ON PSEUDO-PRIME ENTIRE FUNCTIONS

Fred Gross and Chung-Chun Yang

(Received October 11, 1972)

1. Introduction. Let $F(z)$ be an entire function. Then F is said to be pseudo-prime (E-pseudo prime) if and only if every factorization of the form $f(g)(z)=F(z)$ with f meromorphic (entire), g entire implies that either f is rational (polynomial) or g is a polynomial. The following three theorems were proved recently.

Theorem A. (Ozawa [8]) If F is an entire function of finite order with a finite Picard exceptional value, then F is E-pseudo prime.

The above result has been generalized as follows:
Theorem B. (Goldstein [3]) Let $F(z)$ be an entire function of finite order such that $\delta\left(a, F^{\prime}\right)=1$ for some $a \neq \infty$, where $\delta(a, F)$ denotes the Nevanlinna deficiency. Then F is E-pseudo prime.

It was pointed out [3] that F must be of finite order, as is shown by the example $F=e^{e^{z}}, f(z)=g(z)=e^{z}$, where $\delta(0, F)=1$ and $F=f(g)$.

However, for functions of infinite order, the following result is known.
Theorem C. (Ozawa [8]) Let $L(z)$ be a transcendental entire function of order less than one and $p(z)$ a polynomial. Then the functional equation $f(g(z))=L(z) \exp \left(p(z) e^{z}\right)$ has no pair of transcendental entire solutions f and g of finite order.

In this paper we have improved these results and in particular we have extended Theorems B and C and some other results of Ozawa's (see e.g. [9]) to larger classes of entire functions. We shall prove the following results:

Theorem 1. Let $F(z)$ be an entire function of finite order ρ with $\delta(a, F)=1$ for some $a \neq \infty$. (We note that $\rho>0$ [11]). Let $H(z)$ be an entire function of order less than ρ and let $p(z)$ be a non-constant polynomial. Then $H(z) p(F(z))$ is E-pseudo prime.

Theorem 2. Let $L(z)$ be a transcendental entire function of order less than k (k an integer >0) having at least one zero and let $H(z)$ be an entire function ($\equiv \equiv 0$) of order less than k. If $S(z)$ is any entire function of order less than k which is not a polynomial of degree k, then
$F(z)=L(z) \exp \left(H(z) e^{z k}+S(z)\right)$ is pseudo-prime.
Theorem 3. Let L, H and $S(z)$ be three transcendental entire functions of order less than one. Then $L(z) \exp \left(H(z) e^{z}+S(z)\right)$ is prime if L can not be expressed in the form $L(z)=[K(z)]^{m}$ for some entire function $K(z)$ and some integer $m \geqq 2$.
2. Preliminaries. It is assumed throughout the paper that the reader is familiar with the fundamental concept of Nevanlinna's theory of meromorphic functions and its standard symbols such as $T(r, f), N(r, f)$ etc.

Lemma 1. (Picard-Borel Theorem [7, p. 262]) For a non-constant meromorphic function f there are at most two values of a for which the counting function $N(r, a)$ [or $n(r, a)]$ is of lower order (class, type) than the characteristic $T(r, f)$.

Lemma 2. Let f be a transcedental meromorphic function and $a_{i}(z)$ ($i=1,2 \cdots, n$) be meromorphic functions satisfying

$$
T\left(r, a_{i}(z)\right)=o\{T(r, f)\}
$$

as $r \rightarrow \infty$ for $i=1,2, \cdots, n$.
Assume that

$$
f^{n}(z)+a_{1}(z) f^{n-1}(z)+a_{2}(z) f^{n-2}(z)+\cdots+a_{n}(z)=g(z)
$$

and that

$$
N(r, f)+N\left(r, \frac{1}{g}\right)=o\{T(r, f)\}
$$

as $r \rightarrow \infty$ outside a set of r values of finite measure. Then

$$
g(z)=\left(f+\frac{a_{1}(z)}{n}\right)^{n}
$$

Remark. This is a special case of the Tumura-Clunie theorem (see [6, pp. 68-73]).

Lemma 3 [6, p. 47]. If f is a transcendental meromorphic function and $a_{1}(z), a_{2}(z), a_{3}(z)$ are distinct meromorphic functions satisfying for $i=1,2$ and 3

$$
T\left(r, a_{i}(z)\right)=o\{T(r, f)\}, \quad \text { as } \quad r \longrightarrow \infty
$$

then

$$
\{1+o(1)\} T(r, f) \leqq \sum_{i=1}^{3} N\left(r, \frac{1}{f-a_{i}(z)}\right)+o\{T(r, f)\}
$$

as $r \rightarrow \infty$ outside a set of r values of finite measure.
Lemma 4 [4]. Let p be a non-constant polynomial of degree m and h, k be two entire functions of order less than m with $h \not \equiv 0, k \not \equiv$ constant. If $h e^{p}+k$ has a factorization $h e^{p}+k=f(g)$ with f and g nonlinear and entire, then f is transcendental and g is a polynomial of degree no greater than m.
3.1. Proof of Theorem 1. (This argument is a sight modification of Goldstein's proof of Theorem 3. We include this modification for the readers convenience.) For an entire function F of finite order with $\delta(a, F)=1$ Edrei and Fuchs [2, pp. 281-283] proved that there is a connected path consisting of circular arcs and line segments which may be written as $\Gamma=l_{1} \cup \gamma_{2} \cup l_{2} \cup \gamma_{3} \cup \cdots$ where $\left\{\gamma_{j}\right\}$ are arcs on $|z|=r_{j}$, $\left(r_{j} \rightarrow \infty\right)$ each of angular measure not less than $2 \pi / 3 \rho$ (ρ, a fixed integer depending on the order of the function F), and $\left\{l_{j}\right\}$ are segments which join the points $r_{j} e^{i \theta_{j}}$ of γ_{j} and $r_{j+1} e^{i \theta_{j+1}}$ of $\gamma_{j+1} ; j=1,2 \cdots$ and such that for $z \in \Gamma$ the following estimate holds:

$$
\begin{equation*}
\log |F(z)| \leqq \frac{-\pi}{16} T(r, F) \quad\left(|z|=r>r_{0}\right) \tag{1}
\end{equation*}
$$

In the proof of Theorem B, Goldstein proved that if (1) holds for such a path Γ for an entire function of finite order F then F is pseudo-prime.

Now we show that the inequality (1) holds for $p(F)$ with $-\pi / 16$ replaced by a different constant. In fact, if we suppose (without loss of generality) $p(0)=0, p(z)=c_{0} z^{m}+c_{1} z^{m-1}+\cdots+\cdots$, with $c_{0} \neq 0$, then (1) becomes

$$
\begin{align*}
\log |p(F(z))| & \leqq\left\{\frac{-\pi m}{16}+o(1)\right\} T(r, F) \tag{2}\\
& \leqq\left\{\frac{-\pi m}{16 m}+o(1)\right\} T(r, p(F))
\end{align*}
$$

for $z \in \Gamma$ with $|z|>r_{0}$.
Now by the assumption that the order of $H(z)$ is less than the order of F, we have, in fact, that the order of H is less than the lower order of F, since $\delta(a, F)=1$, implies that the order and lower order of F are the same, see e.g. [6, p. 105]. It follows that the logarithm of the maximal modulus of H grows much slower than $T(r, F)$. More precisely,

$$
\frac{\log M(r, H)}{T(r, F)} \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
$$

Thus, it is clear that (1) is satisfied when F is replaced by $H(z) p\left(F^{\prime}\right)$ provided that at the same time the quantity $-\pi / 16$ is replaced by $-\pi / 16+\varepsilon$
for some small number $\varepsilon>0$. The remainder of the proof will be exactly the same as in the proof of Theorem B. Theorem 1 is thus proved.
3.2. Proof of Theorem 2. First we prove that F is E-pseudo prime. Suppose that there exist two transcendental entire functions f and g such that

$$
\begin{equation*}
f(g(z))=F(z)=L(z) \exp \left(H(z) e^{z^{k}}+S(z)\right) \tag{3}
\end{equation*}
$$

We shall deal with the two cases (i) $\rho(g) \geqq k$ and (ii) $\rho(g)<k$ separately.
In case (i), from the hypotheses that $\rho(L)<k$ and that L has at least one zero we conclude by virtue of Lemma 1 that f has one and only one zero, say a, of multiplicity $n(n \geqq 1)$. Thus we can express f as

$$
\begin{equation*}
f(z)=(z-a)^{n} e^{\alpha(z)} \tag{4}
\end{equation*}
$$

where α is an entire function.
From (3) and (4) we have

$$
L(z)=(g-a)^{n} e^{\alpha(g)-H(z) e^{z}-S(z)}
$$

Hence,

$$
\begin{equation*}
L(z)=(g-a)^{n} e^{\beta(z)} \tag{5}
\end{equation*}
$$

where $\beta(z)$ is an entire function, and

$$
\begin{equation*}
\alpha(g)-\beta(z)=H(z) e^{z k}+S(z) \tag{6}
\end{equation*}
$$

In view of (5) one can conclude readily that β must be an entire function of zero order. For otherwise g would be of infinite order and composed with f would grow much faster than F, a contradiction. Hence, applying Lemma 4 we see that identity (6) cannot hold unless α is a polynomial and the order of g is equal to k. It follows from (5) that β is a polynomial of degree k, therefore $\beta(z)+S(z) \not \equiv 0$, and hence α must be linear by Lemma 2. We rewrite equation (6) as

$$
\begin{equation*}
\alpha(g)=H(z) e^{z k}+S(z)+\beta(z) \tag{7}
\end{equation*}
$$

We note that $S(z)+\beta(z)$ is an entire function of order less than k and is never equal to a constant. Now since α is linear, set $\alpha(z)=b z+c$. Then by applying Lemma 3 with $f(z)=b g(z)+c, a_{1}(z) \equiv a b+c, a_{2}(z) \equiv$ $S(z)+\beta(z)+c$, and $a_{3} \equiv \infty$, we would have for $r \rightarrow \infty$ outside a set of finite measure,

$$
\begin{align*}
T(r, b g(z)+c) \leqq & N\left(r, \frac{1}{\alpha(g)-a_{1}(z)}\right)+N\left(r, \frac{1}{\alpha(g)-a_{2}(z)}\right) \\
& +N(r, \alpha(g))+o\{T(r, \alpha(g))\} \\
= & o\{T(r, \alpha(g))\}
\end{align*}
$$

This of course is impossible.
In case (ii), by using a result of Edrei and Fuchs [1] we conclude first that the exponent of convergence of the zeros of f is zero. Thus f can be expressed as

$$
f(z)=\pi(z) e^{\alpha_{1}(z)}
$$

where $\alpha_{1}(z), \pi(z)$ are entire functions and the order of $\pi(z)$ is zero.
From this we have

$$
\begin{align*}
f(g(z)) & =\pi(g(z)) e^{\alpha_{1}(g(z))} \tag{10}\\
& =L(z) \exp \left(H(z) e^{z k}+S(z)\right) .
\end{align*}
$$

Hence,

$$
\begin{equation*}
L(z)=\pi(g(z)) e^{\rho_{1}(z)} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{1}(g(z))=\beta_{1}(z)+H(z) e^{e^{k}}+S(z), \tag{12}
\end{equation*}
$$

where $\beta_{1}(z)$ is an entire function.
Since $\rho(g)<k$ and $\rho(\pi)=0$, one can conclude from (11) by an application of a result of Polya [12, Theorem 2, pp. 12-13] that the order of β_{1} is less than k. For otherwise the order of $L(z)$ would be infinite, which contradicts the hypothesis that L is of finite order. Furthermore since $\rho(g)<k$ it follows from (12) that α_{1} cannot be a polynomial. But then $H(z) e^{e^{k}}+\beta_{1}(z)+S(z)$ has a factorization $\alpha_{1}(g)$ with both α_{1} and g being transcendental entire. This is impossible again according to Lemma 4 unless $\beta_{1}(z)+S(z)$ is a constant. But then one can apply Theorem B to conclude that (12) is impossible to hold. Thus anyway we have proved that F is E-pseudo prime. Now we show F is pseudo-prime. Suppose there exist f meromorphic and g entire such that $F=f(g)$. We shall show that if g is transcendental then f has to be a rational function.

We shall only consider the case when f has exactly one pole with multiplicity n, say ($n \geqq 1$). Hence we can express f as

$$
\begin{equation*}
f(w)=\frac{h(w)}{(w-a)^{n}} \tag{13}
\end{equation*}
$$

and hence

$$
\begin{equation*}
g(z)=e^{\alpha(z)}+a \tag{14}
\end{equation*}
$$

where h and α are entire functions.
Thus

$$
\begin{equation*}
f(g)(z)=\frac{h_{1}\left(e^{\alpha(z)}\right)}{e^{n \alpha(z)}}=h_{2}(\alpha(z)) \tag{15}
\end{equation*}
$$

where $h_{1}(w)=h(w+a), h_{2}(w)=h_{1}\left(e^{w}\right) e^{-n w}$.
We have already proved that F must be E-pseudo-prime and we conclude that either (a) $\alpha(z)=Q(z)$ a polynomial or (b) the left factor $h_{2}(w)$ is non-constant polynomial.

If case (a) holds, then we have

$$
\begin{align*}
h_{1}\left(e^{Q(z)}\right) & =f(g)(z) \cdot e^{n Q} \tag{16}\\
& =L(z) e^{H z} z+S+n Q
\end{align*}
$$

It follows that either $e^{Q(z)}$ reduces to a polynomial or h is a polynomial. The former case is impossible, hence we conclude that h_{1} is a polynomial. But then the left side of (16) is of finite order and right side of infinite order, a contradiction. Thus case (a) is ruled out. In case (b) we have

$$
\begin{equation*}
h_{2}(w)=\frac{h_{1}\left(e^{w}\right)}{e^{n w}} . \tag{17}
\end{equation*}
$$

Clearly, the above expression can be a polynomial if and only if $h_{1}\left(e^{w}\right)=c_{1} e^{n w}$, i.e., $h_{1}(w)=c_{1} w^{n}$ a monomial, where c_{1} is a non-zero constant. Then $h_{2}(w)$ reduces to a constant, a contradiction. Thus, we conclude that f cannot have a pole. Thus F does not possess any non-entire left factor and we have proved that F is pseudo-prime.
3.3. Proof of Theorem 3. Set $F(z)=L(z) \exp \left(H(z) e^{z}+S(z)\right)$. Then according to Theorem 2, the only possible non-trivial factorization of $F(z)$ is either of the form (i) $F(z)=p(f(z)$) or of the form (ii) $F(z)=f(p(z))$ for some non-linear polynomial $p(z)$ and transcendental entire function $f(z)$ (which must be of infinite order). Again according to the Picard -Borel Theorem in case (i) p must assume the form $p(z)=c(z-a)^{n}$ for some constants $c \neq 0, a$, and integer $n \geqq 2$. But then $L(z)$ would have the form $L(z)=[K(z)]^{m}$ for some integer $m \geqq 2$ and some entire function $K(z)$, contradicting the hypothesis. In case (ii), set $f(z)=\Pi(z) e^{\alpha(z)}$ with $\Pi(z)$ being the canonical product formed with the zero of f. Clearly, the exponent of convergence of $\Pi(z)$ is less than $1 / d$ (d is the degree of $p(z))$ and hence the order of $\Pi(z)$ is less than one. Therefore, from $f(p(z))=$ $L(z) \exp \left(H(z) e^{z}+S(z)\right)$ we have

$$
\begin{equation*}
\alpha(p(z))=H(z) e^{z}+S(z)+c_{0} \tag{18}
\end{equation*}
$$

where c_{0} is a constant. But according to a result of Goldstein [4, Corollary of Theorem 6, p. 503] $H(z) e^{z}+S(z)+c_{0}$ is a prime function, thus case (ii) is also ruled out. This completes the proof of the theorem.
4. Final Remark. In Theorem 2, the condition that L must have at least one zero cannot be removed from the statement. A counter example is given by $k=2, H=\sin z, L=e^{z}$. Then $F=L(z) \exp \left(H(z) e^{z k}\right)=$ $e^{z} \exp \left(\sin z e^{z^{2}}\right)$ has a factorization $f(g)$ where $g(z)=z+(\sin z) e^{z^{2}}, f(z)=e^{z}$.

References

[1] A. Edrei and W. H. J. Fuchs, On the zeros of $f(g(z))$ where f and g are entire functions, J. Analyse Math., 12 (1964), 243-255.
[2] A. Edrei and W. H. J. Fuchs, Valeurs deficientes et valeurs asymptotiques des fonctions meromorphes, Comment Math. Helv., 33 (1957), f. 4.
[3] R. Goldstein, On factorization of certain entire functions, J. London Math. Soc. (2), 2 (1970), 221-224.
[4] R. Goldstein, On factorization of certain entire functions, Proc. London Math. Soc. (3), 22 (1971), 483-506.
[5] F. Gross and C-C. Yang, The fix-points and factorization of meromorphic functions, Trans. Amer. Math. Soc., 168 (1972), 211-220.
[6] W. K. Hayman, Meromorphic Functions, Oxford 1964.
[7] R. Nevanlinna, Analytic Functions, Springer-Verlag, New York, 1970.
[8] M. Ozawa, On the solution of the functional equation $f \circ g(z)=F(z), \mathrm{I}$, Kodai Math. Sem. Rep., 20 (1968), 159-162.
[9] M. Ozawa, On the solution of the functional equation $f \circ g(z)=F(z)$, II, Kōdai Math. Sem. Rep. 20 (1968), 163-169.
[10] M. Ozawa, On prime entire functions, Kōdai Math. Sem. Rep., 22 (1970), 301-308.
[11] A. Pfluger, Zur Defektrelation ganzer Funktionen endlicher Ordnung, Comment. Math. Helv., 19 (1946), 91-104.
[12] G. Polya, On an integral function of an integral function, J. London Math. Soc. I, (1926), 12-15.

Mathematics Research Center
Naval Research Laboratory, Washington, D. C., 20375
and
University of Maryland, Baltimore County, Maryland, U.S.A.,
Mathematics Research Center
Naval Research Laboratory, Washington, D. C., 20375, U.S.A.

