of K. We obtain an exact sequence

(2) K — P°— HYG,E)—0,
from the exact sequence
l1-F—K*—>P—1.

Now p = (7) is contained in P¢ but is not generated by any element
of K,, as is shown by considering the ramification index of p,. Hence
H' (G, E) + 0, i.e., ¢ =1 by Proposition 2. Next we assume that K is a
field of the m-th roots of unity, where m is odd or divisible by 4 and is
divisible by at least two different primes. Then ¢ =1 — { is a unit in
K, where { is a primitive m-th root of unity. Let z be the complex
conjugate mapping. Then & = —{ holds. If ¢ =1, ¢ is equal to some
el’, e,€ E,. Then ¢ = (¥ and (¥ ' = —1 hold. This means 2|m and
4y m, which is a contradiction. Therefore ¢ = 2 in this case. Now let
K, and K, be imaginary. We can assume imaginary K;, 7 = 8, have odd
conductors. Then the index (W: W’) is odd, where W’ is the group of
the roots of unity in the field K, K,. If we show ¢ = 2 for the field XK,K,,
the same result for K will be obtained by considering exact sequences (1)
for K and K,K,. So we can assume that K = K K,. Let p: and p% be
conductors of K, and K,, respectively. Let L, and L, be fields of the pii-th
and pg-th roots of unity, respectively. We can assume p, is odd. Then
the degree [L,: K,] is odd. If we consider the exact sequence (2) for the
field K,L, and if we take the norm with respect to K,L,/K, it will be
seen that ¢ = 2 holds if it holds for K,L,. So we can assume K, = L,.
If p, is also odd, above arguments show that ¢ = 2. Finally we consider
the case p, =2 and K=K L,. If K, =L, q =2 as above. If K, = L,
K, does not contain a primitive 4-th root of unity. Also hold that e, > 2
and [L;: K] = 2. Let { be a primitive 2%-th root of unity. Then the
conjugate of { over K, must be equal to —{'. If we put & as a
primitive pz-th root of unity,

e=(1-30HA+ L7

is a unit in K. Then e = —&. If ¢ =1, ¢ = ¢w for some ¢ ¢ E, and
we W. Then e = w® and so (§/w)* = —1 hold. It is a contradiction,

for K does not contain any primitive 4-th root of unity. Therefore it
must be ¢ = 2.
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2. We now determine the imaginary abelian number fields with class
number one and with Galois groups of type (2, 2, ---, 2), with possibly one
exception.

LEMMA 1. Let K = KK, K, be a field of type I. We assume that
K, is an tmaginary cyclic field of degree 2™ for some integer m, and also
assume that K, and K, are real quadratic fields. Then the class number
of K is a multiple of 2.

ProoF. Let k, k, and k, be conductors of K|, K, and K,, respectively,
Then K contains imaginary cyclic fields E, and E, of degree 2™ with
conductors k.k, and k,k,. Both of them have relative class numbers which
are multiple of 2, because K, K, and K,K, are their unramified extensions
and their maximal real subfields have prime power conductors k,. Similarly
K contains an imaginary cyclic subfield E, of degree 2™ with a conductor
k.k.k;, whose relative class number is a multiple of 4. Hasse’s class
number formula shows

h’l,K =27 1:[1 h’l,E,L'hl,Kl ’

because unit indices are one for K or for any subfield and
Wx = Wg,, Wp, = 2.

Here wy is the number of the roots of unity in K, and similarly for other
fields. Then above argument shows that h, . is a multiple of 2.

If an imaginary abelian number field L contains a subfield K of
type I, the class number of L is a multiple of that of K, as is seen
easily from [2, Chap. 8, Th. 9] or [1].

PROPOSITION 4. Let K be a field of type I of degree 2™ for some
integer m. If the Galois group of K over the rationals @ is a direct
product of at least four cyclic subgroups, the class number of K is a
multiple of 2.

Proor. Lemma 1 and the above remark show that it suffices to
consider the case K contains no subfield as in Lemma 1. Then we can
assume K = K. K,K, or K = K K,K,K,, by taking a suitable subfield if
necessary. In the first case, K, = Q(1 —1,172), and K, and K, are
imaginary quadratic fields. In the second case, K; are all quadratic fields
and at least three of them are imaginary. As in the proof of Lemma 1,
h, x is a multiple of 2 in both cases.

PRrROPOSITION 5. The imaginary abelian fields of type (2,2, «--,2)
with class number one are as follows: We mean (a,b,c) a field Q0 a,
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Vb,V ¢) in the below.
(i) (=1, (=2), (=3), (=7, (—11), (—19), (—43), (—67T), (—163).
(ii) (=1,%), (=1,13), (—=1,387), (—-2,5), (—2,29), (-3,2), (-38,5),
(=38,17), (-3, 41), (-3, 89), (-17,5), (—17,13), (-1, 61), (—11, 2), (—11, 17),
with possibly one more field.

(iii) (-1, —2), (-1, =3), (-1, =1, (-1, —11), (=1, —19), (—1,—43),
1, —67), (—1, —163), (—2, —3), (=2, —7), (— 2, —11), (—2, —19), (—2, — 43),
2, —67), (=3, -1, (=38, —11), (=8, —19), (-3, —43), (-3, —67),
3, —163), (=17, —11), (-7, —19), (-7, —43), (-7, —163), (—11, —19),
11, —67), (-—11, —163), (—19, —67), (—19, —163), (—43, —67),
43, —163), (—67, —163).

(iv) (-1, —2,5), (-1, —=3,5), (-1, —17,5), (-1, —7,13), (=2, —3, 5),
(-2, —7,5), (=8, —1,5), (-8, —11,2), (-3, —11,17).

(v) (=1,—-2,—8), (=1, -2, —11), (=1, -3, —T), (=1, —8, —11),
(=1, —8, —19), (=1, —17, —19), (=2, —3, —17), (=3, —11, —19).

PROOF. Proposition 4 shows there does not exist such a field whose
Galois group has more than 3 generators.

(i) Imaginary quadratic case is well known.

(ii) Q' —1,1V 2) is included in (iii). Except this, a field of type I
of type (2,2) is of type QV —p,V q) or QV —p, V' —q), where p and ¢
are different primes (or 1). Now Q(1/—p) and Q(1” ¢q) (in the second case
Q(V'=q)) are quadratic fields with strict class number one. Moreover, a
quadratic subfield Q(V—pg) must have class number 2 in the first case.
Iseki [5] or Tatuzawa [11] has shown that imaginary quadratic fields with
class number 2 have discriminants d greater than —90,000 with possibly
one exception. It is known d = —427 if d > —90,000.

(iii) In the second case, the class number of Q1" pq) is equal to
one. Y. Yamamoto calculated class numbers of such fields and obtained
this case.

(iv) When it is of type (2,2,2), it is of type QV —p, V' —¢q,V'7)
or of type QV —p,V —q,V —r). Here p, q and r are primes (or 1),
and a field Q' =1,V 2,V r) is counted as Qv —1,vV =2,V 7). In the
former case subfields QV —p,V —q), Qv —p, V' r) and QW —q, V' 1)
must be in (ii) or (iii). And quadratic subfield Q(1/ pgr) must have class
number 2.

(v) In the latter case, subfields Qv —p, V' —q), Q V' —p, 1V —r) and
Q1 —q,V —r) are all in (iii). And quadratic subfield Q(V/— pgr) must
have class number 2 or 4 according as Q' —p,V —q,V —r) contains

Q1 =1,V —2) or not.

(_
(_
(._
(_
(_
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3. We now give an upper bound of conductors of imaginary abelian
number fields with class number one, assuming that they do not contain
the exceptional field in Proposition 5. Let K be a field of type I, and
let & be its conductor. Let L(s, %) be an L-function corresponding to
K. Let L,s) be the product of L(s, %) such that y(—1) = —1. Let L,(s)
be the product of L(s, %) for non-trivial ¥ such that y(—1) =1. We now
estimate L,(1). We put

1

=14+ —=
%o a logk

for some @ > 0. By Lemmas 5(1) and 8 of [13], we have
(3) “log L,1) = —log Ly(s;) + S"% (s)ds
< log &(s)) + log Lu(s,) + S% (s)ds

1
a logk

+ log Lu(s) + S "ILI (s)ds .

+ loga + loglog &

Hence it suffices to estimate L.(s,) and (L{/L,)(s), choosing a suitable
value of a.

LEmMMA 2. (i) (Tatuzawa [11]) We put S,,. = D, (), where the
sum 1s taken for all integers r such that m < r < n. If ¢ is an integer
such that | S, .| = c for any m and n, it follows
[s]<

g n=1

| L(s, 0) | = n°  fors=o0+1it,a>0.

(ii) If k= 50,000, we can take ¢ < 0.58V k loghk + 1. Then it
follows

| L(s, ) | < 1.41 k"*(log k)** for |s —s,| < 2/3
for any mon-trivial ¥.
ProoF. (i) Tatuzawa states this in his Lemma 5 for real y, but

his proof is valid in general.
(ii) Polya’s inequality [9 or 6] show that

2 k logk

2. /(1
“Vk|= k+logloghk +1 L __=2>9shr
ISm,nl<1+n_l/ <2log + log log & + >+7r1/kloglc—1

< 0.58V'k logk,
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by making use of inequalities log £ > 10.8 and log log k& < 0.221 log k& for
k = 50,000. Then we have

| Ls, 1) | < % 2 w1 < 1.41 k(log k)

for any s such that [s — s,| < 2/3.

LEMMA 3. (i) Let s and s, be real mumbers such that 1 < s < s,.
Let p be a zero point of L(s, x). We put C = R (1/(s, — p)). Then it holds
1 _ C
s—p Ci—s)+1

(ii) We assume that a logk > 237 and that | L,(z)/L.(s,) | < e” for
some constant M > 0 in the circle |z — s,| < 2/3. If we put

=1 r_, 0<z<1,
§ +alogk ==
we have
Lig<sn-L_ +e2m,
L, n 8s—p

where p runs over the zeros of L, such that |p — s,| < 1/3.

Proor. (i) See [13,p. 342].

(ii) See the proof of [13, Lemma 4]. Only change occurs on the
coefficient of M by a change of the condition on the value of a log k.

From now on we assume that k£ = 50,000. We make use of inequali-
ties log k& > 10.8 and log log £ < 0.221 log k£ frequently. First we assume
that K is cyclic of degree 4. Then L,(s) consists of only L(s, %) such
that x> = 1. As K is of type I, k£ is a prime number such that £k =5
(mod 8), hence %(2) = —1 holds. For any real s > 1, it follows

(4) L =(1+%) 1 (1 - %)ﬂ

2° P2

sq@n—1_ 2 <& 1
e 3 @

s (%logc + 1.35) < 0.308 5 log k

by similar method as in the proof of Lemma 2 (i), because

Saer -] =[Sk -2r+ 1| = 11@ T 1)1 <,
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where the last sum is taken over integers between (k + 1 — 2m)/2 and
(k —1)/2. We now estimate M in Lemma 3. By Lemmas 2 and [13,
Lemma 5], we have

2
a logk

M < 2 log1.41 + %logk—!— %log]ogk-f—

+ loga + 2log log k + log 0.308
2
aloghk’

< 1.404log k — 0.49 + loga +

Metsankyla [8] or rather his argument shows

st 1 3
3 s, — P s, —1 2

for any real s, such that 2 > s, > 1, where p runs over the zeros of L,(s)
such that |p — s, | =1/3. If we put s, =1+ 1/(4 log k), we have

pIp, P

8, — 0

< 5.5logk

and also
1

$—pQ

R < 2.75 log k

because p is a zero of L(s,x) if p is a zero of L(s,y). If we put s =
1+ xz/(alogk), 0=<x=<1, Lemma 3 shows

2% sip = 2.7510gk:s—sl)+lzmslip
88a log k .
5a + 44z
If we put a = 22,
M < 1.646 log k&
and
%(s)<%’£+10.3 log k5 =1 4+ gt

hold by Lemma 3. Then we have

%l Vo d 10.3
Li g 2S 1.142 .
SLL1(8)8< o125 22 -

Hence we get from (3) and (4)
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— log L,(1) < 2log log k + log 21.5 .
Now we have

k k
h, = — L,1 .
2n* @ > 2x%9.87x 21.5(log k)

The right hand side is greater than one for k = 50,000. Therefore

PROPOSITION 6. Let K be an imaginary cyclic field of degree 4. Its
conductor k is less than 50,000, if it has class number one.

If K contains a subfield of type I of type (2,2, ---, 2), we also assume
that this subfield is one of the fields in Proposition 5. It K has class
number one, this condition is satisfied. Any field in Proposition 5 has
conductor smaller than 593,000, if it is not an exceptional one. So cor-
responding L-functions L(s, ¥) such that y(—1) = —1 have no real zeros
such that 0 < p < 1[7]. Hence if p is a zero point of L,(s) such that
0<Rp<1, pis also a zero of L(s). And if o is real, o is a multiple
zero of L,(s). When K is of degree 6, K contains an imaginary quadratic
subfield QV—m) with class number one. As we assume %k = 50,000, it
holds & = mp where p is a prime number such that p = 1 (mod 6). L(s)
consists of two L-functions defined mod k# and L, mod m corresponding
to Qv —m). L,(s) consists of two L-functions defined mod p. We now
assume that p > 50,000. Then it follows from Lemma 2 that

Ly(s) < (1og(0.58 V" p log p + 1) + 1)
< 0.583 (log p)*

for any real s >1. As we can always take ¢ < k/2 in Lemma 2, it
follows

I Lm(sy X) I é 1‘27m2I3

for any s such that |s — s,| < 2/3. Then we have

M<1.98logk+ —LX  +loga,
a logk

by considering m < 163 and p < k. Now Metsankylad [8] and Lemma 5(2)
of [13] give

1
s—1

SR 1 < logk+llogm+logp—|—
0 s—p 2

1
s—1

for real s such 1 < s< 2. If we put s, =1+ 1/(6 log k),

< 2logk +
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1

1

SR <Tlogk

and

R_L <35 logk

8, — P

hold. The second inequality comes from the first inequality and the fact
that L, has no real zero such that 0 < p < 1. If we put ¢ =35 and
s =1+ x/(a logk), same arguments as in the case of degree 4 show
that

£ L'
Li ()ds < 0.988
Sl 2 (95 <

and
—log L,(1) < log 55.1 + log log k& + 2 log log » .

Now we have

wvV'm k
2r*  55.1 log k (log p)?

h, >

where w is the number of the roots of unity in K. As

wlV'm_ _ wvV'm
(log p)*  (log k — log m)*

takes the smallest value for m = 7, it follows
h, > k :
2591 log k (log k& — 1.94)*

If k> 8.15 x 10°% the right hand side is greater than one. For such &%,
p is certainly greater than 50,000. Hence

PRrOPOSITION 7. Let K be an imaginary abelian field of degree 6.
Then its conductor k < 8.15 x 10° iof K has class number one.

We made use of the fact that R(1/(s, — 0)) < (1/2) 3 R(A/(s, — p)) in
the above. If the degree = is larger than 6, it is better to apply Met-
sankyla’s estimate

1 47 1 76.5
R = log k&
sl—,0<8031—1+ 80 8

and
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SR 1 < ) —I—n—llogk
ss—p s§—1 2

which comes from his arguments and Lemma 5(2) of [13]. Now assume
that » = 8, and we put

2
(m+1)loghk
Then we have

1 1
R — (47 200) log &
sl—,o<160( n + ) log

and

sR-—L < nlogk.

1

Hence Lemma 3 shows

>R 1 160na log k&
s—p  (4Tn + 200)x + 66a — 306a/(n + 1)
160na log & s=14 @
= (4Tn + 200)2 + 320 a logk

for a = (n + 1)/2. If we put a = 5,
M < 0.401n log k&
and

ga"Z?R 1 ge < _ 1600 log<y+1.25>
1 S

—p 47n + 200 160 n
160, 207
160105207 4 g78
<7 %160 <

hold. Hence we obtain
80 L!
=(s)d 1.379 .
Sl 2 s <

Lemma 2 shows that
| L(s,, %) | = 0.764 log k&
for any non-trivial . Then it follows from (3) that
L,(1)™ < 26.1%(0.764 log k)"* .

Hence
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_2
(2m)"'*
Vdjd,
13.17%(4.801 log k)™*

1
26.171(0.764 log k)™'*

h, = V' djd,

v

where d and d, are absolute values of discriminants of K and of maximal
real subfield, respectively. As 1 d/d, > d'*, Lemma 1 of [13] shows

bz 13.11n( 4.80;1./?05; k )WZ < 15.3ﬁ>g k >n/2 )

If we put k£ = 2 x 10¥, the right hand side is greater than one. There-
fore

ProPOSITION 8. Let K be a field of type I. If K has class number
one, and if it does not contain the exceptional field in Proposition 5, its
conductor is less than 2 x 10v.

REMARK. We will be able to obtain a better upper bound, if we
consider some types of fields separately and give better estimate of
1/ d/d,. For example, if k is a power of a prime, /d/d, = k"*. Then
h, > 1 if k> 50,000. To obtain better upper bound in this case, we have
to start with another estimate of Lemma 2.
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