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We have shown that there exist only a finite number of imaginary
abelian number fields with relative class number ht — 1 [12 or 13]. There
an upper bound of the conductors of such fields could be effectively
determined, except for biquadratic fields of type (2, 2). Now Baker's
and Stark's papers [3 and 10] show that an upper bound can be effectively
determined also for those fields, because biquadratic fields of type (2, 2)
with hγ = 1 are generated by imaginary quadratic fields with hγ = 1 or
2. So it is a problem of finite amount of calculation to determine all the
imaginary abelian number fields with hγ = l But an upper bound we
can now obtain is too large to solve this problem explicitly. In this
paper, we restrict ourselves to the class number (not the relative class
number) one problem, and we give some remarks and upper bounds for
some cases.

1. In this section we give some remarks which will be useful for the
class number one problem. They are not essentially new results, but it
will be convenient to remark here.

We define a field of type I to be an imaginary abelian number field
which is generated by subfields of prime power conductors. When we
write as K = KλK2 Kr for a field of type I, we always mean that
Ki are subfields of prime power conductors which are relatively prime.
First proposition which is a corollary of genus theory shows that an
imaginary abelian number field with class number one is of type I.

PROPOSITION 1. Let K be an abelian number field of finite degree.
Let k = p^pp pβ

rr be its conductor. If K has strict class number one,
K is generated by subfields Ki whose conductors are p\*. Every Ki also
has strict class number one.

PROOF. K is contained in the field L of the λ -th roots of unity.
Let JEΊ be the field of the p^-th roots of unity, and let E2 be the field
of the pi2 Perr-th roots of unity. Let T be the inertia subfield of K
with respect to px. Then it holds T = K Π E2, and the Galois group of
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K/T is isomorphic to that of KE2/E2. As the Galois group of L/E2 is
isomorphic to that of Eι over the rationals, there exists a subfield Kγ of
Eγ corresponding to KE2. Then it holds KJ£2 = KE2, so pγ is not ramified
at K.K/K. It is clear that any other finite prime is not ramified at
KγK\K. Then Kt must be contained in K, because K has strict class
number one. Hence K = K,T. If Kγ or T has unramified (with respect
to the finite primes) extension, K also has such an extension because the
conductors of Kx and T are relatively prime. Therefore both Kγ and T
should have strict class numbers one. It is seen by induction that T is
generated by subfields K29 *- ,Kr.

Relative class number formula by Hasse contains a unit index as a
factor. Criteria for determining unit indices are complicated in general
[4], but it is easy for the fields of type I.

PROPOSITION 2. Let K be a totally imaginary algebraic number field
of finite degree. We assume that K contains a totally real subfield Ko

such that [K: KQ] = 2. Let E and Eo be unit groups of K and Ko, res-
pectively. Let W be a group of the roots of unity in K. Then the unit
index

q = (E: E0W) ^ 2 .

Let G denote the Galois group of K over Ko. Then it is necessary and
sufficient forq = l that H1 (G, E) Φ 0.

PROOF. First assertion was proved in [12]. If we assume cohomology
theory of finite groups, we have a following easier proof. E/W is a
finitely generated free abelian group. (E/W)G is a subgroup of finite
index because it is known that q < oo. Then it should be (E/ W)G = Ej W.
As the sequence

is exact, and as Hι(G, E\ W) = 0, the sequence

( 1 ) Eo-+ E/W— H\G, W) -> ίΓ(G, E) — 0

is exact. It is easy to show the order of Hι(G, W) is equal to 2. Then
q = (E: E0W) ^ 2 is clear. It is also clear that q = 1 if and only if
Hι{G, E) Φ 0. For the proof of next proposition, we note that H\G, E)
is of order ^ 2.

PROPOSITION 3. Let K = K&--- Kr be a field of type I. Then unit
index q = 1 if and only if only one of K{ is imaginary.

PROOF. Let Kγ be imaginary and let K2, •••, Kr be real. Let pt1 be
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the conductor of Kγ. As Kγ is contained in the field of the pji-th roots
of unity, the prime divisor p of px in Kt is a principal ideal. We put
p = (π). Let Kx be the multiplicative group of K, and let P be a group
of the principal ideals of K. We obtain an exact sequence

( 2 ) ifo

x — P G -> fl^G, # ) — 0 ,

from the exact sequence

Now p — (π) is contained in PG but is not generated by any element
of Ko, as is shown by considering the ramification index of px. Hence
Hι(G, E) Φ 0, i.e., q — 1 by Proposition 2. Next we assume that K is a
field of the ra-th roots of unity, where m is odd or divisible by 4 and is
divisible by at least two different primes. Then ε — 1 — ζ is a unit in
K, where ζ is a primitive m-th root of unity. Let τ be the complex
conjugate mapping. Then ει~τ = — ζ holds. If q = 1, ε is equal to some
εoζ

j, εQeE0. Then ε1-Γ = ζ2j and ζ 2 ^ 1 = - 1 hold. This means 2 | m and
4 1 m, which is a contradiction. Therefore g = 2 in this case. Now let
Kί and iζ, be imaginary. We can assume imaginary Ki9 i ^ 3, have odd
conductors. Then the index (W: W) is odd, where W is the group of
the roots of unity in the field KXK2. If we show q = 2 for the field K^K^
the same result for K will be obtained by considering exact sequences (1)
for K and K^K2. So we can assume that K = KJί2. Let pt1 and pp be
conductors of Kt and K2, respectively. Let Lλ and L2 be fields of the p^-th
and 2>22-th roots of unity, respectively. We can assume p2 is odd. Then
the degree [L2: K2] is odd. If we consider the exact sequence (2) for the
field KλL2 and if we take the norm with respect to KJJ2\K, it will be
seen that q — 2 holds if it holds for KXL2. So we can assume K2 — L2.
If pί is also odd, above arguments show that q = 2. Finally we consider
the case p, = 2 and K = KγL2. If Kx = L l f <? = 2 as above. If Kx Φ L19

Ky does not contain a primitive 4-th root of unity. Also hold that eγ > 2
and [Lji ίΓJ = 2. Let ζ be a primitive 2βl-th root of unity. Then the
conjugate of ζ over Kγ must be equal to — ζ"1. If we put ξ as a
primitive pe

2

2-th root of unity,

ε - (1 - ζζ)(l + ζ - φ

is a unit in iΓ. Then ε1-Γ = — ζ2. lί q = ly ε = εQw for some εoe £Ό and
we W. Then ε1-Γ = w2 and so (ί/^)2 = — 1 hold. It is a contradiction,
for K does not contain any primitive 4-th root of unity. Therefore it
must be q = 2.
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2. We now determine the imaginary abelian number fields with class
number one and with Galois groups of type (2, 2, , 2), with possibly one
exception.

LEMMA 1. Let K = KγK2K^ be a field of type I. We assume that
Kγ is an imaginary cyclic field of degree 2m for some integer m, and also
assume that K2 and K3 are real quadratic fields. Then the class number
of K is a multiple of 2.

PROOF. Let kl9 k2 and &3 be conductors of Klf K2 and if3, respectively,
Then K contains imaginary cyclic fields Ex and E2 of degree 2m with
conductors kjt2 and kjcz. Both of them have relative class numbers which
are multiple of 2, because KγK2 and KγKz are their unramified extensions
and their maximal real subfields have prime power conductors kt. Similarly
K contains an imaginary cyclic subfield Ez of degree 2m with a conductor
kjί2kz whose relative class number is a multiple of 4. Hasse's class
number formula shows

Kκ Π l l ί | U l ,

because unit indices are one for K or for any subfield and

wκ = wKl, wE. = 2 .

Here wκ is the number of the roots of unity in K, and similarly for other
fields. Then above argument shows that h1>κ is a multiple of 2.

If an imaginary abelian number field L contains a subfield K of
type I, the class number of L is a multiple of that of K, as is seen
easily from [2, Chap. 8, Th. 9] or [1].

PROPOSITION 4. Let K be a field of type I of degree 2m for some
integer m. If the Galois group of K over the rationals Q is a direct
product of at least four cyclic subgroups, the class number of K is a
multiple of 2.

PROOF. Lemma 1 and the above remark show that it suffices to
consider the case K contains no subfield as in Lemma 1. Then we can
assume K = KγK2Kz or K = KJίJίJί^ by taking a suitable subfield if
necessary. In the first case, Kγ = Q{V — 1, τ/!ί), and K2 and Kz are
imaginary quadratic fields. In the second case, Ki are all quadratic fields
and at least three of them are imaginary. As in the proof of Lemma 1,
hltK is a multiple of 2 in both cases.

PROPOSITION 5. The imaginary abelian fields of type (2, 2, , 2)
with class number one are as follows: We mean (a, b, c) a field Q(y" a,
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Vb , Vc) in the below.
( i) (-1), (-2), (-3), (-7), (-11), (-19), (-43), (-67), (-168).
(ii) (-1,5), (-1,13), (-1,37), (-2,5), (-2,29), (-3,2), (-3,5),

(-3,17), (-3, 41), (-3, 89), (-7, 5), (-7,13), (-7, 61), (-11, 2), (-11,17),
with possibly one more field.

(iii) ( -1 , -2), ( -1 , -3), ( -1 , -7), (-1 , -11), ( -1 , -19), (-1,-43),
(-1, -67), (-1 , -163), (-2, -3), (-2,-7), (-2,-11), (-2,-19), (-2,-43),
(-2, -67), (-3, -7), (-3, -11), (-3, -19), (-3, -43), (-3, -67),
(-3, -163), (-7, -11), (-7, -19), (-7, -43), (-7, -163), (-11, -19),
(_ll f _67), (-11, -163), (-19, -67), (-19, -163), (-43, -67),
(-43, -163), (-67, -163).

(iv) ( -1 , - 2 , 5), ( -1 , - 3 , 5), ( -1 , - 7 , 5), ( -1 , - 7 , 13), (-2, - 3 , 5),
(-2, - 7 , 5), (-3, - 7 , 5), (-3, -11, 2), (-3, -11,17).

(v) ( -1 , - 2 , -3), ( -1 , - 2 , -11), (-1 , - 3 , -7), ( -1 , - 3 , -11),
(-1 , - 3 , -19), ( -1 , - 7 , -19), (-2, - 3 , -7), (-3, -11, -19).

PROOF. Proposition 4 shows there does not exist such a field whose
Galois group has more than 3 generators.

( i ) Imaginary quadratic case is well known.
(ii) Q(V^Ϊ,V~2) is included in (iii). Except this, a field of type I

of type (2, 2) is of type Q(V/~^p,V/~q') or QiV^^V^), where p and q
are different primes (or 1). Now Q(V — p) and Q(V q) (in the second case
Q(V~^φ) a r e Quadratic fields with strict class number one. Moreover, a
quadratic subfield Q{V — pq) must have class number 2 in the first case.
Iseki [5] or Tatuzawa [11] has shown that imaginary quadratic fields with
class number 2 have discriminants d greater than —90,000 with possibly
one exception. It is known d >̂ -427 if d > -90,000.

(iii) In the second case, the class number of Q{V~pq) is equal to
one. Y. Yamamoto calculated class numbers of such fields and obtained
this case.

(iv) When it is of type (2, 2, 2), it is of type Q{V^~p, V^q, VT)
or of type Q(l/^p, V^q, V^T). Here p, q and r are primes (or 1),
and a field Q(V^Ϊ, V~2, VT) is counted as Q(V~^Ϊ, V~^2, VT). In the
former case subfields QiV^p, V^q), Q(V^ϊ>, VT) and Q{V^q, VT)
must be in (ii) or (iii). And quadratic subfield Q(V pqr) must have class
number 2.

(v) In the latter case, subfields Q(V — p, V~^q), Q(V — p, V~^r) and
Q(V~^q, V — r) are all in (iii). And quadratic subfield Q(V — pqr) must
have class number 2 or 4 according as Q(V — p,V — q,V — r) contains

^2) or not.
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3. We now give an upper bound of conductors of imaginary abelian
number fields with class number one, assuming that they do not contain
the exceptional field in Proposition 5. Let K be a field of type I, and
let k be its conductor. Let L(s, χ) be an L-function corresponding to
K. Let Lx(s) be the product of L(s,χ) such that χ(—1) = — 1 . Let L2(s)
be the product of L(s, χ) for non-trivial χ such that χ(— 1) = 1. We now
estimate L^l). We put

s0 = 1 + *
a logk

for some a > 0. By Lemmas 5(1) and 8 of [13], we have

(3) - log L,(l) - - log L^so) + [°ίά (s)ds

< logζ(s0) + logL2(s0) + \8°^

< — Γ + log α + log log k
a log k

logL2(s0)+ ( 8 °^

Hence it suffices to estimate L2(s0) and (L'JL^s), choosing a suitable
value of a.

LEMMA 2. ( i ) (Tatuzawa [11]) TΓβ p^ί STO,% = Σ z W > wΛere the
sum is taken for all integers r such that m ^ r ̂  n. If c is an integer
such that I Sm,n | ̂  c for any m and n, it follows

[ L(s, χ) [ ̂  J-?i Σ ̂ ~σ /or β = <J + iί, σ > 0 .

(ϋ) 1/ A: ̂  50,000, we cαw ία/bβ c ̂  0.58 τ / T log Λ + 1. Then it
follows

I L(8, χ) I < 1.41 &1/3(log kf3 for \s-so\^ 2/3

for any non-trivial χ.

PROOF. ( i ) Tatuzawa states this in his Lemma 5 for real χ, but
his proof is valid in general.

(ii) Polya's inequality [9 or 6] show that

loglogfc< 1 + ι/τ(logfc + loglogfc + l) + / y ,
π V2 / π vk logk — 1

< 0.58 l / T log fc ,
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by making use of inequalities log k > 10.8 and log log k < 0.221 log k for
k ^ 50,000. Then we have

L(s, χ) I ^
V 5 »=i

1.41

for any s such that | s — sQ | ^ 2/3.

LEMMA 3. ( i ) Let s and ^ be real numbers such that 1 < s < st.
Let p be a zero point of L(s, χ). We put C = 3Ϊ (1/(8! — p)). Then it holds

s — p C(s — s j + 1 "

(ii) We assume that a log k > 237 and that \.
some constant M > 0 in the circle | z — s0 \ ̂  2/3. // we put

^ eM for

= 1 +
α logfc

tt e have

s — p

where p runs over the zeros of Lι such that \ p — s0 \ ̂  1/3.

PROOF. ( i ) See [13, p. 342].

(ii) See the proof of [13, Lemma 4]. Only change occurs on the
coefficient of M by a change of the condition on the value of a log k.

From now on we assume that k ;> 50,000. We make use of inequali-
ties log k > 10.8 and log log k < 0.221 log k frequently. First we assume
that K is cyclic of degree 4. Then L2(s) consists of only L(s, χ) such
that χ2 = 1. As if is of type I, k is a prime number such that k = 5
(mod 8), hence χ(2) = — 1 holds. For any real s > 1, it follows

( 4 )

cf l{2n - 1) 2
& (2 l ) s 3~ 3 & (2» - l ) s 3 ίΞί (2w - I) 8

^ A s (λ. log c + 1.3δ) ^ 0.308 s log fc

by similar method as in the proof of Lemma 2 (i), because

Σ χ(2r -1) = I Z(2) Σ <e,
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where the last sum is taken over integers between (k + 1 — 2m)/2 and
(k — l)/2. We now estimate M in Lemma 3. By Lemmas 2 and [13,
Lemma 5], we have

M < 2 log 1.41 + Alog& + A log log A;-f 2

3 3 a log k

+ log a + 2 log log k + log 0.308

< 1.404 log k - 0.49 + log a + 2

α log fc

Metsankyla [8] or rather his argument shows

p Si — p Si — 1 2

for any real sλ such that 2 > st > 1, where p runs over the zeros of
such that I p — s0 \ ̂  1/3. If we put sx = 1 + 1/(4 log k), we have

31 — - — < 5.5 log k
S p

and also

3ΐ — i — < 2.75 log A:
Si — p

because p is a zero of L(s, χ) if p is a zero of L{s, χ). If we put s =
1 + x/(a log fc), 0 ^ a? ̂  1, Lemma 3 shows

^ 8 - /o ~ 2.75 log k (s - sd 4- 1

88α logfe

5a + 44#

If we put a = 22,

M < 1.646 log k

and

L; ssjogfc 1 0 3 λ k 8 = 1

L 5 + 2x
1 0 3 λ k 8 1

5 + 2x 22 log k
hold by Lemma 3. Then we have

dx J M 1,142.( +
i Joa; + 2.5 22

Hence we get from (3) and (4)
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- log L,(l) < 2 log log k + log 21.5 .

Now we have

2ττ2 v 7 2x9.87x21.5(log&)2

The right hand side is greater than one for k ^ 50,000. Therefore

PROPOSITION 6. Let K be an imaginary cyclic field of degree 4. Its
conductor k is less than 50,000, if it has class number one.

If K contains a subfield of type I of type (2, 2, , 2), we also assume
that this subfield is one of the fields in Proposition 5. It K has class
number one, this condition is satisfied. Any field in Proposition 5 has
conductor smaller than 593,000, if it is not an exceptional one. So cor-
responding L-f unctions L(s,χ) such that χ(—1) = —1 have no real zeros
such that 0 < p < 1 [7]. Hence if p is a zero point of L^s) such that
0 < 3ΐ p < 1, p is also a zero of L^s). And if p is real, p is a multiple
zero of L^s). When K is of degree 6, K contains an imaginary quadratic
subfield Q(λ/ — m) with class number one. As we assume k ^ 50,000, it
holds k = mp where p is a prime number such that p = 1 (mod 6). L^s)
consists of two L-f unctions defined mod k and Lm mod m corresponding
to Q(l/ —m). L2(s) consists of two L-f unctions defined mod p. We now
assume that p > 50,000. Then it follows from Lemma 2 that

L2(s) < (log(0.58 V~p log p + 1) + I)2

< 0.583 (log p)2

for any real s > 1. As we can always take c ^ k/2 in Lemma 2, it
follows

for any s such that | s - s01 ^ 2/3. Then we have

M < 1.98 log k + —r^-r- + log a ,
α logfc

by considering m ^ 163 and p < k. Now Metsankyla [8] and Lemma 5 (2)
of [13] give

Σ 3ϊ < log fc + — log m + log p -\ —
p s — p 2 s — 1

< 2 log A: + — ί —
s — 1

for real s such 1 < s < 2. If we put 8L = 1 + 1/(5 log fc),



496 K. UCHIDA

Σ 9 ΐ ^ ^ - < 7 log A:
s1 - p

and

31—-— < 3.5 log A;
p

hold. The second inequality comes from the first inequality and the fact
that Lm has no real zero such that 0 < p < 1. If we put a = 35 and
s = 1 + χ/(a log k)9 same arguments as in the case of degree 4 show
that

[°M(8)d8< 0.988
Ji Lι

and

- log LSX) < log 55.1 + log log k + 2 log log p .

Now we have

7

2V 55.1 log k (log p)2

where w is the number of the roots of unity in K. As

wλ/m _ wλ/m
(log p)2 (log k - log m)2

takes the smallest value for m = 7, it follows

7 v. rC

2591 log A; (log A;- 1.94)2

If k > 8.15 x 106, the right hand side is greater than one. For such k,
p is certainly greater than 50,000. Hence

PROPOSITION 7. Let K be an imaginary abelian field of degree 6.
Then its conductor k < 8.15 x 106 if K has class number one.

We made use of the fact that 31(1/(8! - p)) ^ (1/2) Σ 31(1/(8! - p)) in
the above. If the degree n is larger than 6, it is better to apply Met-
sankyla's estimate

s1 - p 80 s, - 1 80

and
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s1 — p Si — 1 2

which comes from his arguments and Lemma 5(2) of [13]. Now assume
that n ^ 8, and we put

8 - 1 I 2

Then we have

3ϊ — - — < — (47n + 200) log k
Sj. — p 1 6 0

and

Σ 3 ΐ -
- P

3* — - — < n log k .
p

Hence Lemma 3 shows

1 ^ 160 na logk

s - p " (47̂ ι + 200)α; + 66α - 306α/(n + 1)

< 160 t̂ α logfc — 1 + x

= {AΊn + 200)α; + 32α ' ~ a log k

for a^ (n + l)/2. If we put a = 5n,

M < QΛOln log k

and

ds< lcg( +

s- |O 47W + 200 Vl60 n

hold. Hence we obtain

[8°M(s)ds < 1.379 .

Lemma 2 shows that

I L(80, χ) I ̂  0.764 logfc

for any non-trivial χ. Then it follows from (3) that

Z^l)-1 < 26.1^(0.764 log k)n'2 .

Hence



498 K. UCHIDA

1
hλ > - v did,

- ,o_w,2 / 26.1^(0.764 logk)nl2

13.1^(4.801 \ogky12

where d and d0 are absolute values of discriminants of K and of maximal
real subfield, respectively. As V' d/d0 > dll\ Lemma 1 of [13] shows

h > i / yr y> > /
1 ~ lS.ln V 4.801 log k J ~\ 15.

y
lS.ln V 4.801 log k J ~\ 15.37 log k

If we put i ^ 2 x 1010, the right hand side is greater than one. There-
fore

PROPOSITION 8. Let K be a field of type I. If K has class number
one, and if it does not contain the exceptional field in Proposition 5, its
conductor is less than 2 x 1010.

REMARK. We will be able to obtain a better upper bound, if we
consider some types of fields separately and give better estimate of
V d/d0. For example, if A; is a power of a prime, V d/d0 ^ knfi. Then
hγ > 1 if k > 50,000. To obtain better upper bound in this case, we have
to start with another estimate of Lemma 2.
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