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1. Introduction. Let F(z) be an entire function. Then F is said to
be pseudo-prime (E'-pseudo prime) if and only if every factorization of the
form f(g)(z) = F(z) with / meromorphic (entire), g entire implies that either
/ is rational (polynomial) or g is a polynomial. The following three
theorems were proved recently.

THEOREM A. (Ozawa [8]) If F is an entire function of finite order
with a finite Picard exceptional value, then F is E-pseudo prime.

The above result has been generalized as follows:

THEOREM B. (Goldstein [3]) Let F(z) be an entire function of finite
order such that δ(a, F) = 1 for some a Φ oo, where δ(a, F) denotes the
Nevanlinna deficiency. Then F is E-pseudo prime.

It was pointed out [3] that F must be of finite order, as is shown
by the example F = ee\ f(z) = g(z) = e% where <5(0, F) = 1 and F = f(g).

However, for functions of infinite order, the following result is known.

THEOREM C. (Ozawa [8]) Let L(z) be a transcendental entire function
of order less than one and p(z) a polynomial. Then the functional equation
f(θiz)) — L(z) exp (p(z)ez) has no pair of transcendental entire solutions f
and g of finite order.

In this paper we have improved these results and in particular we
have extended Theorems B and C and some other results of Ozawa's (see
e.g. [9]) to larger classes of entire functions. We shall prove the following
results:

THEOREM 1. Let F(z) be an entire function of finite order p with
<5(α, F) = 1 for some a Φ OO. (We note that p > 0 [11]). Let H(z) be an
entire function of order less than p and let p(z) be a non-constant poly-
nomial. Then H(z)p{F(z)) is E-pseudo prime.

THEOREM 2. Let L(z) be a transcendental entire function of order
less than k (k an integer > 0) having at least one zero and let H(z) be
an entire function (^ 0) of order less than k. If S(z) is any entire
function of order less than k which is not a polynomial of degree k, then
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F(z) = L(z) exp (H(z)ezk + S(z)) is pseudo-prime.

THEOREM 3. Let L, H and S(z) be three transcendental entire functions
of order less than one. Then L(z) exp (H(z)ez + S(z)) is prime if L can
not be expressed in the form L(z) = [K(z)]m for some entire function
K(z) and some integer m ^ 2.

2. Preliminaries. It is assumed throughout the paper that the reader
is familiar with the fundamental concept of Nevanlinna's theory of mero-
morphic functions and its standard symbols such as T(r, f), N(r, f) etc.

LEMMA 1. (Picard-Borel Theorem [7, p. 262]) For a non-constant
meromorphic function f there are at most two values of a for which the
counting function N(r, a) [or n(r, a)] is of lower order {class, type) than
the characteristic T(r, f).

LEMMA 2. Let f be a transcedental meromorphic function and a{(z)
(i — 1, 2 , n) be meromorphic functions satisfying

T(r, tφ)) = o{T(r, /)}

α g r __* oo for i = 1,2, , n.

Assume that

f*(z) + ate)f%-\*) + a2(z)fn~2(z) + ••• + an(z) = g(z)

and that

N(r,f) + N{r,^j = o{T(r,f)}

a s r __» oo outside a set of r values of finite measure. Then

g(z) = (f + A / A V "
n /

REMARK. This is a special case of the Tumura-Clunie theorem (see
[6, pp. 68-73]).

LEMMA 3 [6, p. 47]. If f is a transcendental meromorphic function
and a^z), <h{z)9 <h(%) are distinct meromorphic functions satisfying for
i = 1, 2 and 3

T(r, a^z)) = o{T(r, /)}, as r

then

£ Σ Mr, * ) + o{T(r,
ΐ=i V / - ate) J
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a s r __• oo outside a set of r values of finite measure.

LEMMA 4 [4]. Let p be a non-constant polynomial of degree m and
h, k be two entire functions of order less than m with h ^ 0, k φ. constant.
If hep + k has a factorization hep + k = f(g) with f and g nonlinear and
entire, then f is transcendental and g is a polynomial of degree no greater
than m.

3.1. Proof of Theorem 1. (This argument is a sight modification
of Goldstein's proof of Theorem 3. We include this modification for the
readers convenience.) For an entire function F of finite order with
δ(a, F) = 1 Edrei and Fuchs [2, pp. 281-283] proved that there is a con-
nected path consisting of circular arcs and line segments which may
be written as Γ = ίx U 72 U h U τ 3 U where {7;} are arcs on \z\ = rj9

(rj—* oo) each of angular measure not less than 2π/Zp (p, a fixed integer
depending on the order of the function F), and {lj} are segments which
join the points rse

i9i of τ, and rj+1e
iθ>+1 of Ύj+1; j = 1, 2 and such that

for zeΓ the following estimate holds:

(1) log I TO I t^-^T(r, F) (|*| = r > r0) .
l b

In the proof of Theorem B, Goldstein proved that if (1) holds for such a
path Γ for an entire function of finite order F then F is pseudo-prime.

Now we show that the inequality (1) holds for p(F) with — π/16 replaced
by a different constant. In fact, if we suppose (without loss of generality)
p(0) = 0, p(z) = coz

m + cxz
m~ι +••• + •••, with c0 φ 0, then (1) becomes

( 2 ) log Ip(F(z)) I 5S { ^ ^ + o ( l ) | r ( r , F)

— πm
16 m

T(r, p(F)) ,

for zeΓ with \z\ > r0.
Now by the assumption that the order of H(z) is less than the order

of Fy we have, in fact, that the order of H is less than the lower order of
F, since δ(a, F) = 1, implies that the order and lower order of F are
the same, see e.g. [6, p. 105]. It follows that the logarithm of the maximal
modulus of H grows much slower than T(r, F). More precisely,

T(r, F)

Thus, it is clear that (1) is satisfied when F is replaced by H(z)p(F)

provided that at the same time the quantity — π/16 is replaced by — π/16 + ε
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for some small number ε > 0. The remainder of the proof will be exactly
the same as in the proof of Theorem B. Theorem 1 is thus proved.

3.2. Proof of Theorem 2. First we prove that F is ^-pseudo prime.
Suppose that there exist two transcendental entire functions / and g such
that

(3) f(g(z)) = F(z) = L(z) exp (H(z)e*k + S(z)) .

We shall deal with the two cases (i) p(g) ^ k and (ii) p(g) < k separately.
In case (i), from the hypotheses that p(L) < k and that L has at least

one zero we conclude by virtue of Lemma 1 that / has one and only one
zero, say α, of multiplicity n (n ^ 1). Thus we can express / as

(4) /(*) = (s - a ) V "

where a is an entire function.
From (3) and (4) we have

L(z) = (g - a)nea^'Hiz)ezk-Siz) .
Hence,

(5) L(z) = (g - a)V(β>

where β(z) is an entire function, and

(6) a(g) - β(z) = H(z)e*k + S(z) .

In view of (5) one can conclude readily that β must be an entire function
of zero order. For otherwise g would be of infinite order and composed
with / would grow much faster than F, a contradiction. Hence, applying
Lemma 4 we see that identity (6) cannot hold unless a is a polynomial
and the order of g is equal to k. It follows from (5) that β is a polynomial
of degree k, therefore β(z) + S(z) & 0, and hence a must be linear by
Lemma 2. We rewrite equation (6) as

(7) a(g) = H(z)e?k + S(z) + β(z) .

We note that S(z) + β(z) is an entire function of order less than k
and is never equal to a constant. Now since a is linear, set a(z) = bz + c.
Then by applying Lemma 3 with f(z) = bg(z) + c, a,(z) = ab + c, a2(z) =
S(z) + β(z) + c, and α3 = co, we would have for r —» oo outside a set of
finite measure,

( 8 ) T(r, bg(z) + c) ^
a(g)-a1(z)/ V a(g) - a2(z)

+ N(r, a{g)) + o{T(r,

= o{T(r,
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This of course is impossible.
In case (ii), by using a result of Edrei and Fuchs [1] we conclude

first that the exponent of convergence of the zeros of / is zero. Thus /
can be expressed as

( 9) f(z) = π(z)ea^

where aL(z)f π(z) are entire functions and the order of π(z) is zero.
From this we have

(10) f(g(z)) = π(g(z))e«^»

= L(z) exp (H(z)e*k + S(z)) .

Hence,

(11) L(z) = π{g(z))e^z)

and

(12) aMz)) = A(s) + H{z)e*k + S(z) ,

where βγ{z) is an entire function.
Since p(g) < k and p(π) = 0, one can conclude from (11) by an ap-

plication of a result of Polya [12, Theorem 2, pp. 12-13] that the order
of /3i is less than k. For otherwise the order of L(z) would be infinite,
which contradicts the hypothesis that L is of finite order. Furthermore
since p(g) <kit follows from (12) that aγ cannot be a polynomial. But then
H(z)ezk + βiiz) + S(z) has a factorization aλ(g) with both ax and g being
transcendental entire. This is impossible again according to Lemma 4
unless β,(z) + S(z) is a constant. But then one can apply Theorem B to
conclude that (12) is impossible to hold. Thus anyway we have proved that
F is 17-pseudo prime. Now we show F is pseudo-prime. Suppose there
exist / meromorphic and g entire such that F = f(g). We shall show
that if g is transcendental then / has to be a rational function.

We shall only consider the case when / has exactly one pole with
multiplicity n, say (n ^ 1). Hence we can express / as

(w — ά)n

and hence

(14) g(z) = ea{z) + a

where h and a are entire functions.
Thus
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(15) f(g)(z) = -MgP- = h£a{z))

where h^w) = h(w + α), h2(w) = h^e^e"^.
We have already proved that F must be lί-pseudo-prime and we

conclude that either (a) a{z) = Q(z) z, polynomial or (b) the left factor
h2(w) is non-constant polynomial.

If case (a) holds, then we have

(16) hl{e>M) = f(g)(z).e«

= L(z)eHzk + S+nQ.

It follows that either eQ{z) reduces to a polynomial or h is a polynomial.
The former case is impossible, hence we conclude that hγ is a polynomial.
But then the left side of (16) is of finite order and right side of infinite
order, a contradiction. Thus case (a) is ruled out. In case (h) we have

Clearly, the above expression can be a polynomial if and only if
Λi(ew) = c^™, i.e., h^w) = CJJD* a monomial, where cλ is a non-zero constant.
Then h2(w) reduces to a constant, a contradiction. Thus, we conclude
that / cannot have a pole. Thus F does not possess any non-entire left
factor and we have proved that F is pseudo-prime.

3.3. Proof of Theorem 3. Set F(z) = L(z) exp (H(z)ez + S(z)). Then
according to Theorem 2, the only possible non-trivial factorization of F(z)
is either of the form (i) F(z) = p(f(z)) or of the form (ii) F(z) = /(p(z))
for some non-linear polynomial p(z) and transcendental entire function
f(z) (which must be of infinite order). Again according to the Picard
-Borel Theorem in case (i) p must assume the form p(z) = c(z — a)n for
some constants c Φ 0, α, and integer n ^ 2. But then L(z) would have
the form L(z) = [K(z)]m for some integer m ^ 2 and some entire function
K(z), contradicting the hypothesis. In case (ii), set f(z) = Π(z)ea{z) with
Π(z) being the canonical product formed with the zero of /. Clearly,
the exponent of convergence of Π(z) is less than 1/d (d is the degree of
p(z)) and hence the order of Π(z) is less than one. Therefore, from f(p(z)) —
L(z) exp (H(z)ez + S(z)) we have

(18) a{p(z)) = H(z)ez + S(z) + c0,

where c0 is a constant. But according to a result of Goldstein [4, Corollary
of Theorem 6, p. 503] H(z)ez + S(z) + c0 is a prime function, thus case (ii)
is also ruled out. This completes the proof of the theorem.
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4. Final Remark. In Theorem 2, the condition that L must have
at least one zero cannot be removed from the statement. A counter ex-
ample is given by k = 2, H = sin z, L = e\ Then F = L(z) exp (H(z)ezk) =
ez exp (sin z ez2) has a factorization f{g) where g(z) = z + (sin z)ez2, f{z) — e\
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