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Recently P. J. Ryan [2] studied complex hypersurfaces in a complex
space form satisfying the condition

(*) R(X,Y)S=0

for any tangent vectors X and Y of the hypersurface, where R is the
curvature tensor, S is the Ricci tensor of the hypersurface and R(X, Y)
operates on the tensor algebra as a derivation. He proved that these
hypersurfaces are Einstein manifolds if the holomorphic sectional curvature
of the ambient space does not vanish (Theorem 4).

In the case where the ambient space is a complex Euclidean space
C**', he obtained the following two results: Let M be a complex hyper-
surface in C***. (1) If M satisfies the condition (*) and the scalar curvature
of M is constant, then M is totally geodesic (Proposition 5). (2) If M is
complete and satisfies the condition

(%) R(X, Y)R =0

for any tangent vectors X and Y of M, then M is cylindrical, that is,
the product of C** and a complex curve (Theorem 6).
In this paper we shall obtain the following result.

THEOREM. A complete complex hypersurface in C"*' satisfying the
condition (*) is cylindrical.

1. Hypersurfaces in C**'. Throughout this paper it will be agreed
that Greek indices have the range 1,2, <+, n.

Let M be an n dimensional complex manifold immersed holomorphically
in C**, Let ¢, e, -+, e, be a unitary frame field in C**', defined in a
neighborhood of M such that e x), € M, is orthogonal to the tangent
space of M at x. Its coframe field ®°, w!, ---, @™ consists of complex
valued linear differential forms of type (1, 0) on M such that ®* = 0 and
@' eee, @ @, +++, @" are linearly independent. The induced metric of M
can be written as
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1.1) ds® = 23, W'@? ,
A=1

and the e, +--, ¢, is a unitary frame field of M with respect to this

metric. The @', -+, ®" is a coframe field of ¢, -+, ¢,.

Associated to the frame e, ¢, +++, e,, there are complex valued linear

differential forms wi (4, B= 0,1, -+, n) such that

(1.2) wi+ @ =0, (A, B=0,1, -+, m),

(1.3) de+§;owg/\wB=o (A=0,1,++,m),

(1.4) doj + 304 A0 =0 (4, B=0,1,,m).
Since @’ = 0, (1.3) becomes

(1.5) do* + g; W5 A @0 =0

and

n
SN W =0.
i=1

It follows by Cartan’s lemma that
(1.6) W) = %Hzﬂw” s H,=H,.

Then from (1.2) we have
(1.7 o= -3 H,o".
M

The } are the connection forms of M associated to the frame ¢, - -

and the covariant differential of ¢, is given by
(1.8) De, = >, wle; .
2
The curvature forms 2% are defined by
25 = dwf + 3, 0 A 0§ .

Then from (1.4), (1.6), and (1.7) we have
(1.9) % =3 H,H,» N 0.
P

*y On

We take the exterior derivative of (1.6) and make use of (1.4) and

(1.5). Then we have
Z (dHZ# - Z (Hayw? + HlawZ) + szwg) Nw=0.

] a
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It follows that
(1.10) dH,, — Ea‘, (Hauf + Hyow;) + Hyuwi = ; H,, 0",
where H,;,, are symmetric in all indices.

Using (1.4), (1.6), and (1.7) we get

dw§ = Ea‘, H,H,w* A\ & .
In our frame field the Ricci tensor S of M can be expressed by
S = IZ‘,# (Szo* Qu* + S;.0% ® w*)

where S;z = Sz; = S;, which are given by

(1.12) Szﬁ = ’—Z Hzaﬁa# .

In our notations the condition (*) is
S (S + Sal?i) = 0.+
Substituting (1.9) and (1.12) into the above equation, we have an expression
of the condition (*) as follows:
*" H"’az,;‘ H,.H,H, = % H.,.H,H:H,, .
The scalar curvature k of M is given by
(1.13) k= —2%, | Hy |* s

and k is a real analytic function on M.

Let ¢, e, ««-, ¢, be another frame field such that ¢ is orthogonal to
the tangent space of M. Then we have

(1.14) e = Ule, and e, = 3, Ule,
2

where Uy is a complex valued function with | U{| =1 and the matrix

(U}) is a unitary matrix. Let %, 0’4 be the differential forms with
respect to the frame field ¢, e, <+, ¢,. Then we have

(1.15) 0 = 3 Ulw'™,

@
(1.16) S Ui = dU + 3, Uw?
(1.17) = ﬁ:g, U:UiH,; ,

where o = 3, H} 0"
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2. Proof of the theorem. In this section M is an n dimensional con-
nected complex manifold immersed holomorphically in C**'. We assume
that M is complete with respect to the induced metric and satisfies the
condition (*).

From the last formula (1.17) in § 1, it is easily seen that the rank of
the matrix (H,,(x)), » € M, is independent of the choice of the frame field.

We shall denote it by »(x).

To prove the theorem it suffices to show that p(x) is smaller than 2
everywhere. In fact, if p(x) £ 1 everywhere, we see easily that M
satisfies the condition (}). Then we can apply Ryan’s result to our situa-
tion and we can conclude the theorem.

In the rest of this section we assume that there is a point x,€ M
such that p(x,) = 2 and we shall induce a contradiction.

It is clear that p(x) = 2 at a point « in a neighborhood of xz,. Take
a unitary frame field e, e, ++-, ¢, as in §1. Then in our assumption H,,
are satisfying (*'). Let U = (Uj}) be a unitary matrix and put

H,;, = aZﬁ UiUlH, .
Then H';, also satisfy (*'). By a slight modification of Chern’s lemma
([1], page 28) we can choose U so that
Hy=a=20 and H; =0 M =g
at a point # in a neighborhood of z,. It follows by (*') that
;0 = aja, .

Thus we have a; = a,, if a;a,+ 0 and X = g¢. Therefore, p(x) is constant

in a neighborhood of x,.
Let m = p(x,). We can take a frame field ¢, e, --, ¢, in a neighbor-

hood W of w, such that the matrix (H,,) is diagonal and
Hu: e =Hmm>0 and Hm+lm+1:'.'=Hnn:0‘

Since the scalar curvature % is non-positive on M, a continuous func-
tion ¢ on M is defined by
c=1vV—=k2m .
Let M' = {xe M; k(z)  0}. Then M is an open subset of M and ¢ is

analytic on M.
From (1.13) we have

k= —-2mH} =+« = —2mH:, # 0
on the neighborhood W of x,. Therefore, W is contained in M’ and we
have
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HU.: s e =Hmm=c
on W.
In the following we agree that the indices have the following ranges:
1<4,j,k=<m and m+1=nrs,t<n.
If we put » = r and ¢ = s in the formula (1.10), we have
(2.1) H,,=0 y=1 0, .
Also if we put A =14, =7 and ¢ # j in (1.10), we have
Hywj + Hj0i= —Znu Hw",
that is,
(2.2) o(@i + @i) = — y:, Hyw .
Since ¢ is real and (0} + wj) + (@} + @} = 0, we get
Z"“ H,'j,,(l)u + i g{j,,(av = O .
y=1 y=1
It follows that
(2°3) Hijvzo i7&j7”=19"',ny
(2.4) i+ wl=0 17,
If we put A = ¢ =4 in (1.10), we have
de + cw) — 2¢wi = 3, H;,0° .
If 7+ j, we know from (2.3) that H;;; = H;;; = 0. Thus we get
dc -+ ng - 26(0': = H,-,-,-a)‘ + Z H,;,-,.a)" .
If we take the real part of the above equation, we have
2d¢ = H;;;0' + 3, Hy;,0" + Hy@' + 3 Hy, 007
Since the left-hand side of this equation does not depend on the indices
1=1,+++,m, we get
Hnl:"‘:Hmmm:O and Hllrz"'—_—Hmmr'
Thus we obtain
(2.5) de + ¢ — 2c0i = S h,w"  i=1,¢e0. m,

(2.6) 2de = 3, (h," + h,@") ,
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where we put

hr - Hllr = s = Hmmr .
If we put =4 and ¢ = r in (1.10), we have

'—Cwi = Zn, H.,;“,wy .
v=1
The right-hand side is
2. -Z:Iirjwj + Z H,;"w’ = -H:i'riwi = -Hii'rwi - hra)i .

Thus we get
.7 cw: = —h,w,
(2.8) cw] = h,@¢ .

From (2.4) we see easily that
2.9) wi N\ 0l = I
Using (2.7), (2.8), (2.9), and Q2! = ¢*@° A\ @’, we have
dwi = c‘z(c‘ - >k [Z)cb" A @,
Since —2cwi = >, h,0" — dc — cw}, we have w!= -.-- = ol It follows

that
(c‘——2|h,|2>c?)‘/\w1= e = <c4—§;]h,|2)@mAwm.

Therefore, we obtain
(2.10) ¢t =2 1h[.
We take the exterior derivative of (2.7) and make use of (1.5), (2.7),
and 2: = 0. Then we have for 1 =1, -+, m,
(dh, - Zhswz) A @ = c—lh,(dc 3 h,,a)’) A @ .
From this we obtain
(2.11) dh, — 3 h,@? = ¢*h,(de + 3 ho") .

If m = n, the formula (2.10) becomes ¢* =0 on W, that is, the matrix
(H,,) = 0 on W, which contradicts our assumption. Thus we can assume
that m < n. Then we can define a real vector field X on W by

X=c*3 (e + he,) .

The covariant differential of X is
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DX = —c¢'deX + ¢* 3, (h,h,@%e, + hh,w'E,) — ¢S, (we; + @) .
7,8 3
Thus the covariant derivative of X by itself is

DXX=0,

which means that the trajectories of X are geodesics of M.
By the completeness of M, there exists a geodesic Y(t) (— o <t < )
and ¢ > 0 such that

Y(0) =z, Y(t)e W and Y(t) = X, for [t|<e.

Since M is open in M, there exists an open interval I of real numbers
such that v(¢)e M for tel. We take a maximal interval with this
property.

From (2.6) and (2.10) we have

de(X) = ¢

which implies that ¢ satisfies the differential equation

(2.12) dfi‘;“’ = (com)?

along the geodesic ¥ within an interval —¢ < t < e. But ¢ is analytic on
M and 7 is also analytie, (2.12) is also satisfied for te I.

Then we have
(2.13) c(v(t)) = ¢/l — ety for tel,

where ¢, = c¢(x,).

From (2.13) we see that 1/c, is not contained in I. So I is upper
bounded. Let t, be the right limit of I. Then 0 < ¢, < 1/¢,. Since (2.13)
is satisfied for ¢, 0 < ¢t < ¢, we have

lim e((t)) = ¢,/(1 — egty) = 0
t—tg
On the other hand, ¢(7(¢)) is defined for all real numbers and continuous.
Since ¥(t,) ¢ M', ¢((t,)) = 0. Thus we have
lirtn c(Y(@) = e(v(ty)) = 0.
t—tg

This is a contradiction.
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