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0. Introduction. In this paper we study the class of Riemannian
manifolds M equipped with tangent subbundles which are invariant under
covariant differrentiation. These subbundles are called totally geodesic
distributions. Indeed, they are integrable distributions in the usual
sense and their integral submanifolds are totally geodesic submanifolds
of M. Although it is, no doubt, of interest to study such distributions
in general, we are particularly motivated by the example of Chern
and Kuiper [3]. Their example comes up naturally in the study of
submanifolds of space forms, and is called the relative nullity distribu-
tion of the submanifold. Since its introduction, the study of this kind
of distributions has provided us with a good deal of information on the
submanifolds of space forms. Roughly speaking, those results concern
the following two questions in connection with the relative nullity
distribution. One is whether or not a submanifold of the flat space
form has a natural Riemannian product structure with respect to the
distribution. The other is the problem as to what kind of estimate on
the dimension of the relative nullity distribution, i.e., the index of rela-
tive nullity, can be made if M is a submanifold of SN or CPN. The
results in the first category are called the cylinder theorems after
Hartman and Nirenberg and may be found in [2], [6], [7], [10] and [13].
As for the latter, an estimate of the index was first given by Nomizu
[9] for compact complex hypersurfaces of CPN, and the same estimate
was later extended to all complete submanifolds of SN and CPN [1].
This estimate is, however, quite crude.

More recently, Ferus has improved this estimate for submanifolds of
SN by making use of a Riccati type differential equation [4]. From con-
sideration of known examples, his results seems to be the best possible.
Although it was known in special cases that totally geodesic distribu-
tions satisfy the Riccati equation, Ferus has shown in a clear way that
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any such distributions satisfy the same equation.
In § 1, we rewrite this differential equation to suit our pur-

pose. We obtain in this section some results on non-integrability of the
orthogonal distributions and on a semi-global product structure of mani-
folds with totally geodesic distributions under a certain condition. As
special cases, we get existence of zeros of certain vector fields over
complete surfaces of positive curvature and a comprehensive description
of the totally geodesic distributions over complete surfaces of non-negative
curvature.

In § 2 we find a new estimate of the index. Our main result is that
the index of relative nullity of a complete Kahlerian submanifold M of
CPN is either 0 or the dimension of M. This is a partial answer to the
conjecture made in [5].

In § 3 further use of the Riccati type equation is made to prove a
cylinder theorem on Kahlerian submanifolds of CN. We also give an
intrinsic splitting of certain Kahlerian manifolds.

1. Preparations and some direct applications of the Riccati type
equation. Let M be an ^-dimensional Riemannian manifold. We denote
by D a //-dimensional smooth distribution over G, i.e., a ^-dimensional
smooth subbundle of the tangent bundle TM of M given over an open
subset G of M. Furthermore, let us assume that the distribution D is
totally geodesic, i.e., for any two smooth vector fields X and Y of D,
V x Y is also a vector field of D, where V is the Riemannian connection of
M. Since the equation VXY — VYX — [X, Y] holds, D is integrable in
the usual sense; therefore, we can speak of the maximum integral sub-
manifolds of D. Those submanifolds are often refered to as the leaves
of D. Let Dx be the subspace of the tangent space TMX of M at x
given by the distribution D. We denote by D'x the orthogonal comple-
ment of Dx in TMX with respect to the Riemannian metric g of M.
Then the orthogonal distribution D' over G is defined to be the mapping
that assigns to each xeG the orthogonal complement D'x. Since Όf

determines a unique subbundle of TM, it is clear that the Riemannian
connection V induces a canonical metric connection in D' as follows: If
X and Y are smooth vector fields in TM and D', respectively, define the
connection V in D' by VXY'= PVXY, where P is the projection of the
tangent bundle onto Df. Now let X and Y be smooth vector fields of
D and D', respectively. Define a linear operator A(x, X): D'X—*DX by
A(x, X){Y) = —P(VYX)X, where the subscript x means the restriction to
the point x. A(x, X) is called the conullity operator at x in the direction
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X [13]. For the sake of convenience, we shall denote A(x, X){Y) by
A(x, X, Γ).

PROPOSITION 1. A(x, X, Y) depends on the values of X and Y at x
alone, and the mapping that assigns to each x the operator A(x, ) is a
smooth section of the bundle Horn (D, End D'), where End Όf is the set of
all endomorphisms of Ό\

PROOF. The last half of the statement is clear. In order to show the
first half, it is sufficient to verify that A(x, fX} Y) equals f(x)A(x, X, Y),
where / is a smooth function in a neighborhood of x. Now by the
definition of the operator, for any YeD'x A(x,fX, Y) = -P(FγfX)x =
-P(Yf-X + fVYX)x = -P(fFγX)x = -f(x)P(FγX)x = f{x)A{x, X, Y)

q.e.d.
Let X(t) be a unit speed geodesic in one of the leaves of D. Since

these leaves are totally godesic submanifolds of M9 we might as well
consider λ to be a geodesic of M. Denote by X(t) the velocity vectors of
λ at t. Then by mimicing the computation by Ferus [4], one can reach
the following differential equation along λ:

(1) (r[it)A(\(t), λ(ί))) Y = A2(λ(ί), λ(ί)) Y - PR(i(t), Γ)λ(ί) .

Here R is the curvature tensor of M. In order to have a better look at
the equation (1), let Γ^ί), •••, Yn-μ{t) be a parallel frame field of Π
along λ. Let [aiS(t)]9 1 ^ i, j ^ n — μ, be the matrix representation of
A(X(t), λ(t)) relative to the frame field along λ. If we take it into ac-
count that Yi9 1 ^ i ^ n — μ, is parallel along λ and g(R(Xf Y)Z, W) =
—g(R(X9 Y)W, Z), we have reached the following lemma:

LEMMA 1. [<%(£)] satisfies the following Riccati type differential
equation:

(2) K(ί)] = K W P + K y ί t ) ] ,

Here the superscript 2 means the usual matrix product and Ki5{t) is
given by Ku(t) = g(R(\(t), Yiίt))!^), λ(ί)).

REMARK. A well known equation g(R(X, Y)V, U) = g(R(U, V)Y, X)
tells us that [KiS{t)] is a symmetric matrix. Also note that Ku(t) is the
sectional curvature of the plane spanned by λ(ί) and Yi(t),

We shall now show a property of the differential equation which will
be used throughout this section.

PROPOSITION 2. Let [a'iQ] = [aiSγ + [Ktj(t)] be the Riccati type equa-
tion as in Lemma 1. Assume that either (1) K is positive semidefinite
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for all t, or (2) K is constant and the trace of K is non-negative. Then
A(t) = 0 is the only possible global solution with an initial condition A(0)
which is symmetric and has non-negative eigenvalues. Consequently,
K(t) = 0 for all t if the differential equation has a global solution under
the given conditions.

PROOF. First of all, we shall show that any solution to our differ-
ential equation with a symmetric initial condition must be symmetric as
long as the solution exists. Now let [#*;(£)] be a solution with a sym-
metric initial condition [<%(0)]. Consider the transposed equation *[αjy] =
*[αϊi]2 + *[JSΓii(ί)]> where the superscript t means the transpose. Then
it is easy to see that the transpose *[<%(£)] of the original solution is a
solution to it with the initial condition *[<%(())] = [<%(0)]. Because of
symmetry of K, those two equations turn out to be the same as systems
of differential equations. Thus uniqueness of the solutions implies that

*[««(«)] = K(«)J.
From now on, let us assume that the initial condition has a diagonal

form. Note here that we do not lose any generality by assuming so.
Now writing down the equation componentwisely, we have for a solu-

tion [aiά{t)]y

( 3 ) αίy(ί) = Σ <*{k(t)akj(t) + Ku(t) .
k

In particular, if i = j , since [#ίy(ί)] being symmetric, we have

(4) a'u(t) = Σ <Ak(t) + Knit) for all 1 ^ i ^ n - μ .
k

First let Ku(t) = 0 for all t. Since (4) can be decomposed as a^t) =
a2

u(t) + non-negative term, and since ocu(0) is non-negative by the condi-
tion, one can conclude that the solution to (4) grows more rapidly than
that to the differential equation β' = β2 with the same initial condition
^(0) . Because of uniqueness of the solution, the latter has β(t) =
αiί(0)/(l — toiί(0)) as its solution. This solution is global if and only if
^(0) = 0, since it would otherwise blow up at t = 1/^(0). Thus we
have shown all the eigenvalues of [#^(0)] are 0, i.e., [<%(0)] = 0. Suppose
that cchh(s) Φ 0 for some h and at some s. It is clear that oίhh(s) is posi-
tive. Then taking a new variable tf — t — s makes it possible to apply
the above argument to the new equation with ockk(s) as its initial condi-
tion. This provides a contradiction. Therefore, akk{t) = 0 for all t and
for all 1 ^ k ^ n — μ. Consequently, cxi3(t) = 0 for all t and for all i and
j . Hence, [oci5{t)\ = 0 and [Kiά{t)\ = 0 for all t. Now suppose that Ku(t)
is non-negative, but not identically 0 for some i. It is clear that α^(s)
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is positive for some s. This implies that one can assume that #«(())
is positive without loss of generality. Then we see that the solution
to (4) with oίu(0) as its initial condition blows up, since the solution
to β' = β2 with the initial condition 0Cu{Q) does. This is a contradiction.
Therefore, Ku must be 0 for all i. Hence, [aiS(t)\ = 0 and \{KiS(t)\ = 0
for all t.

So the first half of Lemma 2 has been proven. As for the second half,
one of the diagonal elements of K, say Kit must be non-negative by the
condition Σ*^"« being non-negative. By applying the argument of the
first half, we get Kit = 0 and aiά(t) = 0 for all t and all j . This forces
us to conclude that there is a non-negative diagonal element of K other
than Ku, and consequently 0. Repeating this process leads us to the
conclusion that K = 0 and [a^(t)] = 0 for all ί. q.e.d

Before stating our first theorem, we shall introduce a convention.
Let M be a Riemannian manifold of dimension n as before. We say a
distribution D is involutive at a point x if for any two smooth vector
fields X and Y of D, the vector [X, Y]x given by the bracket [X, Y] at
x belongs to Dx. In particular, D is involutive everywhere means that
it is integrable.

THEOREM 1. Let M be an n-dimensional Riemannian manifold with
a totally geodesic distribution D over an open subset G of M. Let μ
be the dimension of D. Furthermore, assume that D is complete, i.e.,
all the leaves are complete manifolds. Then the orthogonal distribution
Ώf is nowhere involutive over G if M has positive sectional curvatures.
In particular, Df cannot be integrable.

PROOF. Suppose D' is involutive at xeG. Let λ(t) be a unit speed
geodesic in the leaf containing x such that λ(0) = x. Let XeD be a
local extension of λ(ί) in a neighborhood of x. For any two vector fields
Y and Z of D' around x, we have g(A(x, X, Y), Z) = -g(PFγX, Z)x =
-g(FγX, Z)x. On the other hand, g(PγX, Z) + g(X, VYZ) = Y g(X, Z) = 0
implies that g(A(x,X, Y),Z)X = g(X,FγZ)x. Similarly, we Yi?πeg{A{x,X,Z), Y) =
g(X9 VZY)X. Thus g(A(x, X, Y), Z) - g(A(x, X, Z), Y) = g(i(t), [Y, Z])x =
0, because D' is involutive at x by the assumption.

We have shown, therefore, that A(λ(0), λ(0)) is a symmetric operator.
It is clear from the assumption of Theorem 1 and the remark below
Lemma 1 that [Kiό{t)\ is positive definite at every t. Suppose that
A(λ(0), λ(0)) has a non-negative eigenvalue. Then the argument con-
cerning the equation (4) in the proof of Proposition 2 tells us that
A(X(t), X(t)) blows up at some t. This is a contradiction, since A(X(t), X(t))
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is globally defined and differentiate at all t. Now if A(λ(0), λ(0))
has only negative eigenvalues, take A(X(0), — λ(0)) which obviously has
non-negative eigenvalues. Again we face a contradiction by Proposition 2.

q.e.d.

COROLLARY 1. Let M be a 2-dimensional complete Riemannian mani-
fold with positive Gaussian curvature. Then any totally geodesic distri-
butions over M must be trivial ones. In particular, any vector field of M
whose trajectories are geodesies must have at least one zero.

PROOF. Since any 1-dimensional distribution is integrable, the first
half is clear by Theorem 1. If the vector field is non-vanishing, it gives
rise to a totally geodesic ditribution over M. This is impossible.

Next we shall display some results which can be shown easily by
applying the argument in the proof of Proposition 2.

THEOREM 2. Let D be a totally geodesic distribution over a complete
Riemannian manifold M with non-negative sectional curvatures such
that the orthogonal distribution Dr is integrable. Then for each point x
in M there is an open neighborhood U of x which is a Riemannian
product of an open neighborhood Uλ of x in the leaf of D passing
through x and an open neighborhood U2 of x in the leaf of D' passing
through x. Furthermore, if M is simply connected, M is the global
Riemannian product of a leaf of D and a leaf of D'.

PROOF. Since Df is integrable, our linear operators A are nothing
but the second fundamental tensors of the leaves of D'. Therefore, all
A are symmetric operators. It is easy to see that [KiS{t)\ are positive
semi-definite. Thus by Proposition 2, A = 0 and K — 0. Note here that
the eigenvalues of A can be assumed non-negative without loss of gener-
ality. Hence, the definition of A implies that D and Όf are parallel.
The local decomposition theorem of de Rham gives us the first half.
The last half is also a mere consequence of the global decomposition
theorem of de Rham. For the detail, see [8]. A less general result of
this type has been shown independently in [14]. q.e.d.

COROLLARY 2. Let M be a complete Riemannian manifold with
non-negative sectional curvatures. Let D be a totally geodesic distribution
of codimension 1 over M. Then M is locally the Riemannian product
in the sense of Theorem 2. In particular, if M is simply connected, the
above product is global.

PROOF. Obvious because the orthogonal distribution is integrable.
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COROLLARY 3. Let M be a ^-dimensional complete Riemannian mani-
fold with non-negative Gaussian curvature. If there is a non-trivial
totally geodesic distribution over M, M is flat. Moreover, any such
distribution is covered by a totally geodesic distribution of R2 given by
the family of parallel lines defined by y = ex + d, where c is a constant
and d varies over all real numbers. In fact M must be one of the follow-
ing: the Euclidean space, the cylinders, the tori, the Mδbius bands and
the Klein bottles.

PROOF. The first half is clear. As for the last half, it suffices to
say that any totally geodesic distribution is lifted to the universal
covering R2 as a totally geodesic distribution, which is given by the above
form. For the last remark, see Theorem 2.2.5 [15]. q.e.d.

THEOREM 3. Let M be a complete locally symmetric space with a
totally geodesic distribution D such that Ώf is integrable. Assume that
[Kij(t)] of Lemma 1 has non-negative trace for each direction at each
point. Then M is locally a Riemannian product in the sense of Theorem
2. If M is, in addition, simply connected, it is actually a global product.

PROOF. All we have to show is that K is constant. Since M is
locally symmetric, we have VR = 0, where R is the curvature tensor.
Thus by the definition of K in Lemma 1, K is constant along any
geodesic. Now we can reduce Theorem 3 to (2) of Proposition 2 without
loss of generality. q.e.d.

COROLLARY 4. Let M be a complete locally symmetric space with
non-negative Ricci curvatures. If there is any 1-dimensίonal totally
geodesic distribution D such that Όf is integrable, then M is locally a
product in the sense of Theorem 2. In particular, if M is simply con-
nected, M is a product of the real line R and a locally symmetric
space.

PROOF. It suffices to see that the trace of K is a Ricci curvature
and any 1-dimensional complete and simply connected manifold must be
the real line. q.e.d.

Having observed a few direct results of Proposition 2, we ask
whether or not we can get a somewhat more global aspect for the pro-
duct structure without simply connectedness. To this end, let us start
with two well known examples. Let T = R2/Γ be the flat torus, where
Γ is the set of all integral pairs in R2. Then the family of parallel
lines in R2 given in Corollary 3 gives rise to a totally geodesic distribu-
tion over T. If the slope c is irrational, any leaf of the distribution is
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dense in T. So it is impossible to obtain a product form without certain
conditions. On the other hand, if c is rational, each leaf is a circle
which winds around T a finite number of times. This example suggests
a sort of semi-global product structure: Any leaf is isometric to each
other and there is a neighborhood of any leaf which is isometric to the
product of the leaf and an open subset of a leaf of the orthogonal dis-
tribution. We shall pursue this semiglobal structure in a little more
general case.

LEMMA 2. Let D be a totally geodesic distribution D over a complete
Riemannian manifold M. Assume that D provides a local product struc-
ture in the sense of Theorem 2. Let Y be a unit normal vector to a
regular leaf L of D. Then the parallel displacement of Y along L is
independent of the path in L.

PROOF. For this special case, Lemma 2 turns out to be equivalent to
the fact H(L) = 1 for a regular leaf, where H(L) is the holonomy group of
L with respect to D. Let λ: [0, s] —> L be a closed simple path starting
and ending at x e L. Let Y(t) be the parallel displacement of Y along X(t).
Then it is easy to show that for sufficiently small ε > 0, Ex$meY(t)
stays in the same leaf for all te[O, s], because of compactness of the
image of λ and the product structure, where Έxpx is the exponential map
of M at x. Thus Exp^0)ε Y(0) and Expί(,,εY(s) belong to the same leaf.
Since L is regular, they must agree. q.e.d.

Note here that the choice of ε seems to depend on the path. How-
ever, we shall show in the following lemma that the choice of ε is in-
dependent of the path.

LEMMA 3. Let M be as in Lemma 2. Let L be a regular leaf.
Then there is an e such that all the leaves in the saturation of a Fro-
benius neighborhood of breadth ε at xeL are isometric to L.

PROOF. Let U = UΊ x U2 be a local product Frobenius neighborhood
of x such that the breadth of U is ε, U2 is a normal neighborhood of x
in the leaf of Df passing through x and finally each leaf of D meets a
slice of U at most once. Let U be a leaf in the saturation of U. Then
there is a unique unit normal Xx to L at x such that Exp,. δXx belongs
to V for some <? > 0. Denote by Xy the parallel displacement of Xx to
y. By Lemma 2, Xy is well defined. We shall sketch that the mapping
y ι-> Exptf δXy gives rise to the desired isometry between L and L'. Let
λ: [0, a] —• L be a minimal geodesic such that λ(0) = x and λ(s) = y. Let
Y{s) be the parallel displacement of λ(0) along Exp^sX^. Now define
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a geodesic variation V: [0, a] x [0, e] by V(t, s) = Ex^ExVχ8XχtY(s). Since
the rectangle [0, a] x [0, ε] is compact, we can find a grid consisting of
parallel lines to the sides of the rectangle in such a way that the image
of each subrectangle of the grid is mapped by V into a local product
Frobenius neighborhood. Using the similar process to the diagram chasing
argument on the sides of the subrectangles, one can show that the vector
field V*(d/ds) is parallel along any s-curves. Thus one can concludes
that each s-curve is actually the curve of the form Ex^ut)sXMt) for some
fixed t. Therefore, Έxiput)δXλ{t) = V(t, δ) = ExvExΏχδXχtY(δ) is in L', since U
is totally geodesic. Thus Ex^yδXy e 1/ for all y e I/. It is easy to show
that this mapping is one to one and onto. In order for the mapping to be
an isometry, it suffices to see the mapping is locally isometric. The detail
of this proof is left to the reader. q.e.d.

THEOREM 4. Let M be a connected complete Rίemannian manifold.
Let D be a regular totally geodesic distribution over M whose Dr is
integrable. Then M is the total space of a Riemannian fibre space
provided (1) M has non-negative sectional curvatures, or (2) M is locally
symmetric and the matrices K of Lemma 1 have non-negative traces.

PROOF. It is clear that a regular integrable distribution gives a
natural quotient space B and a natural projection π:M—+B. See [11]
for the details. Let U = ϋΊ x U2 be a Frobenius neighborhood as in
the proof of Lemma 3. Then define a mapping Exp: L x U2-+M as
follows: First since U2 is a normal neighborhood of x in the leaf of Dr

through x, we can identify any point u in Z72 with a unique vector Yx

in D'x via Exp^ restricted to D'x. Then the correspondence (y, u) ι->
Expy Yy gives us the desired mapping Exp, where Yy is the parallel
displacement of Yx to y. The fibration (M, π, B) has L as its typical
fibre. q.e.d.

2. Application of the Riccati type equation I. Estimate of the
index of relative nullity. Our next aim is to make use of the Riccati
equation to investigate complete totally geodesic distributions on CPN>
i.e., iV-dimensional complex protective space with constant holomorphic
sectional curvature c(>0). As usual we denote the homogeneous co-
ordinates of CPN by (Zθ9 * ,ZN), where Z, = α?< + iyi9 0 ^ i ^ N. We
start this section by determining all the possible complete totally geodesic
submanifolds of CPN.

LEMMA 4. Let CPN be as above. A complete totally geodesic sub-
manifold M of CPN is either a complex protective subspace or a real
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projective subspace described as follows: If M is a complex submanifold
of dimension μ, then M is given by the natural imbedding of Cμ+1 into
CN+1 via a proper choice of homogeneous coordinates, i.e., (z0, •• ,zΛ)ι-»
(z0, , zμf 0, , 0) in CN+1. If M is a real projective space of real
dimension μ, by taking real and complex homogeneous coordinates properly
in M and CPN, respectively, the imbedding of M into CPN is given as
follows. Let (x0, , xμ) and (zQ, , zN) be the homogeneous coordinates
of M and CPN, respectively. Our imbedding is given by the natural
imbedding of Rμ+1 into CN+1, i.e., (xQ, •• ,%μ)ι-* (x0, , %μ, 0, , 0). In
this case, M has c/4 as its constant sectional curvature.

PROOF. Let V be the standard connection of CPN and let V be the
induced connection of M. If R and R are the curvature tensors of CPN

and M, respectively, we have R(X, Y)Z = c/4[(lΛ Y)Z + (JX A JY)Z +
2g(X, JY)JZ], where (X A Y)Z = g(Y, Z)X - g(X, Z) Y and J is the com-
plex structure of CPN. On the other hand, R(Xf Y)Z = [Px, VY\Z -
Vix,γ,Z= FX(FYZ + a{Y, Z)) - Vγ{VxZ+a{X, Z)) - (FίZtTλZ+ a([X, Y], Z)) =
FX{VYZ) - VY{VXZ) - rUtTlZ = VXVYZ - VYVXZ - Γ[x,nZ = R(X, Y)Z. In
particular, let X, Y, Z be orthonormal tangent vectors to M. Then by
a simple computation one can easily verify that (XA Y)Z+(JXΛJY)Z+
2g(X, JY)JZ = R(X, Y)Z is tangential to M if and only if either TM is
J-invariant or J(TM) is orthogonal to TM. In the former case, M is a
complex projective space; for the detail, see [8]. In the latter case, we can
actually construct a real projective space having a point in common with
M and being tangent to M at the point. Furthermore, such a real pro-
jective space is imbedded in CPN as described in Lemma 4. Since such
a real projective space is totally geodesic, it must be M itself. q.e.d.

THEOREM 5. Let D be a complete totally geodesic distribution of
dimentίon μ defined in an open subset G of CPN. If there is a point x
in G where Dx is J-invariant, then μ^μ2N unless μ = 2N. Here μN will
be given below. Furthermore, if there is an A(y, X) such that A(y, X)
commutes with the complex structure J for some point y in the leaf
that contains x, then either μ = 0 or μ = 2N. We define μn in the
following way. Let r{k) be the largest integer such that the standard
fibration Vk,rUe) —» Vk>1 of Stiefel manifolds has a global cross-section,
where V8ίt denotes the set of all ordered t-frames in s-dimensional real
Euclidean space R*. For any integer n, set μn to be the largest integer
such that r(n — μn) Ξ> μn + 1. For example, μ1 = 0, μ2 — 0, μ% — 1, μA =
0, μδ = 1, μβ = 2, μ7 = 3, μ8 = 0, μ9 = 1, μ10 = 2 etc.

PROOF. Let X(t) be a unit speed geodesic in the leaf containing x
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such that λ(0) = x. In Lemma 1 we have shown that the matrix re-
presentation of A(X(t), X(t)) with respect to a parallel orthonormal frame
field satisfies the Riccati differential equation. Since the leaves are
totally geodesic and since J is parallel, we know that D is J-invariant
along the leaf containing x. Consider the last term of the equation in
Lemma 1, which is given by [KiS(t)]=g(R(\(t), Yi(ί))Γi(f), λ(ί)). As is
well known, the curvature of CPN is given by R(X, Y) = c/4[lΛ Y +
JX AJY + 2g(X,JY)J]. Using the fact that D is J-invariant along the
leaf, we easily see that [Kiά{t)\ = (c/4) I, where I is the (2N — μ) x
(2JV — μ) identity matrix. So our equation turns out to be

Next we shall show that the solution to (5) with the initial condition
[α*i(0)] which has a real eigenvalue φ must blow up at a finite value
of t. Passing to conjugation and complexification, if necessary, we can
assume without loss of generality that the initial condition [<%(())] has
the upper triangular form,

1 ψ . . . # \

i . e . , [α M (0>] = I * * .

, 0

Applying the uniqueness theorem of solutions to ordinary differential
equations which satisfy the Lipschitz's condition to our equation (5), we
conclude that the solution matrix to (5) with the given initial condition
has also the upper triangular form at every t, and that the (1,1)-
component of the solution is the solution to the scalar Riccati equation
β'(t) = β\t) + c/4 with the initial condition φ. A simple computation
yields that the solution β(t) is given by β(t) = V~c~/2 tan (VΊΓ/2t +
arctan 2φjV~c). Thus an(t) blows up when t = 2/V~c~(±(2n + l)π -
arctan 2φjV c ), where n = 0,1, 2, . Hence we have shown that A(x, )
cannot have any real eigenvalues. Now we shall prove the first half of
Theorem 2. We follow the Ferus' idea for this part. By virture of
Lemma 3, the leaf that contains x must be complex projective space of
complex dimension μj2. Suppose that μ Φ 2N. Let Xiy 1 ^ ί ^ μ, be an
orthonormal base for Dx. Define a mapping from D'x, i.e., the orthogonal
complement of Dx in TCPξ, into (JD^+S i.e., the set of all (μ + 1)-
tuples of vectors in Dx, by assigning (Y, A(x, Xu Y), •••, A(x, Xμ, Y)) to
each Y in D'x.

Then these μ + 1 vectors are linearly independent. For /30i
Γ +

(x, Xh Y) = 0 implies that A(x, Σ/Sί^ί, Y) = ~βoY by linearity
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of A(x,X) in X. Thus -β0 is a real eigenvalue of A(α?,Σ&-Xi) As
is shown above, this is impossible unless Σ #-Xi = O Since X{ are
linearly independent, we have β0 = β± — = βμ = 0. So the fibration
^-^,//+i —• V2N-μ,i has a cross-section defined by the above mapping.
Hence μ ^ μ2N by the definition of μ2N. In order to show the last half
of Theorem 5, we first make sure that D is J-invariant everywhere in
the leaf that contains x, and we can, therefore, assume without loss of
generality that there is an A(x, X) which commutes with J. Suppose
that 0 < μ < 2N. As is shown above, A(x, X) cannot have any real
eigenvalues. Now let a + βi be a complex eigenvalue of A(xf X). Since
JA(x, X) = A(x, X)J, we can find a vector Y in Dx such that A(x, X, Y) =
a Y+ βJY. Take the unit vector Z in Dx given by Z= (aX- βJX)jVa2+β\
By using linearity of A{x, X) and the fact that CPN is Kahlerian, we
have A(x, Z, Y) = Voc2 + β2Y. Thus A(x9 Z) has a real eigenvalue.
This is impossible, so only possible case is either μ = 0 or μ = 2i\Γ. In
the latter case, Dx = TCPN for all x in G. This completes the proof of
Theorem 5.

We shall now apply Theorem 5 to the relative nullity distribution
of submanifolds of CPN to get the result mentioned in the introduction.
Before going to the specific cases, we shall review some fundamental
notions and notations on submanifolds.

Let f:M-+M be an isometric immersion of a Riemannian manifold
M into a Riemannian manifold M. Let V be the Riemannian connection
of M, and let V be the induced connection of M. Then for any two
tangent vector fields X and Y to M, we have that a(X, Y) = VXY-
VXY. This a is called the second fundamental form of the submanifold
(M,f). According to Chern and Kuiper [3], the subspace RNX of TMX

defind by RNX = [Xe TMx:a(X, Y) = 0, for all Ye TMX] is called the
relative nullity space of (M,f) at x.

The dimension μ(x) of RNX is called the nullity of (M,f) at x. It
is well known that the subset G of M where μ(x) assumes the minimum,
say μ, is open in M, and μ is called the index of relative nullity of
(M,f). The distribution on G which assigns RNX to each x e G is called the
relative nullity distribution of (M,f). It is known that the distribution,
say RN, is totally geodesic, hence integrable. It has also been shown
that if M is complete and if the ambient space M is a space form, then
all the leaves of RN are complete as Riemannian manifolds [1].

COROLLARY 5. Let (M,f) be a Kahlerian submanifold of complex
n-dimension of CPN. If M is complete, then the index of relative
nullity is either 0 or 2n. In particular, if μ > 0, then M = CPn and
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M is imbedded in CPN canonically as described in Lemma 4.

PROOF. Our proof will be derived from Theorem 5, Lemma 4 and
the following propositions, which will also be used further to show
Lemma 6 in Section 3.

PROPOSITION 3. Let (M,f) be a Kdhlerian submanifold of a com-
plex space form M. Then RNX and RNX are J-invariant subspaces of
TMX, where J is the complex structure of M.

PROOF. For any XeRNx and for any Ye TMχy we have a(JX, Y) =
a(X, JY) = Ja(X, Y), since J commutes with a. Thus if X belongs to
RN., so does JX. If Y is in RN', we have g(X,JY) = g(JX,J2Y) =
— g(JX, Y) = 0, because JXeRNx. Thus RN and RN' are /-invariant.

q.e.d.

PROPOSITION 4. Let (M,f) be as above in Proposition 2. Then we
have a(X, A(x, Z)Y) = a(A(x, Z)X, Y) for all X, Ye RNf

x and ZeRNx.

PROOF. Let X, Y and Z be as in the statement of Proposition 3.
R(X, Y)Z = FXFYZ - FYFXZ - FίXtY,Z = FX(FYZ + a(Y, Z)) - FY(FXZ +
a(X, Z)) - F[XfYlZ - a([X, Y], Z) = VXVYZ - VYVXZ - FίXfY]Z = VXVYZ -
FYFxZ+a(X, FYZ)-a(Y, FxZ)-FίXfYlZ=R(X, Y)Z+a(X, FγZ)-a(Y, FXZ).
Since R(X, Y)Z = c/4((Jf Λ Y)Z + (JX A JY)Z + 2g(X, JY)JZ) is tangent
to M, the normal component a(X, FYZ) - a(Y, FXZ) = 0. This equality
together with the definition of A gives us the desired result. q.e.d.

P R O P O S I T I O N 5 . A(x, Z) is a complex linear map of RNr

x for all xeG
and all Ze RNX.

PROOF. Let J be the complex structure of M. As is seen in Pro-
position 3, RNX and RNX are J-invariant. So by Proposition 4 we get
a(X, A(x, Z)JY) = a(JY, A(x, Z)X) = Ja(Y, A(x, Z)X). On the other hand,
a(X9 JA(x, Z)Y) = Ja(X, A(x, Z)Y). So we have a(X, A(x, Z)JY) -
a{X, JA(x, Z)Y) = a(X, [A(x, Z)J - JA{x, Z)]Y) = 0. Now suppose that
JA(x, Z)-A{x, Z)JΦ 0. Then there exists Y' e RNX such that [JA(x, Z) -
A(x, Z)J] Y' Φ 0. However, [JA(x, Z) - A(x, Z)J] Y' belongs to RN'X, so
there must exist X' in RNl such that a{X\ [A(x, Z)J-JA(x, Z)\ Y') Φ 0.
This is a contradiction. Thus A and J commute. q.e.d.

Next we shall prove a somewhat more artificial result on the re-
lative nullity distribution. Let / be an isometric immersion of a
Riemannian manifold M of dimension n into CPN. Then the submanifold
(M,f) of CPN is called totally real if J{f*TM) is orthogonal to f*TM
in TCPN, where /* is the Jacobian map of /. For example, the imbeddings
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of real protective spaces in Lemma 4 are totally real imbeddings.
In this case, despite the facts that CPN is not a real space form

and that (M,f) is a real submanifold of CPN, we have

LEMMA 5. If (M,f) is a totally real submanifold of CPN, then the
relative nullity distribution of (M,f) is totally geodesic, and complete
provided M is complete.

PROOF. We shall omit the proof of differentiability of RN. Let R
and R be as before. Then for ZeTM and X and YeRN we have
R(X, Z)Y = R(X, Z)Y - a(Z, V XY) by a routine computation and by
using that X and Y are in RN. On the other hand, R{X, Z)Y =
c/mXΛZ)Y+(JXΛJZ)Y+2g(X, JZ)JY] implies that actually R(X, Z)Y=
c/A(X A Z)Y, because (Λf,/) is totally real. Therefore R(X, Z)Y is
tangential along M, hence a(Z, VXY) = 0. This implies FxYeRN, and
consequently, RN is totally geodesic. In order to show completeness of
the leaves, we have to appeal to a long argument. Since, keeping
R(X, Z)Y = c/4t(X A Z)Y in mind, it is possible to follow every step of
the relative nullity case in a real space form, we just refer to [1] for
the proof. See Theorem 1.8.1. q.e.d.

THEOREM 6. Let (M,f) be a totally real submanifold of CPN. If
the index of relative nullity satisfies the inequality μ > μny then μ —
n rg N, and M is the real protective space RPn of dimension n which
is canonically imbedded as a totally geodesic submanifold described in
Lemma 4.

PROOF. By virture of Lemma 4 the leaves of RN must be real
projective space of dimension μ, which are also totally geodesic in CPN.
Therefore it is clear that μ ^ N. Let Xi9 1 ^ i ^ μ, be an orthonormal
base for RNX at a point where μ(x) = μ. Define a mapping from RNX,
i.e., the orthogonal complement of RNX in TMX, into (RNx)

μ+1, i.e., the
set of all (μ+l)-tuples of vectors in RNX, by assigning (Y, A{x, Xu Y)f ,
A(x, Xμ, Y)) to each YeRNx. These μ + 1 vectors are linearly in-
dependent as observed in the proof of Theorem 5. So the fibration
Vn-μ,μ+1 —> Vn-μfl has a cross-section defined by the above mapping. Hence
μ <̂  μn by the definition of μn. Thus if μ > μn, the only possible case
is μ = n, and again by Lemma 4 M = RPn{cj4t), i.e., the real projective
space of constant sectional curvature c/4 and of dimension n. q.e.d.

3. Application of the Riccati type equation II. Cylinder theorems.

In this section we shall prove a cylinder theorem of Kahlerian sub-
manifolds of the complex Euclidean space of complex dimension N. This
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result will further extend to an intrinsic case under rather strong con-
ditions. For the sake of convenience, from now on our dimension means
the complex dimension unless otherwise specified.

THEOREM 7. Let (M, f) be a Kdhlerian submanifold of CN which has
μ (>0) as its index of relative nullity. Let M be complete. Then M is
cylindrical if there exists a point x in M where TMX contains an {n — μ)~
dimensional subspace in which the holomorphic sectional curvatures never
vanish. Here M is cylindrical means that there exists a μ-dimensional
Kdhlerian manifold Mx and an (n — μ)-dimensional Kdhlerian manifold
M2 such that there is a holomorphic isometry g: Mγ x M2 —• M whose
composition with /, i.e., f g, maps Mx x M2 into CN as follows: The
restriction of f g to M1 x {?/}, y e M29 maps M1 x {y} holomorphically and
isometrically onto a μ-dimensional plane which is parallel to each other
in CN, and its restriction to {y} x M2, y e M19 maps {y} x M2 into an (N— μ)-
plane orthogonal to the relative nullity plane in CN, and furthermore,
those images are all parallel in CN.

COROLLARY 6. Let (M,f) be a complete Kdhlerian submanifold of
CN. If the nullity is greater than or equal to n — 1, M is (n — 1)-
cylindrical.

From now on, let us assume that M is simply connected.

LEMMA 6. Let x be the point where TMX contains a μ-dimensional
subspace in which the holomorphic sectional curvatures never vanish.
Then there is a neighborhood N of x such that A(y, Z) = 0 for all y e N
and all Ze RNy.

PROOF. By Theorem 2.3.1. of [1], the leaves of the distribution are
complete. So any geodesic X(t) with λ(0) = x is extendable infinitely long
in the leaf containing x. Recalling that R(X, Y) = 0, for XeRN we
know from Lemma 1 that A(X(t), X(t)) satisfies the Riccati type equation
[̂ ii(̂ )] = [°tij(t)Y with respect to any orthonomal parallel frame field.
Now suppose that φ be a real eigenvalue of A(λ(0), λ(0)). By taking a
parallel orthonormal frame field Yi9 1 ^ i ^ 2n — μ, as described in the
proof of Theorem 5, and making use of uniqueness of solutions, one can
easily see that the (1, l)-component of [ai5{t)\ has the form an(t) =
φ/(l — φt). This cannot be a global smooth solution unless φ — 0.
Therefore we conclude that the all real eigenvalues of A(λ(0), λ(0)) must
be 0. But applying the same argument as in the proof of Theorem 5 to
the complex eigenvalues of A(λ(0), λ(0)), we actually see that all the
eigenvalues are 0. Thus A(λ(0), λ(0)) is nilpotent for all geodesies and
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for all points. Suppose that A(x, Z) Φ 0 for some unit vector Z in RNX.
Then there exist Y and X in RN'X such that A(x, Z, X) = 0 and
A{x, Z, Y) = X. This can be easily shown by considering the Jordan
canonical form of the nilpotent transformation A(x, Z). By Proposition
4, a(X, X) = a(X, A(x, Z, Y)) = a(A(x, Z, X), Y) = 0. So together with
the Gauss equation, we have g(R(X, JX)JX, X)=-g(a(X, JX), a{X,JX)) +
g(a(JX, JX), a(X, X)) = -2g(a(X, X), a(X, X)) = 0. Since g(R(X, JX)JX, X)
is a scalar multiple of the holomorphic sectional curvature of the plane
X A JX, it cannot be 0 by our assumption. This is a contradiction.
Therefore A(x, Z) = 0 for all ZeRNx. Finally if we consider the holo-
morphic sectional curvature as a continuous function from the quotient
bundle of TM whose typical fiber is (n — l)-dimensional complex project
space, it is clear that there is a neighborhood N of x such that any
point of N has a ^-dimensional subspace in its tangent space where the
holomorphic sectional curvatures never vanish. Applying the above
argument to the all points in JV, we have shown the desired result.

q.e.d.

LEMMA 7. The distribution RN and RNr restricted to N are parallel,
therefore we have a local Kdhlerian product structure of a neighborhood
of x.

PROOF. Obvious. q.e.d

LEMMA 8. Let M be the manifold described in Theorem 7, and let %
be the point given in Theorem 7. Then at any point y in M, there exists
a unique μ-dimensional subspace Py of the tangent space TMy such that
(8.1) f*{Py)'s are parallel to each other in CN if they are regarded as
μ-planes in CN, and (8.2) Py is contained in RNy for all y e M and in
particular, for yeG Py = RNy and f*(Py) is exactly f-image of the leaf
of RN passing through y.

In order to prove Lemma 8, we need the following proposition. For
the proof, see Proposition 2.3.2. in [1].

PROPOSITION 6. Let M be as in Lemma 8. RNy coincides with the
subspace Ny of TMy defined by Ny = [Xe TMy: R(X, Y) = 0, for all
Y e TMy\ for all y eM. Ny is called the nullity space of M at y.

PROOF OF LEMMA 8. Let G be the open set given by G = [x e M: μ{x) =
μ]. For y define Py to be the subspace of TMy which is the image space
of RNX = Px by the parallel translation along a minimal geodesic between
x and y. We shall show that these Py satisfy (8.1) and (8.2). Let
λ: [0, s] —> M be a unit speed minimal geodesic between x and y such that
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λ(0) = x and λ(s) = y. Note that λ is a real analytic mapping. Let Xx

be a vector in RNX, and let Yx, Zx and Wx be vectors in TNZ. Translate
them parallelly along λ, and denote the resulting vector fields by Xt, Yt,
Zt and Wt, respectively. Consider the real-valued function k{t) defined by
k(t) = g(R(Xt, Yt)Zt, Wt), 0 ^ t ^ s. It is easy to check that k is a real
analytic function.

By Lemma 7 and Proposition 6, Xt must stay in RNm in a neigh-
borhood of x. Therefore k(t) = 0 in [0, s] by real analyticity of k(t).
The definition of Ny and Proposition 6 tell us that Py is contained in Ny =
RNy. This proves the first half of (8.2). The last half follows from
the fact that the leaves are totally geodesic not only in M but also in CN.
In order to show (8.1), consider the composition of λ and /, say / λ = λ.
Since λ and / are real analytic, so is λ. Define Xt to be f*(Xt). Let
No be a vector at f(x) which is orthogonal to f*(Px). Translate it
parallelly to get a parallel vector field Nt along λ. Consider a new
function h(t) given by h(t) = g{Xu Nt).

^ Then dh(t)/dt = ttg(Xt, Nt) = g(FjtXty Nt) + g(Xt, FjtNt) = g(f(F'λtXt) +
a(\(t), Xt), Nt) = 0, because Xt is parallel along λ and Xt is in RNMt).
Here X(t) denotes the velocity vector of X(t). Since h(0) = 0, h(t) = O
By (8.2) and by the way Py is defined, we see that f*(Pχ{t)) is parallel
to each other along X(t). But the holonomy group of CN is trivial, so
we actually have that Pλit) is parallel to each other in CN. Since this
argument holds for all points, we have shown (8.1). q.e.d.

Now we can conclude our proof of Theorem 7. Define a ^-dimen-
sional distribution D on the whole M by assigning to each x the sub-
space Px of TMX. Let Dr be the orthogonal distribution of D. Then
it is easy to check that D and Df have the following properties:

(6) D and Όf are J-invariant and differentiate,
(7) D and Dr are parallel, in particular, they are integrable, and
(8) D and D' are orthogonal to each other, and the restriction of

D and D' to G coincide with RN and RN', respectively.
Applying the de Rham decomposition theorem for Kahlerian mani-

folds to these distributions, we have the global product structure stated
in Theorem 7. Finally if M is not simply connected, the well known
argument via its universal covering manifold will give us the desired
result. q.e.d.

As for Corollary 6, all we have to show is that either M is flat or
M has a point where the tangent space contains a 1-dimensional sub-
space whose holomorphic sectional curvature never vanishes. Suppose
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that M is not flat. Then there must exist a vector whose holomorphic
sectional curvature does not vanish. If M is flat, then by Proposition
6, M is totally geodesic. So M is an ^-complex plane of CN. Finally we
shall state another immediate result of Theorem 7.

COROLLARY 7. Let M be as in Theorem 7. If the dimension of
M — G is strictly less than the index μ, there does not exist any μ-
dimensional subspace in which the holomorphic sectional curvatures never
vanish.

PROOF. Because of the product structure the dimension of M — G
must be greater than or equal to μ. q.e.d.

Having obtained some extrinsic results, it would be quite natural
to ask whether or not the intrinsic analogue holds. The following is the
intrinsic version of Corollary 6.

THEOREM 8. Let M be a simply connected complete complex n-
dimensional Kdhlerian manifold with a real analytic Riemannian metric.
If the index of nullity is n — 1, then M is a Kdhlerian product of a
Riemann surface Mι and a flat Kdhlerian manifold M2 of dimension
n — 1.

PROOF. Assume that M is not flat. Then there is a point x in M
where TMX contains a vector whose holomorphic sectional curvature does
not vanish. First of all we shall show that there exists a neighborhood
V of x which has a Kahlerian product structure. To this end, as before
we have to show that all A(y9 X) vanish in V. We can actually assume
that there is a neighborhood ?7of x at each point of which there is a vector
whose holomorphic sectional curvature does not vanish. As is shown in
the proof of Lemma 6, all real eigenvalues of A(y, ) are 0 in M. Let
X and JX be an orthonormal base for Ny at y e U, where Ny is the
orthogonal complement of the nullity space Ny at y. Suppose that
A(y, Z, X) = aX + bJX. Then taking W = aZ - bJZ in Ny, we have
that A(y, W, X) = (a2 + b2)X. Thus α2 + b2 = 0 implies a = b = 0. Simi-
larly, we can show A(y, Z, JX) = 0. So A(y, Z) = 0 for all ye U and
for all ZeNy. Following the proof of Lemma 6, we have a local product
structure in V.

Now we shall extend the nullity distribution to the whole M.
Let x be a point which belongs to G given by G = [x e M: μ{x) =

n — 1]. For any point y in M define Py to be the parallel displacement
of Nx along a path between x and y. First of all we shall show that
definition of Py does not depend on the choice of the path. Let a and
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β be two paths between x and y. Suppose that the parallel displace-
ments of Nx along a and β do not coincide at y. Then the parallel
displacement of Nx along the loop β~ιa at x would not be Nx. On the
other hand, it has been known that for a real analytic connection in a
real analytic manifold, the restricted holonomy group, the local holo-
nomy group and the infinitesimal holonomy group all agree. For the
proof, see Proposition 10.5 and Theorem 10.8 in [8]. Because of the
local product structure around x, we see that Nx is invariant by the
local holonomy group, therefore by the restricted holonomy group. This
presents a contradiction. Thus the parallel displacements of Nx along
a and β coincide at y. This tells us that Py is independent of the path.
Define a new distribution D on M by assigning to each y the subspace
Py of TMy. Then it is easy to show that D is real analytic and J-
invariant. Since it follows from the definition of D that D is a parallel
distribution, our global Kahlerian product structure is a simple result
of the de Rham decomposition theorem with respect to the distribu-
tion D. q.e.d.
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