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1. Introduction. Throughout this paper G denotes a locally com-
pact abelian group with dual group I'. We denote by H any closed
subgroup of G and by /A the annihilator of H. Thus if G denotes the
dual of G, then

G=rI, GH =4 and H=T1/4A.

Denote by dax the Haar measure of a group K in each indicated
integration. We designate by A?(G) the algebra of all functions f in
LY(G) whose Fourier tranforms 7 are in L?(I"). Supply the norm in
A”(G) by

|F1l? = max ([ £]l, | Fll,) 1<p<e,

which is equivalent to the sum norm ||f|, + ||F|l,- It is known that
A*(G) is a regular, semi-simple commutative Banach algebra with con-
volution as the multiplication and for 1 < p < =, 4°(G) form an in-
creasing chain of dense ideals in L'Y(G). Let A/”(E) = A"(G) = A*(I") be
the Fourier algebras of A?(G) for 1 < p < ~ and supply the norm in
ff”([‘) as same as A?(G);

WFll = IflP for feA"G), feAx(I).

We denote also by A(I") and B(I') the algebras of Fourier transforms
and Fourier Stieltjes transforms on I". As ordinary the norms of A(I')
and B(I') are given by L'(G)-norm and M(G)-norm, where M(G) is the
bounded regular Borel measures on G.

In this paper we investigate that the restriction map of Fourier
algebra @: fi”(l“)—»fi”(/l) is a bounded linear mapping, and ask that does
there exists a linear lifting \: /f”(A)—»ff”([’) such that @®ox = Id.? We
give the affirmative answer in some situations. Evidently if a lifting A
exists, then @ is onto mapping. Concerning liftings, restrictions and
their relationship, Herz [7] has investigated in some stages of group
algebras. (Note that in his discussion, the groups are general locally
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compact groups and the Fourier algebras A4,(G) in Eymard [2], Herz [6],
and [7] are different from the sense in our A4*(G).)

As an application, in final section, we turn to discuss the functions
which operate in A?(G)-algebras. That is the converse of Wiener-Lévy’s
theorem. Many authors investigated such problem in various stages of
group algebras. In this note we explore an operating function of the
Fourier algebra fi”([‘) that can be treated by our reduction theorems
to reduce to the cases of [5] for A(I") and B(I).

2. Relations between A”(R*) and A”(T*). Let R" be n-dimensional
Euclidean space, Z" be the group of all lattice points in R" and AR
be the n-dimensional torus. We give the following theorem to show
the relations between A?(R") and A*(T").

THEOREM 1. There exists a bounded linear mapping @: A*(R") —
ﬁ”( T, and also a bounded linear mapping ¥: A?(T*)— A?(R"™). Precisely,
for any fe ﬁ”(R") there exists a function g€ ff”( T*) such that f(z) = g(x)
Jor @] = (k| ) =7 - 9,0<d<m and “g”ﬁmT")\ =< C || fllpcams
conversely, for any g€ A*(T"), there exists a function fe A?(R"™) such that
Flen =9, and || flliszm <Col||9||lioany. Here C, C, are some positive
constants.

ProoF. Let & be a function on R* with continuously partial deriva-

tive of order =2 such that 0 <A <1 and for 0<é <,
W@, @y @) =1 i [a] = (Slal) s7 -0
=0 if |z|=7.

The Fourier transform of (0*/0x)h(x) is —y¥(i =1,2, ---, ») and since
the Fourier transform of
62
ot

is bounded continuous, it follows that

h’(x) - h(x) (7’ = lr 2’ Tt n)

£~ C C
() )| = — < -
fa+yp L1l

where ¥y = (¥, ¥y, -+, Ys) € R*, C is a positive constant and hence he
LY(R". By inverse theorem and the compact support of h, we see that
he A*(R").

If fe A(R")(c fi”(R") for p = 1), then f is bounded continuous and
belongs to L*(R"). Define g = fh = @f (evidently ke L*(R")). Then
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(k) = _1_& g@)e*>dy for ke Z°
™

(2m)
— _1_5 F@)h(@)e " da
(2m)* Jan
= Sm F)hk — y)dy (by Parseval formula) .

By (a) the series >}.. anfb(k — y)| converges uniformly with value < a
constant C,, we have

gl = 3 1901=| 17w 3, 156 - )iy = ClIFlL,
and [|gll, = 1% ll, < I 7]}, henee

g aorm = Collf 2oz »

for some positive constant C,. Since 4‘(R”) is denAse in A?(R"), @ is
defined to a bounded lAinear mapping of A?(R") into A?(T™).
Conversely if ge A?(T"), we associate a function

FH@y, @y o0, @) = g€, -+, €"7),  x=(x, -, v)ER".

The function f* is then bounded continuous in R" having period 27 in
each of the variables z, «,, ---, «, and hence f* e B(R"), ||*|lz&m=I|9llszm-
Since T™ is compact in R", it follows from Lai [9; Theorem 3], that there
is a hlefi”(R") like as % above and an open set UD T" with Haar
measure not larger than 1+ ¢/,,,» (i.e. |U— T"| <¢&?/|,,») for any
€ >0 such that 0 < A, <1 and

h()=1 on T"
=0 outside U in R".

This h, satisfies the inequality (a). Observe that if we define f = f*h, =
¥g then fe A?(R"). In fact
171 = {171 e

<§ | Pde + || g |12
U—-1r7"
<&+ lgllz.

Hence || fll, <&+ [lglls.
On the other hand, it is clear that fe L'(R"). It follows from
inversion theorem that
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”.ﬂlx = Hf”A(R") = ”f*hl IIA(R”)
= N Nlsem 1 oy llagny = 1 acom |l }:1 I <lgllC.

Consequently, || /]| < C, || g || for some constant C, > 0. Evidently f|»=g.
q.e.d.

3. Restriction of functions in A"(I') to A”(4). Let 4 be any closed
subgroup of I" = G and H be its annihilator group in G. Applying Rudin
[14; 2.7.4], the following theorem is not hard to show.

THEOREM 2. AFO’!’ any fe A*(G), there is g € A*(G/H) such that flA =g
and 1§ i = S tvir-
ProoF. Since the set of all continuous functions in A?(G) with com-

pact supports is dense in A?(G), it suffices to take fe C.(G) in A*(G)
such that the Weil’s formula

| fade = | f@+wayds=| o

G/H

holds where d¢ is normalized so that dy,d&;, = dz,; and
06) = gomu(@ = | flo + )y

where 7, denotes the cannonical map of G —G/H. IE is evident that
19 lzvg/m = [ fllzer- Furthermore, for any ne 4, §(9) = f(n), and by Weil’s
formula, we have
”g”mm =fllzoen = ”f”mr) .
Therefore .
NG s = IS Ndoery - q.e.d.

Note that all of the discussions in A?(I") and Ar(4), it is essential
dealing to the spaces L?(I") and L?(4). If A is open or compact subgroup,
then there exists a linear lifting a: A?(4)—A?(I"), and hence the restric-
tion in Theorem 2 is an onto linear mapping such that Reson = Id. (cf.
Herz [7]).

THEOREM 3. If 4 isAan open subgroup of I', them there exists a
linear lifting N:A?(A) — A*(I"), and ||N]| = 1.

ProOF. For any §e A?(4), we define \: A?(4) — A(I") by
() = Fp) = [90D for ned
for ned.

Since 4 is an open subgroup of I', I'/4 is discrete and then by Weil’s
formula, we have



FOURIER TRANSFORMS ON A? 457

1Fllor = (35, {170 + P an)”

= <SA [fA(ﬁ) I”dﬁ)up =119 llzocar

since 7(7) = 0 outside of A.
On the other hand, the annihilator H of 4 is a compact subgroup
in G since 4 is open subgroup of I', we normalize the Haar measure of

H such thatg dy = 1. Thus if we define
H
Silx) = QOEH(:I?)
where 7, is the cannonical map of G —G/H, then || fi|lze = |9 llz1am-
We have to show that f, = f. In fact,
Aoy = -z, nda = | gomalo + u)(—2 — v, nidyde
G G/H JH
=|. sa(-&n| (-v vz,
G/H H
if ped, (—y,7) =1 for ye H andg dy = 1, then
H

F) = a()
if pe 4, SH(—y, 7)dy = 0, then

f:(ﬁ) =0.
Therefore f, = 7 and || 720 = |1 ||200s,- q.e.d.

THEOREM 4. If A 1is a_compact subgroup of I', then there exists
a limear lifting N AP(A) — AP(I) with ||[M ]| 1 + ..

ProoF. If A is compact in I, then there exists he€ A?(G) and an
open set U containing 4 with Haar measure <1 + ¢* for any &> 0,
such that :

h=1 on 4
=0 outside UO<h<1),

where A is normalized so that the Haar measure of 4 is equal to 1.
This & can be chosen to be [|A], <1 + .

For any ﬁeff”(/l), the Fourier series expansion gives

g= 2, 9001,
XeG|H
where ¥ means the character function (x, -) on 4, then [[g|l =|lg]l.

We define
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I

ﬁz h- X on A
h outside 4 in I'.

Then hye L(I'). By inverse theorem, h;e L(G)and ke AxD), || Ryl <
1+ eand || llary = 1B S IR, £1 4 ¢. Now for any §e A?(4), define
F=xg= 3 g0 .

1€Q/H
This is a function in fi”(l‘) and

Fli= 9L =9 -

XeG/H

I

Furthermore,

171 = 3 190011 Aells < g [l 11 Aells < 1GI1L +¢)
and

£l = 1F Ml < 319G Hl allan < 11GIQ + ) -

Hence .
A <Igli@+e). q.e.d.

REMARK 1. It is worthy to remark here that if 4 is any closed
subgroup of I, then the existence of lifting \: A?(4) — A?(I") is an open
question.

4. Functions which operate in A?(G)-algebras. A classical theorem
of Wiener-Lévy stated that if fe A, the class of all functions on the
unit circle which sums of absolutely convergent trigonometric series,
and if F is defined and analytic on the range of f, then F(f)e A. This
theorem was extended by Gelfand who showed that it holds for regular
semi-simple commutative Banach algebra. Many authors investigated in
the converse: Which function F have the property that F(f) € A whenever
fe A? where A denotes certain algebra. We give a definition that
a function F operates in a commutative Banach algebra as follows.

DEFINITION. A function F defined in a set D of complex plane
operates in a commutative Banach algebra 4 if F(f)e A whenever fe 4
and the range of f is included in D, where f is the Gelfand transformation
defined on the character space and range of 7 is the spectrum of f.

We denote by Fofe A to be that F(f') € A if F operatesin 4 (some time
it is equivalent to say that F'is operating in A). Without loss of generality,
throughout we may assume that F is defined in the closed interval I =
[—1, 1] and that F(0) = 0 (cf. Helson, Kahane, Katznelson and Rudin [5]).
In this section, we give an application of the reduction theorems proved
in previous sections. Our main theorem in this section is following:
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THEOREM 5. If G is a momcompact locally compact abelian group

and if F operates in A*G), them F is an analytic function on I =
[-1, 1].

ProOF. Note that if G is noncompact locally compact, then I” is not
discrete. The continuity of F' is immediately (cf. [5; 1.1]).

(i) If G is infinite discrete, then A?(G) = L'(G) with norm || f]]* =
£, for any fe LX(G). Indeed, for fe LY®), fe L*(I") for 1 < p < o, we
have || fll, < || Fll. < || 7|l. since I" is compact, then || f||* = || f[l.. In this
case the theorem follows from Helson, Katznelson, and Rudin [5; Theorem 2]
that F is analytic on I.

(ii) If G is nondiscrete (and noncompact), then I = G contains an
open subgroup I, =A@ R", the direct sum of compact group 4 and
Euclidean space R*(n =0). If n =0, I’y = 4, then by Theorem 3 and
Theorem 4 that F(f)e A»(I") for every f in A"(I") with values in [—1, 1]
implies F'(g) e fi"([’o) = fi”(/l) for e ﬁ”(A) where § is the restriction of f
on A. It follows from (i) again that F is analytic on I. Hence it is
sufficient to consider now that n > 0. Again by applying Theorem 3,
when the function F is operating in A?(I"), then it reduces to operating
in A?(I"), where I', is an open subgroup of I'. If we consider the
subalgebra A?(I") consisting of those f in A?(I",) which are constant on
the cosets of 4, then it is sufficient to show that F is operating in
fi”(R"), and, using Theorem 1, one can prove easily that the function
F is operating in A?(T") (cf. Remark 2 in following). Consequently all
the proof returns to the case (i) and then F is analytic on I. q.e.d.

REMARK 2. It is not hard to show that if ge A?(T") with value
9(e) = g(e™, ++-, e*) in [—1,1] and F is operating in A?(R"), then
F(g)e A?(T"), i.e., F is operating in A?(T").

Proor. For any ge/i"(T"), by Theorem 1, there exists a fe fi”(R”)
such that f|m» = ¢, this means g(e*) = f(x), © = (&, &y, ++-, ), |2]| < 7.
Since F' is operating in A?(R"), F(f)e AP(R”) and F(f) |~ = F(g9). Setting
¥(x) = F(f)(w), we have ¥ [ = 6.(2) = ¢(¢”) = F(g(e™)) for |z| < 7. Then
€ A?(R") and we have to show ¢e A?(T"). As in the proof of Theorem
1, we can choose a positive function » on R" with partial derivative of
order =2 such that » =1 on 7" and = 0 outside of an open set U
containing 7™ with measure <1 + ¢ for a given ¢ > 0. Then

13l = 31801 = 5, L

kezn (2m)"
1 2,4k, 2)
=0 kezz‘n (2m)" SR" b(@h(@)e dxl

ST” é.(x)e* > d ‘
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for some constant C > 0. Since (2)h(x) = yu(x)e L' N LA(R™), he L'N
L*R"), by Parseval theorem, we have

181 = ¢ 5[], #@ie - pis
<C| 1h@] 3 i@ —0)lde < Cllgl < =

since % has partial derivative of order =2, S | iz — k)| converges
uniformly to a constant and +, e L'(R"). Therefore

ée A (T") . q.e.d.

REMARK 3. If G is infinite compact and 1 < p < 2, then || £]|* = [|Fll,
and the function F' operating in A?(I") need not be analytic, for example
if we take F(f) = +7, then F is only a bounded function. If G is infinite
compact and p > 2, it seems to be an open question that whether the
operating function F in A(I") is analytic or not.
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