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1. Introduction. We shall exhibit two series of non-homogeneous
isoparametric hypersurfaces in spheres in this paper, and then give a
classification of some types of isoparametric hypersurfaces in a forthcoming
paper.

We begin with a few definitions and notations to explain our results
more precisely. Let M be a Riemannian manifold with metric (,) . The
induced inner product on cotangent vectors is also denoted by (,) . A
differentiable function / defined on an open set U in M is called iso-
parametric if df A d(df, df) = 0 and dfAd(Jf) = 0, where Δ denotes
the Laplacian on M. A hypersurface M (a submanifold of codim 1) in
M is called isoparametric if, for each point p of M, there exist an open
neighborhood U of p in M and an isoparametric function / defined on U
such that

UnM={qeU\f(q)=f(p)}.

Let w "̂= {Mt 11el} be a family of hypersurfaces in M parametrized by
an open interval I. ^ is called a family of isoparametric hypersurfaces
if there exist an open set U in M and an isoparametric function f on U
such that Mt = f'\t) for each teI. Two families *J^= {Mt\te I) and
*y = {M[, I V e Γ} of isoparametric hypersurfaces in M are identified if
there exists a diffeomorphism φ of / onto /' such that Mt = MφW for
each tel. Also, if we have an imbedding φ of I into Γ such that
MtcMφ{t) for each tel, then we write w^c<J*9.

Now, let M = S*"1 be the unit sphere in an iV-dimensional Euclidean
space JR^ centered at the origin, and M a locally closed hypersurface in
M. M is said to be homogeneous if a suitable subgroup of O(N) acts
transitively on M where O(N) denotes the real orthogonal group of JK^.
It is known that M is isoparametric if and only if M has locally constant
principal curvatures (Cartan [2]). Thus, every homogeneous hypersurface
in SN^ is isoparametric. Two hypersurfaces M and M in S^"1 are said
to be equivalent if a suitable orthogonal transformation of RN transforms
M onto M'. Similarly, two families of isoparametric hypersurfaces in
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S^"1 are equivalent if a suitable orthogonal transformation of RN trans-
forms one to the other.

The following results are due to Mϋnzner [5]. For every connected
isoparametric hypersurface M in SN~\ there exists a unique maximal
(relative to the above order c ) family <J^ = {Mt\tel} of isoparametric
hypersurfaces in S^"1 such that each Mt is closed in SN~ι and for some
t M is an open submanifold of Mt. If M and M' are equivalent, then
^yM and ^xt are equivalent in our sense. Further the classification
problem of such maximal families is reduced to an algebraic one in the
following way. Let F be a homogeneous polynomial function of degree
g on RN. For g > 2, let m1 and m2 be positive such that mx + m2 + m^Λ-
m2 + = N — 2, and let m1 = N — 2 > 0 for g = 1. Assume F satisfies

\{dF, dF) = </V*-2

where c = (l/2)(m2 — mĵ r2 for # ^ 2 and c = 0 for # = 1 and where r is
the radius function and Δ is the Laplacian on RN. Then the restriction
/of F to S*-1 is isoparametric on SN~\ and ^ S = {Mt = f~ι{t) | ί e ( — 1, 1)}
is a maximal family of isoparametric hypersurfaces in SN~ι such that
each Mt is connected and closed. Conversely, any maximal family of
isoparametric hypersurfaces in SN~ι is given in the above way. Such
two families ^ and J^, are equivalent if and only if there exists an
element σ in O(N) such that

F(σ~1x)= ±F'(X) xeRN .

In this case, F and F' are said to be equivalent. Mϋnzner also has shown
that the above (M) has a solution only if g = 1, 2, 3, 4 or 6 and that
mx = m2 if g is 3.

Geometrically, the above integers g, m^ and m2 are related to each
isoparametric hypersurface Mt as follows. Consider the unit normal
vector field Xt = grad (f)/(df9 df)1/2 for each Mt. Let

^(ί) > > kg{t)(t)

be the distinct principal curvatures of Mt relative to Xt, and mά(t) the multi-
plicity of kjit) for each j . Then g(t) and m5(t) are constant, and we have

9 =

mx = mi(i) = m3(t) =

m2 = m2(ί) = mA(t) =

fcy(ί) = COtf-i {(i - 1)7Γ + COS-ι(ί)Λ
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for j = 1,2, . . . , g.
We come to the problem of classifying equivalent classes of polynomials

F satisfying the above condition (M). In the case where g = 1 or g = 2
it is easy. Cartan solved it in the case g = 3 ([3]) and proposed a
problem: Is every closed isoparametric hypersurface in S^"1 homogeneous?
Recently, Takagi [6] classified the case where g = 4 and mγ or m2 = 1,
and his result still shows that the obtained ones are homogeneous.

In the present paper I, we shall investigate a homogeneous polynomial
function F satisfying the differential equations (M) of Mϋnzner in the
case g = 4. To such an F, we associate mt + 1 quadratic forms {pa} and
mγ + 1 cubic forms {qa} in mι + 2m2 variables, and give a complete
characterization of F in terms of {pa} and {qa} in Theorem 1. Using
this, two series of non-homogeneous isoparametric hypersurf aces in spheres
will be constructed in Theorem 2.

The polynomial functions F defining them are given explicitly as
follows. We denote by F the real quaternion algebra H or the real
Cayley algebra K, and by u—>ΰ the canonical involution of F. For the
^-column vector space Fn over F, the canonical inner product is denoted
by (,) . For each positive integer r, the space F2{r+1) can be identified
with RN where N = 8(r + 1) or 16(r + 1). For a point x = ux ve Fr+1 x

( (Vo

where u09 v0 e F, uu vλ e Fr. Then we put

Flu xv) = 4{|| ^U| | 2 - (u, *)2} + {|| u, ||2 -

where || || denotes the length of a vector, and

F = r4 -

Then Aft = {Λ; G S*"11 F(ίc) = t) for each ί in ( — 1,1) is isoparametric and
its multiplicities rax and m2 are given by

mι — 3 and m2 = 4r

or

mx = 7 and m2 = 8r

respectively according to F = £Γ or JK".
The homogeneous isoparametric hypersurfaces in spheres have been

classified by Hsiang-Lawson [4]. In Part II, we shall give an explicit
form of F for each of them, and classify the polynomials F satisfying
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the condition (M) in the case where g = 4 and mt or m2 = 2. It will be
shown that every closed isoparametric hypersurface in this case is homo-
geneous.

We thank Prof. T. Takahashi and Prof. R. Takagi for many helpful
discussions.

2. Preliminaries. First we introduce a few notations for operations
on polynomial functions and give some of their elementary properties.
These notations and properties will be used consistently throughout our
papers I and II.

Let Rn be an ^-dimensional Euclidean space with inner product (,)
and r the radius function of Rn. The induced inner product on the dual
space is also denoted by (,) . For any polynomial functions / and g on
Rn, we denote by </, g) the polynomial function on Rn defined by

(2.1) </, g)(x) = ((<*/)., (dg)x) xeR*.

The mapping (/, g) —> </, g) is bilinear and symmetric, and also satisfies

(2.2) </, flrιΛ> = </, gι}gt +. </,

Let {xu ••-,#„} be an orthonormal coordinate system for Rn. Then </, #>
is equivalently defined by

(2.3) <f,g> = ±K.^.
ϊ=i OXi OXi

Especially, for a homogeneous polynomial / of degree k on Rn, and for
any positive integer I we have

(2.4) <r«, />

We denote by J the Laplacian on JR", that is,

(2.5) zf = ^

Then, for any positive integer k, we have

(2.6) Ar2k = 2&(w + 2&

Let F be a linear subspace of R%. We introduce the restriction
forms of < , > and Δ as follows. Let W be the orthogonal complement
of V so that we have Rn = V® W (orthogonal decomposition). Choose
orthonormal coordinate systems {vj and {Wj} for V and W respectively.
Then any polynomial functions / and g on Rn can be expressed as poly-
nomials in variables {vj and {w5}. We put
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(2.7) </,̂ >F = Σ | ^ | £ .

and

(2.8) Avf=?f

They are determined independently on the choices of coordinate systems,
and sometimes they will be also denoted by </, g){v.} and Δ{v.}f. From
the definitions it follows that, for an arbitrary orthogonal decomposition
R* = V® W, we have

(2.9) </, g) = </, g)r + </, 9)w

and

(2.10) Δf=Δvf+Δwf.

Let / be a polynomial function on Rn, and F a linear subspace of
J£Λ. / i s said to be homogeneous of degree k on V if / is homogeneous
of degree k with respect to the variables {vj in the expression of / as
a polynomial in {t J and {w5-}.

Let V be a linear subspace .of Λ\ Every polynomial function / on
V can be considered also as a polynomial function on Rn canonically
through the orthogonal decomposition Rn = F 0 W. By this identification,
it follows that for polynomial functions / and g on V we have

(2.11) </, g)v = </, g>

and

(2.12) Δvf = Δf .

Finally, for a quadratic form / on Rn, we define a symmetric linear
mapping η(f) of Rn by

(2.13) 0?(/)(α), »#) = /(*, a') », »' 6 iί*

where / is considered in the usual way as a symmetric bilinear form on
Rn. The correspondence f-+y(f) is one to one from the set of quadratic
forms on Rn onto the set of symmetric linear mappings of Rn.

For quadratic forms / and g on Rn, we have

(2.14) ?«/, g)) = 2(V(f)η(g) + η{g)η{f)) ,

and especially

(2.15) ?«/, / » = 4(??(/))2.

Furthermore, we have
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(2.16) 4 f = 2 Tr (?(/)).

They can be verified easily.
Now, let S*"1 be the unit sphere in RN centered at the origin. We

need the following preliminary lemmas.

LEMMA 1. Let F be a homogeneous polynomial function of degree g
on RN satisfying

(F, F) = g2r29~2 .

Then the restriction f of F to S^"1 is singular at a point x of S*"1

if and only if

(dF)x = ±{dr°)x .

PROOF. By definition, / is singular at x if and only if (df)m = 0.
Note that a tangent vector X in Tx(Rn) is contained in T9(SN~ι) if and
only if

(dr°)x(X) = 0 .

Thus, (df)x = 0 if and only if

(dF)x = c(dr°)x

for some constant c. Since (dF, dF) — (F, F) = (dr0, drδ) from our
assumption, we see that (df)x = 0 if and only if

(dF)x = ±(dr% . q.e.d.

LEMMA 2. Let F be as in Lemma 1. Then the restriction f of F
to SN~1 ranges from — 1 to 1 unless it is constant, and f is singular at
a point x of S*'1 if and only if F(x) = ± 1 .

PROOF. Let # be a point of S^"1 and choose an orthonormal coordinate
system {uu , uN-l9 z] such that z(x) = 1 and Uiix) = 0 for i = 1, 2, ,
N — 1. We expand F a s a polynomial in z as

F = aoz
g + a.z9-1 + + ag

w h e r e ah is a h o m o g e n e o u s p o l y n o m i a l of d e g r e e h in ulf •••, uN^. W e
h a v e

(dF). = (ψ\x)(dz)x + Σ, (|£)(*

and
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(drg)x = g(rg~2 rdr)x = g(dz)x .

First suppose that / is singular at x. Then, by Lemma 1 we have
(dF)x = ±(drg)z, and hence a0 = ± 1 . This shows F(x) = a0 = ± 1 .

Conversely, suppose F(x) = ± 1 , i.e., a0 = ± 1 . We have

<F, F)(x) =

Since <F, i*7) = g2r2g~2, (F, F)(x) = g2, and hence we have (dF/du^x) = 0
for i = 1, 2, , JV - 1. Thus, we have {dF)x = ±(ώrflΓ)x, and hence / is
singular at x by Lemma 1.

We have proved the latter assertion in Lemma 2. The former
assertion follows from the latter since S*"1 is compact. q.e.d.

LEMMA 3. Let F be as in Lemma 1, and put

where {xl9 •••, xN} is an orthonormal coordinate system for RN. Assume
that the degree g is even and F satisfies

k \g/2

Then we have

aiv..iN = 0

whenever iλ + + ik = g — 1.

PROOF. Put F = ^Fh where Fh is the homogeneous part of degree
h in the variables xl9 •••, xk:

Fh= Σ ah...tNx^ x7

The assumption says Fg = ( Σ t i ^Dff/2 We shall show Fg_, = 0. Put

G = F,_2 + . + Fo,

so that we have

F = Fg + Fg_, + G.

Now, we have
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for i = 1, •••,&, and

for j = & + 1, , JV, and hence

On the other hand, we have

(F, F) = g*r2g-2 = ^ 2 ( Σ X\

Comparing the homogeneous terms of degree 2g — 2 in the variables
#!, •••, xk in the above two equations, we get

and hence

^ 0 for i = fc + 1, — , JSΓ.

Since i^_! is linear in α?fc+1, , xN, we have Fg^ = 0. This proves
Lemma 3. q.e.d.

3. Reductions. From now on we shall concern with isoparametric
hypersurfaces in SN~ι with 4 distinct principal curvatures. So we in-
vestigate a homogeneous polynomial function .F of degree 4 on JB̂  satisfy-
ing (F, F} = 16rβ and ΔF = 8(ra2 — mjr2. These two equations will be
replaced by equivalent ones step by step, and in the latter part of this
section two families {pa} and {qa} of polynomials will be associated to F
on a suitable coordinate system. Our first purpose is to give a complete
characterization of such an F in terms of {pa} and {qa} (Theorem 1 in
§4).

Let mx and m2 be two positive integers such that N= 2(m1 + m2 + 1),
and F a homogeneous polynomial function of degree 4 on RN* Consider
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the following two conditions on F;

(3.1) (F, F) = 16r6 ,

(3.2) ΔF = 8(m2 - m > 2 .

As a first step of reductions, we choose a unit vector e in RN such
that the restriction / of F to S*"1 takes its maximum at the point e.
Let X be the orthogonal complement of the 1-dimensional subspace Re
so that we have

(3.3) RN = X@Re.

Let z be the coordinate function on Re defined by z{e) = 1 and {xlf ,
xN_j] an orthonormal coordinate system for X.

LEMMA 4. Assume that F satisfies (3.1) and (3.2). Then, F can be
written in the form

(3.4) F = z* + Az2 + Bz + C

where A, B and C are homogeneous polynomial functions on X of degree
2, 3 and 4 respectively, and A, B and C satisfy the following equations
(1-1)~ (1-8) listed below. Conversely, assume that a homogeneous poly-
nomial function F of the above form (3.4) is given with A, B and C
satisfying (1-1)-(1-8). Then F satisfies (3.1) and (3.2).

(1-1) <A A) + 16A = 48( Σ l xί

(1-2) (A, B) + 4B = 0

(1-3) (B, B) + 2(A, C) + iA2 = A

(1-4) (B, C) + 2AB = 0

(1-5) <C, C> + .B2 =

(1-6) JA +12 = 8(m2 - mx)

(1-7) ΔB = 0

(1-8) JC + 2A = 8(m2 - mj( ΣJ *ϊ)

PROOF. Assume that .F satisfies (3.1) and (3.2). We first remark
that the restriction / of F to S*"1 is not a constant. In fact, suppose
that / is a constant c on S"'1. Then we have F = cr\ Since <.F, F> =
16rβ, we have e = ± 1 . On the other hand,
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ΔF = cΔr* = c(8 + AN)r2 = 8(m2 - m,)r2 .

Hence, ±(8 + 4iV) = 8(m2 — mj. It follows that m ^ - 1 or m 2 = - 1 .
This is a contradiction.

By Lemma 2, we have F(e) = 1. By the choice of coordinates, we
have

Applying Lemma 3, we see that F has the form

F = z* + Az2 + Bz + C

where A, B and C are homogeneous polynomials in xίf , xN^ of degree
2, 3 and 4 respectively. We write (3.1) and (3.2) in terms of A, B and
C. We have

(F, F) = ί Xi-J + <F, F>x

= 16«β + 44V + J52 + 16A?4 + SBz* + AABz + (F, F)x

= 16zβ + (16A + (A, A))z* + (SB + 2(A, B))z3

+ (4A2 + (B, B) + 2(A, C))z2 + (4AB + 2(B, C))z

+ B2 + (C, C) ,

and

Comparing the coefficients of zh for each h, we see that (3.1) is equivalent
to (1-1)~(1~5) as a whole.

Next, we have

ΔF = Δ{Z]F + ΔXF

= 12z2 + 2A + (ΔxA)z2 + (ΔxB)z + ΔXC ,

and

8(m2 — mjr2 = 8(m2 — m^z2 + Σ χί)

Hence, (3.2) is equivalent to (l-6)~(l-8). Thus, we have the first asser-
tion of Lemma 4.

The converse follows clearly from the above argument. q.e.d.

LEMMA 5. Let A be a quadratic form on X satisfying (1-1) and
(1-6). Then, X has a unique orthogonal decomposition

(3.5) X =
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with dim W = mY + 1 st&cΛ, £ hat A has the form

(3.6) A

where {yό} and {wa} are orthonormal coordinate systems for Y and W
respectively, and n = mx + 2m2. Conversely, if A is of the above form
with respect to an orthogonal decomposition X = Yφ W with dim W =
mL + 1, then A satisfies (1-1) and (1-6).

PROOF. We denote by A the symmetric mapping η(A) of X associated
to A. Then (1-1) and (1-6) are equivalent to

(1-1)' (A)2 + 4A - 12 lx = 0

and

(1-6)' Tr (A) = 4(m2 - mj - 6

respectively, where lx denotes the identity mapping of X. Assume (1-1)
and (1-6). (1-1)' shows that an eigenvalue of A is 2 or —6. Decompose
X into the eigenspaces:

where Y and W are the eigenspaces for the eigenvalues 2 and —6
respectively. This is an orthogonal decomposition since A is symmetric.
From (1-6)' it follows that dim Y= mx + 2m2 and dim W—mι + l. This
shows our first assertion. The converse is easily seen. q.e.d.

LEMMA 6. Assume (1-1) and (1-6) for A. Then, B satisfies (1-2)
if and only if B is homogeneous of degree 2 on Y and of degree 1 on
W.

PROOF. Write

where Bh is the homogeneous part of degree h on W and hence of degree
3 - ft on Γ. Consider (1-2). Since A = 2(Σ V*) - 6(Σ «£) by Lemma 5,
we have

(A, B) + 4£

= <Λ B)r + (A, B)w + 4B

= 2<Σ V% B)Y - 6<Σ wl, B)w + 4B

= -Z2BS -
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Thus (1-2) is equivalent to Bz = 0, B2 = 0 and Bo = 0. This shows
Lemma 6. q.e.d.

Hereafter we assume (1-1), (1-6) together with (1-2). The orthogonal
decomposition X= Γ © W in Lemma 5 gives us the second reduction.
Let {vj} and {wa} be orthonormal coordinate systems for Y and W respec-
tively where j runs from 1 to n = mγ + 2m2 and a runs from 0 to m l t

In view of Lemma 6, we can define m1 + 1 quadratic forms pOf •••, pmi

on Y by

mi

α=0

For C, we put
4

(3.8) O — 2J W

where CΛ is the homogeneous part of degree h on W and hence of degree
4 — h on F, and we define mx + 1 cubic forms tf0, , Qmi on F by

mi

(3.9) d =

LEMMA 7. I%e equation (1-3) Λoids i f αw<Z emJi/ i/ we Λαvβ

( i ) C4 = ( Σ ^ ) 2 ,
( i i ) C3 = 0,
(iii) C2 = 2 Σ«,ί <3>« 3>ί>w«Wί ~ 6 ( Σ »5)
(iv) C,

PROOF. Recall (1-3):

<E, B> + 2<Λ C> + 4A2 = 48(Σ

We have

= 4 36(Σ wlY - 96(Σ »}XΣ «*) + 16(Σ 2/?)2,
= <B, B>r + <B, B)w

= 64 Σ <J>«, Pί>w«Wί + 64 Σ Pi

2(A, C> = 2(A, C)r + 2(A, C)w

= 4<Σ vl Σ C»> - 12<Σ < Σ
= 8(C3 + 2C2 + ZQ + 4C0)

- 24(4C4 + 3C3 + 2C2 + O

= -96C 4 - 64C3 - 32C2 + 32C0
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and

48(Σ xί)2 = 48(Σ wlY + 96(Σ vJXΣ " 9 + 48(Σ 2/?)2.

Summarizing their homogeneous terms, (1-3) is equivalent to

4 36(Σ wlY - 96C4 = 48(Σ wlϊ ,

l) + 64 Σ <P«, ̂ > * W - 32C2 = 96(Σ

16(Σ 2/i)2 + 64 Σ Vl + 32C0 = 48(Σ vW .

Now Lemma 7 follows. q.e.d.

REMARK 1. By Lemmas 4, 5, 6 and 7, it follows that the polynomial
function F can be constructed uniquely from {pa} and {qa}.

Our {pα} and {tfα} associated to F depend on the choice of e in SN~ι

such that F(e) = 1 and on the choice of an orthonormal coordinate system
{wa} for W. Let F' be another homogeneous polynomial function of degree
4 on RN satisfying (3.1) and (3.2). Choose e' in S"-1 and {w'a} for W in
the same way, so that we have {p'a} and {q'a} on F' associated to F'.
We say that F and ί7' are O(N)-equivalent if there exists an element σ
in O(iV) such that

F'(x) = Fiσ-'x) for α e Λ * .

Let V and F ; be two finite-dimensional vector spaces over R. For a
linear isomorphism τ of V onto F', and for a polynomial function / on
V, we denote by τf the polynomial function on V obtained by

With these notations, we state the following two remarks for a later
use.

REMARK 2. Suppose that F and F' are O(iV)-equivalent by an element
σ in O(N) such that σ(e) = e\ Then α1 induces orthonormal transfor-
mations σw: W-+ W and σγ: Y-+ Y'. By a suitable choice of {w'a} for
TF', we have

OyVa = Pa f <?Y<la = ffi

for α = 0, 1, , mx. Conversely, suppose that there exists an orthonormal
tansformation τ of Y onto Y' such that

r P « = Pa f TQa = Qa

for a = 0, 1, , mx. Then F and ί7' are O(iV)-equivalent by an element
σ in O(iSΓ) such that σ(e) = e'.
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REMARK 3. Consider the case where the isoparametric hypersurface
in S^"1 defined by F = c for some constant c is homogeneous by a subgroup
of O(N). Then it follows that the singular submanifold

is also homogeneous by the β-component of the same group. Therefore
F and F' are O(iV)-equivalent if and only if there exist an orthogonal
matrix (τaβ) of degree m1 + 1 and an orthonormal transformation σ of Y
onto Y' such that

P'β = Σ Tβ«(σPa) ,
a

Qβ = Σ τβa(σqa)

a

for β = 0,1, •••, mx.

Eemarks 2 and 3 are immediate consequences of the preceding lemmas.
4. A characterization by {pa} and {<?„}. We continue the argument

of the preceding section under the assumptions (1-1), (1-2), (1-3) and (1-6).
The equations (1-4), (1-5), (1-7) and (1-8) will be reformulated first in
terms of B, Co and Ct, and then in terms of {pa} and {qa}, using Lemmas
5, 6 and 7.

First we list the equations:

(2-1) (B, C2>r

(2-2) <β, C,\ = 0

(2-3) <β, C2)w + (B, C0)r + 4f?(Σ y)) = 0

(2-4) (B, Cdw = 0

(2-5) <C2, C2)r + 16C2(Σ «£) = 48(Σ VΪXΣ ^^)

(2-6) <C^C1>1. + 4Ci(Σ«^) = 0

(2-7) <C2, C2>^ + <CU C»>r + 2<C2, C0>r + 5 2 = 48(Σ 2/

(2-8) <C2, C,>^ + <Clf C0}r = 0

(2-9) <C1( C,}w + <C0, C0>r = 16(Σ VW

(2-10) J r β = 0

(2-11) JrC2 = (8m2 - 12mJ(Σ ^ 2 )

(2-12) ^ d = 0

(2-13) ΔWC2 + JyC0 = (8m2 - 8m, - 4)(Σ V))
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LEMMA 8. The following implications hold:
( i ) (1-4) ~ (2-1), (2-2), (2-3) and (2-4),
(i i ) (1-5) ~ (2-5), (2-6), (2-7), (2-8) and (2-9),
(iii) (1-7)-(2-10),
(iv) (1-8) «• (2-11), (2-12) and (2-13).

PROOF. In each of (1-4), (1-5), (1-7) and (1-8), we replace A by
2(Σ 2/ί) ~ 6(Σ «£). C by Ct+ C2 + Ct + Ct, and then C4 by ( Σ wlf
Decomposing the results into the homogeneous part with respect to the
variables wa's, we can conclude Lemma 8. We give here the proof of
(i). The rest can be shown in a similar way.

Recall (1-4): {B, C) + 2AB = 0 .

We have

(B, c> = (B, cyr + <B, c)w

= (B, C4>r + (B, Cz)r + (B, C^r + <B, C0)r

+ (B, Ct}w + (B, C2)w + (B, C,yw + (B, C,)w .

Note (B, C<yr = 0, (B, C0)w = 0, and (B, C<)w = (B, ( Σ ^ ) %
Thus, we have

(B, C) + 2AB

+ (B, Cdr

+ (B, C0)r + (B, C2)w

+ (B, C,)w ,

from which we can see easily (1-4) <=• (2-1)~ (2-4). q.e.d.

Now we reformulate the above equations (2-1) ~ (2-13) in terms of
{pa} and {(?„} as follows:

U((Po pa)) = 16m2 for each a

(3-2) 2 « p « pP), pβ) + «pβ, pβ), Pa) = 16pα

for distinct a, β

(3-3) « p β pβ), pr) + «Pβ, Pr), Pa) + «Pr, Pa), Pβ) = 0

for mutually distinct a, β, 7

(3-4) (pa, Qa) = 0 for each a

(3-5) (pa, qβ) + (pβ, qa) = 0 for distinct a, β
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(3-6) « p β f p,\ qr) + «p, , pr), qa} + ((pr, pa), qa> = 0

for mutually distinct a, β, Ί

(3-7) Σ PA* = 0

α=0

(3-8) lβ(ΣQl) = 16G(Σvί) - <G, G)

(3-9) 8(qm qa) = 8«2>α, pa)& V% - PΪ) + « P » P«>, G)

- 2 4 G - 2 Σ <J>«, 2>r>2 for each α

r=o

(3-10) S(qa, qβ) = 8((pa) p,>(Σ 2/?) - P.P,) + «Pm Pβ>, G)
mi

- 2 Σ (pa, pr)(pβ, pr) for distinct α, /3
r=o

where G — ΣΓio P« and the indices a, β, Ύ run from 0 to m l t

LEMMA 9. The following implications hold:
( i ) (2-1), (2-10), (2-11) - (3-1), (3-2), (3-3)

(3-1), (3-2), (3-3) -> (2-1), (2-10) ,
(ii) (2-2) -(3-4), (3-5),
(iii) (2-6)-(3-6),
(iv) (2-4) ~ (3-7),
(v) (2-9)-(3-8),
(vi) (2-7) - (3-9), (3-10).
We give here the proofs of (i) and (iii). The rest can be proved

similarly.
PROOF OF (i). Recall (2-10): ΔYB = 0. This is equivalent to Δpa = 0,

Consider (2-11):

ΔYC2 = (8m2 - 12mx)(Σ w2

a) .

Using C2 = 2 Σ <Pa, Pβ}wawβ - 6(Σ »J)(Σ ™«)> we get

JΓC 2 = 2 Σ M<Pa, Pβ»wawβ - 12(mx + 2m2)(Σ w*) .

Thus, (2-11) can be written as

2 Σ M(Pa, Pβ))wawβ = {12(mx + 2m2) + 8m2 - 12mJ(Σ v>D

= 32m2(Σ ^α)

And hence we see that (2-11) is equivalent to

(2-11-1) Δ((pa, pa)) = 16m2 for each a ,

and
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(2-11-2) Λ((paf pβ)) = 0 for distinct a, β .

Now consider (2-1): (B, C2)γ = 8£(Σ w*a).
We have

= 2(B, Σ <Pa, Pβ>wawβ)γ - 6<£, ( Σ V))(Σ

= 16<Σ Pawa, Σ <P«, Pβ>wawβ)γ -

= 16{Σ «P«, P^>, Pr)wawβwr - 16

Now we have the implication (2-1), (2-10), (2-11) ==> (3-1), (3-2), (3-3).
From the above argument, we also have the implication (3-1), (3-2), (3-3)
^(2-1), (2-10).

PROOF OF (iii). Recall (2-6): <C2, Cί>r + 4Q(Σ wl) = 0. By Lemma

7, C2 = 2 Σ <Pa, Pβ)wawβ - 6(Σ »})(Σ wS). We have

aWβf Σ tfrWr>

- 6(Σ wiK(Σ 2/?), Ci>r

= 16 Σ « P « P^>, ffr>wβw^r - 32C,(Σ O

= 16(Σ « P « P^>, qr>w*WβWr - 16 Σ ϊ«

Thus, we see that (2-6) is equivalent to the following three conditions
as a whole:

(2-6-1) «p β , pα>, gα> = 16gα for each a

(2-6-2) 2«pα, p^>, 9α> + « p w pα>, ĝ > = 16g,

for distinct α, /3

(2-6-3) « p β f p^), gr> + « p * pr>, gα> + « p r f pα>, ĝ > = 0

for distinct a, β,Ί .

Thus we have (2-6) => (3-6) = (2-6-3). q.e.d.

Lemma 9 shows the first assertion of the following Theorem 1.

THEOREM 1. Let m1 and m2 be positive integers such that N = 2{m1 +
m2 + 1), and put n — m^Λ- 2m2.

Assume that a homogeneous polynomial function F of degree 4 on
R* satisfies (F, F) = 16rβ and ΔF — 8(m2 — mjr2. Then two families
{Pa} and {qa} of polynomials associated to F in § 3 satisfy the equations
(3-l)~(3-10).

Conversely, assume that there are given mγ + 1 quadratic forms
Po, , Pmi and mx + 1 cubic forms q0, , qmi both on Rn such that they
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satisfy the equations (3-l)~(3-10). Then the polynomial function F on
RN constructed from {pa} and {qa} as in § 3 satisfies (F, F) = 16rβ and
ΔF = 8(m2 - mjr2.

To prove "the converse" in Theorem 1, it suffices, in view of Lemma 9,
to show that (2-3), (2-5), (2-6), (2-8), (2-11), (2-12) and (2-13) follow from
(3-1) ~ (3-10). We first show (2-3), (2-8) and (2-13) below, and then
reformulate the rest in terms of {pa} and {qa}. They will be proved in
§5.

LEMMA 10. (2-3), (2-8) and (2-13) follow from (3-l)~(3-10).

PROOF. Recall (2-3): (B, C2)w + (B, C0)r + 4B(Σ »}) = 0. We have

(B, C,)w = <£, 2 Σ <P«, Pβ}wawβ)w - (B, 6(Σ yJ)

= 32 Σ Pa(Pa, Pβ)wβ - 96(Σ Pawa)(Σ V*)

and

(B, C0)r = (B, ( Σ vW)γ ~ <B, 2G)r

Thus, we have

= 32 Σ <P«, PύPflOa - 16 Σ <Pc G)wa

(Pa,

Since G = Σ Pl> we have (pa, G) = 2Σ? (pa, Pβ)Pβ> and hence we have
(2-3).

Next recall (2-8): <C2, C,)w + (Cu C0)r = 0. We have

<C2, Cάw = (2 Σ <Pa, Pβ>wawβ, 8 Σ Qawa>w

= 32 Σ <P«, Pβ)q«Wβ - 96(Σ »5

and

<C1( C0)y = (Cu ( Σ 2/|)2>r - 2<CU G>r

= 96 ( Σ yj) Σ g«^« - 16 Σ <9«, G>

Hence we have

<c2, ^ v + <c l f co>r

. - Σ <ff-, G)wa}
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Now we see that (2-8) is equivalent to

2 Σ <P«, Pβ)Qβ = <Q«> G> for each a .

By definition, (qa, G) = (qa, Σ Pj> = 2 Σ ^ <?« J>*>P>. Using (3-4) and
(3-5), we have

Consider (3-7): Σ P/#/* = 0. We have

0 = <P«, Σ PβQβ) = Σ <P« Piί>?^ + Σ (P«, Qβ>Pβ '

This proves the required equation.

Finally recall (2-13): JWC2 + AYC, = {8(m2 - mx) - 4}(Σ 2/?). We have

^ - 6(Σ »J)(Σ
= 4Σ<P«P«>-12(in ι

and

= (8 + 4 Λ ) ( Σ »5) - 2

Since Δpa = 0 by (3-1), we have

AWC2 + AYCQ = {(8 + An) - 12(m, + 1)}(Σ V)) .

Now

8 + 4n - 12(mi + 1) = 4(2m2 + mx) - 12mx - 4

= 8(m2 — m j — 4

and hence we have (2-13). q.e.d.

LEMMA 11. (2-5) and (2-12) can be written as:

(2-5)' Σ
a,β,r,δ

= 16 Σ <Pα, Pβ>wawβw*

(2-12)' ί̂gα = 0 for each a

respectively.

PROOF. Recall (2-5): <C2, C2>F + 16C2(Σ wi) = 48(Σ w«)2(Σ 2/|), and

C2 = 2 Σ <2> )
We have
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<C2, C2>Γ = 4 Σ
a,β,r,δ

-96

and

16C2(Σ wi) = 32 Σ <P« P ^ « W ^ ? - 96(Σ y}

They show that (2-5) is equivalent to (2-5)'.

Recall (2-12): ΔYCX = 0. Since Cί = Σ 8<7αwα, clearly (2-12) is equiva-
lent to (2-12)'. q.e.d.

Note that (2-6) and (2-11) have been reformulated in the proof of
Lemma 9.

5. The third decomposition of RN. In this section, first the family
{pa} of quadratic forms on Y will be characterized in matricial forms.
Then we shall give a further decomposition of the space Y. The proof
of Theorem 1 will be completed.

For each quadratic form pa on Y, we define the symmetric linear
mapping Pa of Y as in § 2 by

(5.1) Pa = η(pa) .

We have

LEMMA 12. The conditions (3-1), (3-2) and (3-3) on {pa} are equiva-
lent to the following conditions (i), (ii) and (iii) respectively:

( i ) For each a, we have

(4-l)α PI = Pa , Tr Pa = 0 , rank Pa = 2m2

(ii) For each distinct a, β, we have

(4-2)β i, Pa = FiPa + PJP} + PβPaPβ

(iii) For each mutually distinct a, β9 7 we have

(4-2) α ι Λ r ®(PaPPr) = 0 ,

where © denotes the sum of terms obtained by interchanging the indices
over all permutations.

Note dim Y = n = mγ + 2m2. Lemma 12 follows by direct verifications,
using (2.14), (2.15) and (2.16).

LEMMA 13. (2-5) follows from (3-1), (3-2) and (3-3).

PROOF. Recall, by Lemma 11, (2-5) <=> (2-5)':
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Σ «P«, Pβ>, (Pr, P8))waWβWrWδ
a,β,r,δ

= 16 Σ <Pa, pβ)wawβw
2 .

a,β,ϊ

The monomials of wa'a appearing in (2-5)' are classified in the following
types;

wU wlwβ, w2

αw% wlWβWr, wαwβwrwδ

where α, β, 7 and δ are all distinct. Now (2-5)' decomposes into the
following five equations;

(2-5-1) « p α , pα\ <P«, P«» = 16<pα, pα> ,

(2-5-2) « P β , pα), <pα, Pβ» = 8<pα, p,> ,

(2-5-3) «p β , pβ>, (ph pβ}} + 2«^α, p^>, (pα, pβ))

(2-5-4) «p β f pα>, <pΛ p r » + 2«pα, ^>, <pα, p r » = 8(pβ, pry ,

(2-5-5) «p β , pβ}, {pr, pδ)} + «p β , pry, (pβ, pδ»

+ «P«, P*>, <PΛ Pr» = 0 ,

where α, β, T, δ are all distinct.
We give here a proof of (2-5-4). In the following verification,

Pα, Ph are denoted simply by α, β, , and the notation < , > is also
used for mappings, i.e., <α, β) = 2(α/5 + /3α).

To prove (2-5-4), it suffices to show

« α , α>, </9, 7 » + 2«α, /9>, <α, 7 » = 8(β, 7> .

The left hand side

= 8 { « GS7 + 7^)> + <(α/3 + βα), (art

= 16{α2/S7 + α27/3 + βΊoP + 7/3α2

+ α/Sα:7 + aβΊa + /Sαα7 + βaΊa

+ anaβ + α7/Sα: + Ίaaβ + 7α/3α} .

The right hand side

= 16(/37 + 7/3) .

From (4-2)r,α: 7 = α27 + 7α2 + aΎa, we have

7/3 = α27/3 + 7«:2/3 + aΎaβ .

From (4-2)̂ ,,,: β = α2/3 + /3α2 + aβa, we have

/37 = a2βj + βa2y + aβaΊ .
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Substituting them, we see that it suffices to show

βΎa2 + Jβa2 + cίβΊa + βcaa + aΎβa + Ίaβa = 0 .

Now the left hand side of this equation coincides with &(aβΊ)a, which
is 0 by (4-3)βf/,,r.

The rest of equations can be proved in a similar way. q.e.d.

From now on in this section we assume (3-1) and (3-2). We choose
an arbitrary index a, say a = 0.

By virtue of (4-l)α, each Pa has the eigenvalues 1,-1 and 0. We
decompose the space Y into the eigenspaces of Po;

(5.2) Y= U®V®Z

where U, V and Z are the eigenspaces of Po for the eigenvalues 1,-1
and 0 respectively. Note that the decomposition (5.2) is orthogonal since
Po is symmetric and that, by (4-l)0, we have

(dim U = dim V = m2 ,

(dim Z = m1 .

Now, with respect to orthonormal bases of U, V and W, PQ is repre-
sented by the matrix;

,1 0 ^

P . ~ 0 - 1 0

\0 0 0/

where 1 denotes the identity matrix of degree m2. Similarly, we have

LEMMA 14. For each a > 0, Pa is represented by the following matrix;

/0 aa bλ

Pa~ia'a 0 cλ
\K c'a 0 /

where aa is m2 x m2, ba and ca are m2 x mx and ' indicates the transpose.
Further they satisfy

[aaa'a + 2bab'a = 1 , a'aaa + 2cac'a = 1 ,

(b'aba = c'aca

/r r^ [KcWc, + aacX = 0 , eab'aaa + a'abaca = 0 ,
(5.5) i

[cWaba + Kaaca = 0 .
Conversely, assume that a matrix of the above form is given and

satisfies (5.4), (5.5). Then it satisfies (4-l)α, (4-2)α,0 and (4-2)0>α.
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PROOF. Consider (4-2)α,0:

Pa = P\Pa + PaPl + P0PaP0 .

This gives the required form for Pa. Similarly, (4-2)0,α:

Po - PIP, + PIP, + PaP0Pa

gives (5.4). If we assume (4-2)α,0, (4-2)0,α, then (4-l)α is equivalent to
(5.5). Note that the condition: rank Pa = 2m2 follows from (5.4) and
(5.5). q.e.d.

COROLLARY 1. (2-11-2) holds, i.e., we have

Δ{p«, Pβ) = 0

for each distinct a, β.

PROOF. Without loss of generality, we may assume β = 0. We
have

It can be easily verified that Tr (P0Pa) = 0 and Tr (PaP0) = 0 f or a > 0
using Lemma 14. q.e.d.

Let {ut}, {Vi} and {zk} be orthonormal coordinate systems for U, V
and Z respectively. We consider the homogeneous degree with respect
to the variables zu , zmι for polynomial functions on Y. Let

(5.6) Pa = ΣP«,h, q« = ΣQa,h

be the decompositions into homogeneous p a r t s with respect to zu •••, zmi,
where h indicates the tota l degree on {zk}.

COROLLARY 2. For each a > 0, we have

( i ) P«,. = 0,
( ϋ ) (Pθ, Pa,θ) = 0.

One can verify them using matricial forms given in Lemma 14.

LEMMA 15. We have, from (3-8) and (3-4),

( i ) Qa,s = 0 for each a,

(ii) q0 is homogeneous of degree 1 on U, V and W.

PROOF. ( i ) Recall (3-8):

where G = Σ* Pi and Σ V) = Σ v>\ + Σ v\ + Σ «1 I n t h e equation (3-8),
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consider the homogeneous parts of degree 6 with respect to zl9 -- ,zmι.
Since pa,2 = 0, the total degree of G with respect to zk's is less than 4.
Similarly, the total degree of (G, G) with respect to zk's is less than 6,
since <<?, G> = 4 Σ (Pa, Pβ)PaPβ- Thus, we have Σϊ£,8 = 0, and hence
qatZ = 0 for each a.

(ii) For a = 0, (3-4) gives

<Po, Qo> = 0 .

Now we have p0 = Σ w* — Σ vl* a n ( i hence

If S is homogeneous of degree k and £ with respect to {ut} and {vt} respec-
tively, then we have

Thus, <29O, q0) = 0 implies that each non zero term of q0 consists of
monomials with the same degree on {ut} and {vt}. Since q0 is cubic and
ô,3 = 0 by (i), we have (ii). q.e.d.

COROLLARY. (2-12) and (2-6-1) follow from (3-1)-(3-10).

PROOF. Recall (2-12) <=> (2-12)': Aqa = 0 for each a. Without loss
of generality, we may assume a = 0. Then Jq0 = 0 follows from (ii) of
Lemma 15.

Next, recall (2-6-1): « p β , pa), qa) = 16gα for each a. Again we may
assume a = 0 without loss of generality. Since p0 = Σ u\ — Σ v\> w©
have

By (ii) of Lemma 15, g0 = ?o,i Now we have

This proves our corollary. q.e.d.

LEMMA 16. (2-6-2) follows from (3-1)~ (3-10).

PROOF. Recall (2-6-2): 2«p α , pβ), qa) + « p β , ^α>, qβ) = 16qβ for each

distinct a, β. Interchanging the indices, it suffices to show

2«Po, Pa), Qo) + «2>o, Po>, Qa) = 16?β

for a > 0. From <p0, po> = 4(Σ ^ϊ + Σ vl)9 we have

c Po), Qa,H> = 8(3 - h)qa,h
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for any h. Since qa,3 = 0 by (i) of Lemma 15, it suffices now to show

« P o , Pa>, Qo> = 4gα,2 - 4qa,0 .

By Corollary 2 of Lemma 14, it suffices to show

( *) « P o , P«.i>, tfo> - 4#α, 2 - 4qa>0 .

N o w w e c o n s i d e r t h e t o t a l d e g r e e o n t h e v a r i a b l e s ulf •••, umz. L e t

PaΛ = Si + Sθ ,

tf«,0 = /. + /. + /l + /θ ,

?α,l = #2 + 9l + 00 »

Qa,2 = K + Ao

be the decompositions into homogeneous parts, where each suffix indicates
the total degree on uu •••, um2. Recall (3-5). We have

(Pθ, Qa) + {Pay Qθ> = 0 ,

and hence

(Pθ, Qa,θ) + <Po, ?«,!> + <^0, ^α,2>

+ <Pα,0, ?O,1> + <P«,lf ?O,1> = 0

Equivalently, we have

o, Qa,2) + (Pa.lf Qo^^Vi)}

{<Pθ, ?β,i> + (Pa,0, Qθ,i»

^α,0> + <Pβfi» Qθ)z} = 0 .

Observing the degree with respect to zlf , zmχ of each term in the above
equation, we obtain:

( 1 ) <Pθf Qa,2> + (Pa,U Qθ){u^} = 0 ,

( 2 ) <po, 9«,i> + <P«,o, Qo> = 0 ,

( 3 ) <Po, ?«,<>>•+ <P«.i, ffo>z = 0 .

From Po = Σ u\ — Σ vϊ> w e obtain:

( 4 ) <Po,ff«.2> = 2h -2h0,

( 5 ) <p0, ?βli> = 4^2 - 4#o,

( 6 ) <ί>o, gβ>0> = 2(3/3 + / , - Λ - 3/o) .

On the other hand, we have
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Substituting this and (4) into (1), we get

[2k, + <s0, qo)v = 0 ,

(2h0 - <βM qo)u = 0 .

Similarly, substituting (paΛ, qo)z = <s1( qo)z + <s0, qo)z and (6) into (3), we

get

f/.=/, = 0 ,
( 8 ) 2/, + <βlf go>z = 0 ,

,2/i - <A, go>z = 0 .

Since (p0, pβfl> = <p0, so> + (pQ, s,) = -2s 0 + 2^, (7) and (8) give the re-
quired equation (*). q.e.d.

Note that we have completed the proof of Theorem 1.

6. A further characterization. In this section we give a further
characterization of {pa} and {qa} under an additional condition (A) for a
later use. Let {pa} be m^ + 1 quadratic forms on Y satisfying (3-1) and
(3-2). With the notations in § 5, we state

LEMMA 17. The following three conditions are mutually equivalent:
( i ) (Pa, Pβ) = 0 for distinct a, β;
(ϋ) (Pa, Pa) = (Pβ, Pβ) for distinct a, β;
(iii) paΛ = 0 for each a.

PROOF. AS one can see easily, to prove Lemma 17, it suffices to show
that, for each a > 0, the following three conditions are mutually equiva-
lent:

( i ) ' <Po, Pa) = 0;
( ϋ ) ' <Pθ, Pθ) = (Pa, Pa)',
(iii)' p β l l = 0.
Using Lemma 14, we give matricial representations for (p0, pa), (pa, pa)

and paΛ. In the following, the indices for submatrices are omitted. We
have

/0 0 6\

<Po, Pa)~210 0 - c

W - c ' 0/

laa' + W be' ac

ay Pa) ~ 4 ( cV a 'a + cc' a'b

c'a' Va b'b + c'cl



0

0

b'

0

0

c'

b

c

0
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PaΛ

Thus, (i)' «=> (iii)' and (ill)' => (ii)' are clear. Suppose (ii)'. Then aa' +
66' — 1. Since aa' + 266' = 1 by Lemma 14, we see 66' = 0, and hence
6 = 0. Similarly we have c — 0. This proves (ii)' => (iii)'. q.e.d.

From now on we denote by (A) one of the three conditions in Lemma
17. Now assume that {pa} satisfy the condition (A) together with (3-1)
and (3-2). We remark here that the image and the kernel of Pa are
independent on a and that the condition (3-3) follows automatically. We
put, for each a,

(6.1) R a = Pa \UΘV .

We see that Ra is a symmetric mapping of Z70 V into itself and for
a = 0, Ro IZT = 1̂ , B0\v = — I F - Furthermore it is easily seen that the
family {Ra} satisfies the following two conditions:

(5-1) Rl = lUΘr , Tr Ra = 0 for each a

(5-2) RaRβ + RβRa = 0 for distinct a, β .

Conversely, we have

LEMMA 18. Let {Ra} be mx + 1 symmetric mappings of £70 F into
itself satisfying (5-1) and (5-2). Then we can associate mt + 1 quadratic
forms {pa} on Y satisfying (3-1), (3-2) and the condition (A) with the
relation (6.1) for each a.

PROOF. For each Ra, we define Pa by

[Ra on U@ V
P" (0 on Z.

Then Pa is a symmetric mapping of Y = Ϊ 7 0 7 0 Z . Now (5-1) implies
(4-l)α for each a. From the construction of Pa, it follows that (4-2)α>i9

is a consequence of (5-2). Let pa be the quadratic form on Y corre-
sponding to Pa. {pa} satisfy the required conditions. q.e.d.

LEMMA 19. Assume that {pa} satisfy (3-1), (3-2) and the condition
(A). Let {qa} be m1 + 1 cubic forms on Y. Then (3-3) and (3-6) follow
immediately. The conditions (3-8), (3-9) and (3-10) can be written
equivalently as

(5-8)
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(5-9) (qa, qa) = G - pi + 4(Σ u\ + Σ *>0(Σ *ϊ) for each a ,

(5-10) (qa, qβ) = — pαp/? for distinct a, β

respectively.

PROOF. By Lemma 17, we see that (3-3) and (3-6) follow immediately
from (A). For G = Σ P L consider (G, G). We have

= 4 Σ Pί<P«, Pa) = 4 ( Σ Pi)<3»b, ί>o>

This gives (3-8) <=> (5-8). Since each pβ is a quadratic form on ί / 0 F,
we have

« Pa>, Pβ) = «Po, Po>, Pβ)

= «Po, Po>, Pβ)uΘv =

Thus, we have

«Pa, Pa), G) =

Σ
β

This and Lemma 17 give (3-9) <=̂  (5-9). Lemma 17 gives also (3-10)*=*
(5-10). q.e.d.

By Lemmas 18 and 19, it follows that for a given {Ra} satisfying
(5-1) and (5-2), the required conditions for {qa} in Theorem 1 are now
(3-4), (3-5), (3-7), (5-8), (5-9) and (5-10).

For a later use, we give the following lemma.

LEMMA 20. Let {pa} be m1 + 1 quadratic forms on Y satisfying
(3-1), (3-2) and (A). Then pOf' -,pmi are algebraically independent
over R.

PROOF. First we prove that pQ, , pmi are linearly independent over
R. Suppose Σa>aPa = 0, aaeR. We have for any β,

KPβ, Έ^aPa) = O,β(Pp,
\ a I

and hence aβ = 0. Next suppose

Σα.o ««1Pί° P«"1 =

Since each pa is a quadratic form, we have
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. Σ ^to"'imιPo0 pίζ1 = o

for each I. We shall show α v . . < W i = 0 for all i0, . . . , imi. This will be

shown by the induction on I = i0 + + imi. The case ί = 1 has been
proved. For each β, we have

<Pβf Σ °>H'~imipi* - K ? >

= Σ iAo i.jPί0 ' P^" 1 pQiPof Po) .

Using this, one can complete easily the proof. q.e.d.

7. Representations of a Clifford algebra. In this section we prove
certain lemmas concerning representations of a Clifford algebra for a later
use.

Let F be an associative division algebra over R, i.e., F= R, C or
the real quaternion algebra H. We denote by Mm(F) the algebra of all
m x m matrices with coefficients in F, and by l m the unit matrix in
Mm(F). Mm(F) is called the total matrix algebra over F of degree m.

For each non-negative integer ic, we denote by Cκ the Clifford algebra
over R associated to the negative definite quadratic form — ( , ) on Rκ,
where ( , ) is the usual inner product on Rκ. Let {eu •••, eκ) be an
orthonormal base for Rκ with respect to ( , ) . Then Cκ is the associative
algebra over R with the unit 1 generated by el9 , eκ with the relations:

(el — — 1 for each k ,

\eφι + etek = 0 for each distinct k, I ,

and {1, ekl ekr; kλ < < kry 1 ^ r <; Λ:} forms a basis of the underlying
vector space of Cκ, and hence dim Cκ = 2\ We denote by #—>α* the
canonical involution of Cκ, that is, the anti-automorphism of Cκ satisfying
ek = —ek for each k. A homomorphism

p: Cκ — Mm{R) with p(l) = lm

is called a representation of CΛ of degree m. Two representations |O, p
of CΛ of degree m are said to be equivalent if there exists A e GL(m, R)
such that ρ(x) — Ap(x)A~ι for each x e Cκ. The set of equivalence classes
of representations of Cκ of degree m will be denoted by ^m(CK).

We consider a representation ^ of Cκ of degree m satisfying

(7.1) p(x*) = p(x)' for each xeCκ ,

where ' indicates the transpose of a matrix. Two representations p, p of
Cκ satisfying (7.1) are said to be orthogonally equivalent if there exists
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σ e O(m) such that ρ(x) = σp(x)σ~1 for each x e Cκ. The set of orthogonal
equivalence classes of representations of Cκ of degree m satisfying (7.1)
will be denoted by &m(CKf *).

LEMMA 21. The natural map:

is a bijection.

PROOF.* The bracket operation [x, y] = xy — yx on Cκ defines a Lie
algebra over R, which is denoted by g. Since Cκ is a semi-simple algebra
over R, it is the direct sum of a finite number of total matrix algebras.
It follows that g has a natural structure of reductive algebraic Lie algebra
over R. Now the canonical involution x-+x* of Cκ is a positive invo-
lution in the sense that the symmetric bilinear form Ύr(Lzy*) on Cκ is
positive definite, Lx being the left regular representation of Cκ: Lxy = xy.
In fact, for x0 = eh . eir, y0 = eh e i f(i1 < < i r, Λ < < i8), we
have

[1 r = s, {ix, •••, ΐr} = {jί9 ••-, i8}

I ±eh e^, t > 0 otherwise ,

where

{K , h) = {ii, , ir} U {j\, - , j8} - {ii, , ir} Γl {jl9 , j8} .

Thus we have

_ (dim C, = 2Λ > 0 r = s, {iu - , ir} = {ilf , j,}
x°v*° ( 0 otherwise ,

and hence Tr (Lxy*) is positive definite on Cκ. Thus, by a theorem of
Weil [8], the map θ of g defined by x—»-x* is a Cartan involution of g.

We shall show first the surjectivity. Let p be a representation of
Cκ of degree m. Then the representation

p: g —• gl(m, Λ)

is completely reducible. Hence there exists a Cartan involution ΘQ of
gl(m, i?) such that

θ<{p{%)) = p{θ{%)) for each x e g .

ô can be expressed as

= —P~ιX'P for X€gl(m, J?)

* The proof of surjectivity is due to I. Satake.
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by a positive definite symmetric matrix PeMm(R). Thus we have

p(x*) = p-1p(x)'P for xeCt.

Put A = P12 and

ρ(x) = Ap(x)A~1 for xeCκ .

Then we have for each xe Cκ

p(x*) = Aρ(x*)A~ι = AP-'pixYPA'1

= A-WxYA' = p(xY ,

and hence p satisfies (7.1). This proves the surjectivity of the map.
To prove the injectivity, let p and p be mutually equivalent represen-

tations of Cκ satisfying (7.1). Let Ae GL(m, R) such that

(7.2) β(x) = Ap(x)A~1 for xeCκ.

Then we have p(x*) — Ap(x*)A^ for each x e Cκ. From the condition
(7.1) we have p(x)' = Ap(x)Ά~1 and hence

(7.3) p(x) = A'~ιp{x)A! for xeCκ

(7.2) and (7.3) imply that the symmetric matrix A'A commutes with each
p{x). Now write A as the product: A = σP of σe O(m) and a positive
definite symmetric matrix P. Then A'A = P2 commutes with each p(ek).
From the condition (7.1), τt — exp tp(ek) is in 0(m) for each t e R, and
hence τtPτjγ is also a positive definite symmetric matrix. It follows from
τtP

2τiι = (τtPτϊ1)2 — P2 that each τt commutes with P and hence each
p(ek) commutes with P. Since Cκ is generated by eί9 •••, eκ, we have

p(x) = σρ(x)σ~1 for x e Cκ .

Thus p and p are orthogonally equivalent. q.e.d.

The subspace of Cκ spanned by el9 , eκ is identified with Rκ in a
natural way, and any orthogonal transformation σ of Rκ(σ e O(κ)) is
extended uniquely to an automorphism σ of Cκ. For a representation p
of CΛ of degree m, we define another representation σp by

(0p)(x) = p{σ~ι%) for # e Ĉ  .

If |O satisfies (7.1), then 07? also satisfies (7.1), since the automorphism
σ of CΛ commutes with the canonical involution #—*#*. The correspond-
ence (σ, p) —> σp gives an action of O(ιc) on &m(Cκ) and on &m(CK9 *). Let
O(ic)\^Pm(Cβ) and O(ιc)\&m(CK9 *) denote the spaces of O(/c)-orbits respec-
tively. Since the natural map &m(Cκ, *) —* &m(Cκ) is O(Λ:)-equivariant,
Lemma 21 gives us the natural bisection



546 H. OZEKI AND M. TAKEUCHI

Cc, *) - O

We cite Atiyah-Bott-Shapiro [1]: We have an isomorphism

(7.4) C.+, = C t ®

and the Clifford algebras C'cs for /c <ί 8 are given by the following table;

ιe

1

2

3

4

5

6

7

8

c.

c
H

HφH

M2(H)

Ma(R)

M8(R) φ ikf8(/2)

M.(Λ)

d(κ)

2

4

4

8

8

8

8

16

where d(/c) denotes the degree of irreducible representations of Cκ. We
have

(7.5) d(fc + 8) = 16d(κ)

in virtue of the isomorphism (7.4).

LEMMA 22. For K ^ 1, O(/c)\^+1(CΛ, *) is not empty if and only if
fc = 1, 3 or 7. For £ = 1, 3 or 7, O(ic)\^?c+1(C«, *) consists of exactly one
element, represented by an irreducible representation of Cκ.

PROOF. By Lemma 21, it suffices to show the above for the set
O(κ)\^κ+1(Cκ). From (7.5) we have

d(κ + 8) - (A: + 8) = 16d(/r) - K - 8
= (15d(fc) - 8) + (d(fc) - ιc)> d(fc) - it .

It follows that if &K+1(CK) is not empty, then K ̂  8 and &K+1(CK) consists
of equivalent classes of irreducible representations. From the table cited
above we get the first assertion of Lemma 22.

In case ic — 1, d = C and ^(CΊ) consists of just one class. In case
K = 3, C3 = H@H and ^ 4(C 3) consists of two classes. Putting z = exe&
in C3, we define /+, /_ e C3 by

= i-(l + z), /_ = 1(1 - z) .
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Then they are primitive idempotents of C3 defining the decomposition
Cs = H®H. Since - l 3 e 0(3) transforms /+ into /_, O(3)\^4(C3) consists
exactly one element. In case it = 7, we see similarly that O(7)\^?8(C7)
consists exactly one element, making use of the element z = eγez e7 e C7.

q.e.d.

For K = 1, 3, 7, we have C ^ = R, H, M8(R) respectively. Hence we
have

LEMMA 23. For tc = 1, 3, 7, the set &m(Cκ.lf *) is not empty if and
only if m is a multiple of 1, 4, 8 respectively. In these cases, &m{Cκ-u *)
consists of exactly one class.

Now, let fc, m be positive integers. Consider a family {ak}ιύk^κ of /c
matrices in Mm(R) satisfying the following condition:

lakak = l m for each k

\a>kθ>ι + a>Ίa>k = 0 for distinct k, I .

Two such families {ak}, {ak} are said to be equivalent and denoted by
{ak} — {ak} if there exist σ,τe 0(m) such that

ak = tfajT'1 for each & .

They are classified in terms of representations of Clifford algebras as
follows.

LEMMA 24. The set of equivalence classes of families {ak} of K matrices
in Mm{R) satisfying the condition (7.6) is in a bijective correspondence
with the set &m(Cκ-.u *).

PROOF. Let p be a representation of C^ of degree m satisfying
(7.1). We define K matrices au — ,aκ by

(ak = p(ek) 1 <: k ^ ic - 1 ,

\<*>κ = l m

Since we have

(ak = —α f c, α | = — l m for each &, 1 <:k<^ /c — 1

+ αzα fc = 0 f o r d i s t i n c t k,l,l£kflt£κ — l 9

the family {ak} satisfies the condition (7.6). The correspondence p —• {ak}
induces a map of ^ , ( C M , *) into the set of equivalence classes of families
{ak} satisfying (7.6). One can see easily that it is bijective. q.e.d.

Next, consider a family {Ak}lύkύκ of K matrices in Mm(R) satisfying
the following condition:
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[A'k = - Λ , A\ = - l m for each k
(7.7)

[AkAt + A,AA = 0 for distinct fc,
Note that the condition (7.7) implies the condition (7.6). Two such families
{Ak}, {Άk} are said to be equivalent and denoted by {Ak} p* {Άk} if there
exist σ e O(m) and τ — (τkl) e O(/c) such that

Ah = Σ ^ί* 7^* 7" 1) for each k .

They are also classified in terms of representations of Clifford algebras
as follows.

LEMMA 25. The set of equivalence classes of families {Ak} of ic
matrices in Mm(R) satisfying the condition (7.7) is in a bijective corre-
spondence with the set O(fc)\&m(Cκ, *).

PROOF. For each representation p of Cκ of degree m satisfying (7.1),
we define K matrices Al9 , Aκ by

Ak = ρ(ek) for each k .

Then the family {Ak} satisfies the condition (7.7). The correspondence
p —• {Ak} induces a bijection required in our lemma. q.e.d.

From Lemmas 22 ~ 25, we have

LEMMA 26. There exists a family {Ak} of K matrices in MK+1(R)
satisfying the condition (7.7) if and only if ic = 1, 3, 7. For K — 1, 3, 7,
there exists a family {ak} of K matrices in Mm{R) satisfying the condition
(7.6) if and only if m is a multiple of 1, 4, 8 respectively. In these
cases, both of equivalence classes of {Ak} and {ak} are unique.

8. Examples of non-homogeneous isoparametric hypersurfaces. Now
we come back to families of quadratic forms {pa} and cubic forms {qa}
on Y—Rn. In this section we shall classify polynomials {pa}, {qa} under
certain conditions and construct two series of non-homogeneous isopar-
ametric hypersurfaces.

As in §5, let

be the eigenspace decomposition of the symmetric mapping Po corre-
sponding to p0, where U, V and Z are the eigenspaces for the eigenvalues
1,-1 and 0 respectively. Recall dim U = dim V = m2 and dim Z = mle

We choose orthonormal coordinate systems {wj, {vj and {zk} for U, V and
Z respectively. Each symmetric mapping Pk corresponding to pk for
k ;> 1 will be represented by a matrix with respect to these coordinates
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as in Lemma 14.

LEMMA 27. Assume that Po is represented in the above way. Then
the family {pa} satisfies (3-1), (3-2) and the condition (A) if and only
if (1) each Pk(l <̂  k fg m^) is represented by a matrix of the form

0 ak 0\

y f c o o
0 0 0/

with ak e Mm2{R) and (2) the family {ak} satisfies the condition (7.6) for
K = mγ and m = m2.

PROOF. First suppose {pa} satisfies (3-1), (3-2) and (A). Then the
family {Ra} of symmetric mappings of UφV associated to {pa} in §6
satisfies (5-1) and (5-2). The condition (5-2) for a = 0 and β = k implies
that Rk is represented by a matrix of the form

/0 aλ

U 0)
with ak e Mm2(R). Now (5-1) gives

( i ) aka[ = a'kak = l m 2 for each k ,

and also (5-2) gives

/••Λ (cM&ί + αzα'fc = 0
( n ) , for distinct k, I

[dβ + aia>k — 0

where 1 <; k, I ^ mx. (i) and (ii) together are equivalent to the condition
(7.6), thereby obtaining (1) and (2) of Lemma 27.

The converse follows from the above argument and Lemma 18.
q.e.d.

Now let {pa} be a family of quadratic forms on Y satisfying (3-1),
(3-2) and (A), and let {qa} be a family of cubic forms on Y. We assume
the following additional condition:

(B) For each a, qa is expressed as

Qa = Σ KβPβ

where λα/s are linear forms on Z.

First note that the above expression of qa is unique by virtue of

Lemma 20. We put

(8.1) λα^Σ<
N ' 7 . _ 1
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for e a c h a, βf a n d define m x m a t r i c e s A ί f •••, A m i in Mmι+ι(R) b y

(8.2) Ak = (aaβk)0^mi

for each kf 1 ^ k ^ m lβ

LEMMA 28. As in the above, suppose that {pa} and {qa} satisfy (3-1)
and (3-2) together with (A) and (B). Then, {pa} and {qa} satisfy the
conditions (3-4), (3-5), (3-7), (5-8), (5-9) and (5-10) if and only if the
family {Ak} of mγ matrices in Mmi+ί(R) satisfies the condition (7.7) and
the following condition:

(8.3) — Σ {(LarkQ'βδk + Q>aδkQ>βrk) — δaβδrδ

for each a, β, 7, δ with {a, β} Π {7, δ} = 0 .

PROOF. Note that the above condition (8.3) is equivalent to the
following two conditions:

(8.3.1) Σ a>aβk<*>ark = Sβr for each a, β, 7 with β Φ a, 7 Φ a
k

(8.3.2) Σ (Q>ark(*>βδk + a>aδkθ>βrk) — 0 for mutually distinct a, β, 7, δ .

Similarly, the condition (7.7) decomposes into

(7.7.1) Ak + A!k = 0 for each k

(7 7 2) I A ' * A f c = l m i + 1 f 0 Γ θ a C h k '
[A'kAt + A\Ak = 0 for distinct k, I .

First we show the following implications: (3-7) *=> (7.7.1); (7.7.1) => (3-4)
and (3-5); and then (5-8) ~ (7.7.2).

Recall (3-7): Σ PaQa = 0. We have

Σ PaQa = Σ KβPaPβ = ^Γ Σ { Σ farf* + ttω)pβj
α a,β 2 k ίa.β

By Lemma 20, we see (3-7) <=> (7.7.1). Since each λ^ is a linear form on
Z, we have (pa, Xβr) = 0. Thus, we have

(Pay Qβ) = ΈlXβr(Pay Pr) = ^βa(Pθy Po) t
r

using Lemma 17. Therefore we can write

(Pay Qβ) + (Pβy Qa) = (Kβ + Kβ)(Pθy Po)

This shows (7.7.1) => (3-4) and (3-5). Recall (5-8): Σ ? i = G ( Σ 4 ) . We
have
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Σ Ql = Σ ( Σ KβPβ)* = Σ KβKrPβPr
a a \ β / a,β,r

= — Σ {θ>aβ
2« β.r.k.ι

and

Now (5-8) is equivalent to

f Σ aaβka>anPβPr = Σ 2>? for each & ,

I Σ (a>«βkθ>an + a>aβia>ark)PβPr = 0 for distinct fe, Z ,

which is, by Lemma 20, equivalent to

ί Σ a>aβkθ>an = δβr for each /3, 7, & ,

Σ {a>aβkθ>ari + a>aβiθ>ark) = 0 for each /S, T and distinct fe, Z .

This is nothing but (7.7.2), thereby obtaining the implications described
first.

Henceforth we assume the condition (7.7). Consider the condition
(5-9). We have

<ϊ« Qa> = ( Σ KβPβ, Σ ^ α r
\ β r

= Σ <Kβ, Kr)PβPr + Σ λ^λα r<^, pr)
β,r β,r

= Σ a>aβkO>arkPβPr + 4 ( Σ ^ + Σ ^ ) Σ aaβkda
j9,r,fc 9fci

and

Again by Lemma 20, we see that (5.9) is equivalent to the following
three conditions:

( i ) Σ a>aβifl*rk = δβr for each a, β, Ύ with β Φ a, Ί Φ a

( ϋ ) Σ a>aaka>aak = 0 for each a

(iϋ) Σ &aβ*βaβi = $ki for each a, k, I .

Since (ii) and (iii) follow from (7.7), we have (5-9) <=> (i) = (8.3.1). By a
similar computation, we can see (5-10) =» (8.3.2) and (8.3) ==> (5-10).

q.e.d.
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Now we recall some properties of inner products on division algebras
over R. Let F be a (not necessarily associative) division algebra over
R, i.e., F = R, C, H or the real Cayley algebra K. Let c0 = 1, cu , cd^
be the standard units of F with d = dimF. u—+u denotes the canonical
involution of F. We put $F= {ueF\u = -u}. Then $F is a (d - 1)-
dimensional subspace of F spanned by c^ •••, cd^. The subspace J?l =
{ueF\u = u) will be identified with R in a natural way. On F,

(u, v) = —(uv + vu)
Δ

defines an inner product with the following properties:

(uf v) = (u, v) ,

(uv, w) — (v, uw) = (u, wv) ,

u(vw) + v(uw) = (wu)v + (wv)ΰ = 2(u, v)w .

K, clf , Cd-J forms an orthonormal basis of F with respect to the above
inner product. The dual base {u0, uu •• ,u(2_1} of {c0, cl9 •• ,cd_1} forms
an orthonormal coordinate system for F, which we call standard. ( , ) is
extended to the m-column vector space Fm by

(u, v) = —{u'v + v'v)
Δ

for u, v 6 Fm, where ' denotes the transpose. The standard orthonormal
coordinate system for Fm consists of {u[λ) |0<;ΐ<^cZ — 1, l ^ λ ^ m } where
{u[λ) 10 ̂  i ^ d — 1} denotes the standard orthonormal coordinates for the
λ-th component ua) of ueFm. We write also \\u\\ for the norm (u, u)υz

of a vector u.

THEOREM 2. Leέ mι and m2 be positive integers such that N =
2(mι + m2 + 1), and set n = m1 + 2m2.

( i ) There exist mt + 1 quadratic forms {pa} and mγ + 1 c^6ic forms
{qa} on Y = Rn satisfying the equations (3-1) ~ (3-10) together with the
conditions (A) and (B) if and only if the pair (ml9 m2) is one of the
following three types: (1, r), (3, 4r), (7, 8r) for some positive integer r.
In these cases, the polynomial F associated to such {pa, qa} is unique up
to (0N)-equivalence.

(ii) The polynomial F on RN associated to such {pa, qa) is given
explicitly as follows:

(a) (mlf m2) = (1, r); We define a polynomial Fo on R2{r+2) = Cr+2 by
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and set F = r* - 2F0.
(b) (mx, m2) = (3, 4r) or (7, 8r); F denotes H or K according to m^ =

3 or 7. TPe dβ./me α polynomial Fo on RN = F 2 ( r + 1 ) = F r + 1 x F r + 1 6j/

F0(u xv) = m\u'v\\> - (u, vf) + {\\uA\% - ll^ll 1

for
0 , v = ° , u0, vQeF, ul9 v,e

/ \V /

eί F = r4 - 2 ^ .
J^ eαcfc case, i*7 satisfies the differential equations (M) of Mϋnzner.

REMARK. Takagi-Takahashi [7] gave the multiplicities of principal
curvatures for homogeneous isoparametric hypersurfaces in spheres. Our
pairs (mu m2) of multiplicities in the case (b) do not appear in their table
except (mlf m2) = (3, 4). Hence our isoparametric hyper surf aces given
in the above case (b) are not homogeneous, possibly except the case
where {mu m2) = (3, 4). However, in Part II it will be shown that our
isoparametric hypersurf aces for (mu m2) = (3, 4) are also non-homogeneous.

PROOF OF (i). The "only if" part follows immediately from Lemmas
26, 27, 28. Conversely, assume that (mu m2) is (1, r), (3, 4r) or (7, 8r).
Let F = C, H or K respectively, so that dim F = mt + 1. In the following,
indices k, I, and a, β, run through 1, 2, , m1 and 0,1, , mL

respectively. For u, v e F we have

(cku, v) = (u, ckv) — —{ckv, u) for each k

ck(cku) = —ck{cku) — —{ck, ck)u — —u for each k

ck(cιu) + cx(cku) — —ck(cιu) — cx{cku) = —2(ck, Cχ)u = 0

for distinct k, I .

We define Λ, •••, Amie Mmi+1(R) by

A* = (aaβk)Oza,βzmι with aaβk = (ckcβf ca)

for each k. Then {Ak} satisfy (7.7) as is easily seen from the above
properties. Consider (8.3). For each a, β, 7, δ with {a, β} Π {7, 3} = 0 ,
we have
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Σ (<*>arka>βδk + Cbaδk^βrk)
k

= Σ (CkCy, Ca)(ckCδ, Cβ) + Σ (CkCδ, Ca)(ckCr, Cβ)

= Σ (cεcr, ca)(cεcδ, cβ) + Σ (cεcδ, ca)(cεcr, cβ)
e e

= Σ (C., CaCr)(cε, CβCδ) + Σ (Ctt CaCδ)(cε, CβCr)
ε ε

= (Ccfiγ, CβCδ) + (caCδ, CβCr)

= {cβ(cacr), cδ) + (cδ, ca(cβcr))

= 2(cβ, cα)(c r, cδ) = 2(cα, cβ)(cr, cδ)

= 2daβdrδ ,

and hence we have (8.3) for {Ak}.

Next, we define m1 matrices {ak} in Mm2(R) as follows: for m1 = 1

a>k = lr ,

and for m^ — 3 or 7

where Ak appears r-times in the diagonal. One sees easily that {ak}
satisfy (7.6).

Now by Lemma 27 we can associate to the matrices {ak} mι + 1
quadratic forms {pa} on Γ, satisfying (3-1), (3-2) and (A). From the
matrices {Ak}, using (8.1) we can define mι + 1 cubic forms on Y, satisfying
(B). Our polynomials {pa}, {qa} satisfy, in virtue of Lemma 28, (3-4),
(3-5), (3-7), (5-8), (5-9), (5-10), and hence the equations (3-1) - (3-10) by
Lemma 19, which proves the "if" part of (i).

It remains to prove the uniqueness. Let {pa, qa} and {pa, qa} be two
families of polynomials on Y satisfying the conditions in (i), and let F
and F be the associated polynomials on RN respectively. Let

(1) Y

(2) γ

be the eigenspace decompositions of symmetric mappings Po, Po corre-
sponding to Po, Po respectively. We take orthonormal coordinate systems
{Ui}> {Vi\f {&k} for U, V, W respectively. Linear mappings of Y will be
represented by matrices with respect to these coordinates.

Choosing σx e O(n) such that σJJ ^U.σjί ~V and σ^Z = Z, we put
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Then the polynomials {p{«\ q{

a

1]} also satisfy the conditions in (ί) and the
eigenspace decomposition of P<5υ corresponding to p{

o

ι) is the same as (1).
The condition (B) for {pa, qa] and {p*\ q{?) gives {Ak} and {A?} in
Mmi+1(R) respectively, which satisfy (7.7) by Lemma 28. It follows from
Lemma 26 that {Ak} & {Ak

ι)}, that is, there exist φ = (φkl) e 0{m^ and
τ = (τaβ) e 0{m1 + 1) such that

Ak

ι) = Σ φkiiτAiτ-1) for each k .

We put

P{

a

2) = Σ*τaβpβ .

Then the quadratic forms {p'f} also satisfy (3-1), (3-2), (A). Let

be the eigenspace decomposition of P<S2) corresponding to p{

0

2). Choosing
σ2e O(n) such that σ2U

{2) = U, σ2V
{2) =V,σ2\Z = identity, we put

Then {ί>̂ 3)} also satisfy (3-1), (3-2), (A), and the eigenspace decomposi-
tion of P<S3) corresponding to p^ is the same as (1). It follows from
Lemma 27 that {p™} and {p™} define {α£}} and {αi3)} in AΓ^(Λ) respectively,
satisfying (7.6). By Lemma 26, we have {ak

ι)} ~ {αi3)}, that is, we can
find σ3, σ4 e O(m2) such that

Γ1 = αi1} for each & .

Putting together σd, σ4 and 9?"1, we get an element σ3 x σ4 x ^ - 1 e O(m2) x
O(ra2) x O ί m J c O W Put σ = σSpz x σ4 x ? ' ι ) α , 6 θ W . Then we have

Pa = Σ τaβ(σpβ)f qa = Σ r β ^ ^ ) for each α ,
3 s

which gives the required uniqueness. In fact,

Σ τaβ(σpβ) = σp{2) = σx(ί73 x σ4x φ'ι)pS} = (J1p^1) = p α .

Denoting by aaβk, a$k the (α, /9)-elements of Ah, A? respectively, we have

^ Γ Y Σ τaβ(σqβ)) = (σ3 x σ4 x ?>"W Σ

= Σ τaβaβrι(<p-%)(σz x σ, x
8i

— ^ i Έ'aβ@fβΐlτ kflδΐ^kPδ — / i &aδk%kPδ — Vα
β,ϊ,δ,l,k δ,k
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and hence

Σ *aβ (<7Qβ) = Qa .

It follows that F and F are O(iV>equivalent.

PROOF OF (ii). (b) m1 = 3 or 7. Let F = H or K respectively. Let

U =Fr, V = Fr, Z = F, W = F, Z =

and let

be the orthogonal direct sums. Elements of U, V, Z, W will be denoted
by u, v, z, w respectively. The standard orthonormal coordinate systems
for U, V, Z, W are denoted by {ulλ)}, {Viλ)}, {za}, {wa} respectively, and they
as a whole form an orthonormal coordinate system for RN. As a base
point e in RN, we take the unit cQ in Z so that we have z = z0 in the
notation of §3. We compute polynomials {pa}, {qa} on Y corresponding to
matrices {ak}, {Ak} given in the proof of (i), with respect to the above
orthonormal coordinate system. We have

O2 - W'Yi = \\u\\* - \\v\\2,

= 2 Σ (CΛ, eM"υ{," = 2 Σ (c*v(i), it'11) = 2(c», w'17) ,

Σ
β,h

= Σ {(̂ fcCo, Ca)p0 Σ

= Σ {(^0, ca)(\\u\\2 - IMI2) +

= (c0, zca)(\\ u II2 - | | v ||2) + 2 Σ (*, 2cβ)(c,, wfiJ) ,

where we have

(c0, ^cα) = (z, ca) ,

Σ (Ci, ZCa)(Cι, U'V) = (2Cβ, tt'lΓ) - (Co, «Cα)(c0, W fv)

= (zcaf u'v) - («, ca)(u, v) .

Hence we have

Qa = (z, cα)(||^||2 - ||v |Γ - 2(u, v)) + 2(zca, u'v) .

In particular, q0 = 2(2, wfv). Now we have
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Σ (Nil IMI>o Σ
a k

= (IMI2 - ||v||2)w0 + 2{w, u'v) - 2(c0, u'v)w0

= (Nil2 - IMP - 2{u, v))wa + 2(w, u'v) ,

Σ « A = (2, M>)(IMI2 - \\v\\*-2(u, v)) + 2(zw, u'v) ,

k

«ιι - \\v\\y + M\U'V\\2 - 4(«, v)2.

Furthermore we have

<pa, Pβ) = 4(|Iu||2 + Hvll2)^ for each a, β .

Recall Lemmas 4, 5, 6, 7. The polynomial F on Λ^ associated to {pa}, {qtt}
is given by

F = 2i +

+ 8zo{\\u\\* - \\v\\* - 2(«, «))w, + 2{w, u'v)}

+ ( N i l 2 + Ibll2 + Pll 2 ) 2 - 2{(|MI2 - | b | | 2 ) 2 + 4|lu't;| |2 - 4(tt, i;)

+ 8{(«, w){\\u\\* - \\v\\* - 2(tt, v)) + 2(2w, tt'iO}

+ 8( | |u | | 2 + | |v | | 2 ) | |w | | 2 -

= zt + 2z&\\u\\* + IMI2 + ||

- 6z?|M|2 - 6(|M|2 + IM

+ 8«0w0(||^||2 - | b | | 2 - 2{u, v)) + %{z, w)(\\u\\2 - \\v\\* - 2(u, v))

w, u'v) + 16(2w, u'v)

Putting ζ = zoco + z 6 Z (z e Z), we have

F = ( | |u | | 2 + H-υll2 + | | ζ | | 2 ) 2 - 6 ( | N | 2 + | b | | 2

+ 8(ζ, w)(||zt||2 - || v ||2 - 2(u, v)) + 16(ζw, u'v)

+ 8(ζ, w)(\\u\\* - IMI2 - 2(«, v))

- 2 ( | | u | | 2 - | b | | 2 ) 2 - 8 | | « ' ? | | 2 + 8

Seieng
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\\u'v - ζw||2 = ||^'i7||2 - 2(ζw, u'v)

(INI 2 - IMI2 - 2(ζ, w)f = (INH2 - | | * | | 2 ) 2 - 4(ζ, w)( |M| 2 - | |t;| |2) + 4(ζ,

((*, v) - (ζ, ̂  ))2 = (u, ^ )2 - 2(ζ, w){u, v) + (ζ, ̂ )2 ,

we get

F = r4 - 2F0

where

F o = m \ u ' v - c ^ l l 2 - ( ( * , v ) - ( C ^ ) ) 2 } + ( l l ^ l l 2 - I b l l 2 - 2 ( ζ , W ) ) « .

We put u0 = ζf v0 = —w, and

u1

Then we have

- O - o
Fo = 4 { | | ^ | P - (ult v,Y) + (NIP - IMP + 2(u0, vo)Y ,

which shows the case (b) of (ii).
(a) m1 = l. Let

U = Rr, V = Rr, Z = C, W = C, Z =

and let

be the orthogonal direct sums. In the same way as (b), we get

F = r* - 2F0

where

Fo = Mίu, v) - z,wx + Zίwoγ + (IMP - IMP - 2(ζ, w)Y .

We put

ξι = u{

0

X) + V^ϊ v{

0" for λ = l , . . . , r ,

f = ((2 Wj + V ^ Ϊ ( 2 + W)}

Then we have

Σ β = (INI1 - IMI1 - 2(ζ, w)) + 2ι/=ϊ((«, v) - «,«>x + «,«;„) .
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Thus we have

r+l

which shows (a) of (ii). q.e.d.
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