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Introduction. The (real-)analytic behavior (near the boundary) of
solutions of the so-called 9-Neumann problem seems to have been un-
known. In this paper we show that the global analytic-hypoellipticity
(up to the boundary) holds on certain domains in Cn with analytic
boundaries.

A systematic study of the 9-Neumann problem was made by Kohn
[3], and the most difficult part of his work was the proof of the C°°
hypoellipticity (up to the boundary). Soon after, Kohn and Nirenberg
[5] gave an elegant proof of the C°° hypoellipticity by establishing the
so-called subelliptic estimate. Their method is today used for various
problems as the standard technique. However, it seems difficult, even
if possible, to deduce the analytic-hypoellipticity of the 3-Neumann problem
from the subelliptic estimate.

Under these circumstances we introduce in Lemma 2 a certain special
vector field tangential along the boundary, which can be constructed
in the case the Levi form is non-degenerate. It possesses the pro-
perties nice enough to carry out the commutator estimates (Lemmas 4
and 5), and these estimates together with the a priori estimate (Lemma
1) lead us in the usual way (see, e.g., Morrey and Nirenberg [6]) to our
result. Our a priori estimate is suggested by a paper of Kohn [4].

It should be mentioned that the local problem still remains unsolved,
and our method may not be applicable.

1. Statement of the theorem. Let MaCn be a bounded domain
whose boundary bM is regularly embedded in Cn with real codimension
one. In all that follows we shall assume that the standard hermitian
metric is given in Cn and that bM is analytic.

Let r denote the geodesic distance to bM measured as positive outside
M and negative inside M, and normalized so that | dr |2 — 2 near bM,
where | | is the length defined by the metric in Cn. With a sufficiently
small constant p > 0, we denote by Ω'p the tubular neighborhood bM x
(-p, ρ\ i.e., {P 6 Cn; -p < r(P) < p}, and we set Ωp = M n Ω'p, where M
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is the closure M U bM of M. By Tt we denote the subbundle of the
complexified tangent bundle CT over Ω'p consisting of all vectors X such
that <eZr, X) — 0, where < , •> is the duality between covectors and
vectors. Letting TM c CT be the space of vectors of type (1, 0), we set
jιι,o _ yi.o η τ^ rphen the Levi form at P e £?;> is defined as the hermitian

form given by

(Γί °)P x (ϊT)P a (xί9 x2) M> <39r, x, Λ x2y ,
where (Γ}>0)P denotes the fibre of the vector bundle ΓJ'0 over P, and X2

the complex conjugate of the vector X2.
Let J^p'q denote the space of forms of type (p, q) on M having C°°

extensions to Cn across the boundary bM. For φ, ψ e J^p>q the IΛinner
product and norm are defined by

and ||^||2 - (φ, φ) ,

respectively, where < , •> is the pointwise inner product, and dV the
volume form on M. The completion of J^p>9 under the norm || || is

denoted by jχ?p'q. For the Cauchy-Riemann operator 9: J^^ 9"1^ J^p 9,
its formal adjoint #: J^p>q -+ j^^ 9"1 is defined by the requirement that
(&Φ, Ψ) = (Φ, 3ψ*) for all ψ 6 J^^ 9"1 with compact supports in M. Now
for a differential operator D, we denote by σ(Z), dr) its principal symbol
at dr. Then integration by parts gives us

for all φejzfp'9 and α/r e j^ *"1, where rfS denotes the volume form on
&M defined by the induced metric and normalized so as to avoid the
annoying constant. We set

&p'q = {φe J^ 9; σ(&, dr)φ = 0 on bM} ,

and define the quadratic form Q( , •) on ^p>q by

Q(<P, f ) = (5 ,̂ 3^) + (̂ , *t) + (?>, f ) , 9, f 6 ^rp 9 .

By &p'q we denote the completion of &p>q under the norm Q(φ, φ)1/2.

Consider the following variational problem: Given λ e C and a e j^p q

with q > 0, find φ e ̂ p'? such that

( 1 ) Q(?>, α/r) + (\φ, ψ) = (a, f ) for all f e ̂ p 9 .

Now the purpose of this paper is to prove the following theorem.

THEOREM. If the Levί form is non-degenerate and does not have
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exactly q negative eigenvalues in Ω'p, then every solution φ of the equation
(1) is analytic in Ωp whenever a is analytic there.

In all that follows we shall assume that all forms and functions we
consider are of class C°° in Ωp, for it has been shown (see, e.g., [1]) that
solutions φ of the equation (1) are of class C°° in Ωp under the hypothesis
of the above theorem.

2. Preliminaries. Let J^£'g denote the subspace of jyp>? whose
elements have compact supports in Ωp, and let &p

p'
q = J^£'9 Γ) 2&p<q.

Then we see that φ e &p

p'
q if and only if φ e J^^9 and σ(&, dr)φ = 0 on

bM. Recall that the principal symbols of the operators 9 and # at dr
are given by <j(9, dr)φ = dr Λ φ and σ(&, dr)φ = — dr\/φ, respectively,
where V is the contraction operation defined by (η y ω, θ} = <ω,)?Λ θ}.
Then setting n = σ( — d&, dr), we have by the formula of composition
that

( 2 ) &p'q = {φ e J^p'q; nφ = 0 on bM} .

It is easily seen that the operator ή: J^p

p

>g -* J^P

P'
Q is an orthogonal pro-

jection with respect to the inner product < , •>.
Let Γ(ΩP, E) denote the space of C°° sections of the vector bundle

E over Ωpf and let V x\ J^p

p'
9 — » Jϊfp

P'
Q be the (complex) covariant differen-

tiation along XeΓ(Ω'p, CT). We define a connection F on J^p'g by

Vx = nVxn + (1 - n)Pz(l - n) , Xe Γ(Ω'P, CT) .

From ( 2 ) we see that the operator V x maps ^£>g into itself whenever
X e Γ ( Ω f

p , Tt). The following formula of integration by parts holds:

( 3 ) (rzφ, t) = (<?, -(?χ + div X)γ) + {dr, X}(φ, f }dS ,
J δ Λ f

for XeΓ(Ωp,CT) and φ, ψ e j z f p

p ' q , where div^ denotes the divergence
of the vector field X. Denoting by [ , •] the commutation operation,
and by R the curvature tensor associated to the connection 7, one has

( 4 ) [ΓXl, FXJ = Γ[XliZl] + fi(-Σi, -Σ,) , -rlf X, e Γ(Ω'P, CT) .

Recall that for 0, 9>eΣp,<r^Pi%

( 5 ) F*(0 Λ 9>) - θ Λ FW + Vxθ Λ ^ , Fz(ff V φ) = θ V V xφ + PχθVφ .

We also employ the local expressions. Let R denote the dual vector
field of dr and let T*1>0 be the space of covectors of type (1, 0). For
P e bM and ε > 0 we denote by F(P; ε) the ε-neighborhood of P in bM.

DEFINITION. An open set U = F(P; ε) x (— p, 0] c Ωp with P e bM and
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ε > 0 is called a boundary chart (b-chart for short) if an analytic ortho-
normal basis (I/!, •••, Z/J of Γ([7', ϊ™) with Ln = R can be chosen on
U' = V(P; 2e) x (-p, p). A b-frame (Lt) on a 6-chart Z7 is the restriction
to Z7 of this basis on U', and a b-coframe (ω1, •••, α>") on 17 is the basis
of Γ(Z7, Γ*1-0) dual to some 6-frame on U.

Since bM is compact and p is sufficiently small, Ωp is covered by a
finite number of 6-charts.

Letting (Lt) be a 6-frame on a 6-chart 17 and (ω1) be the dual 6-
coframe of (1̂ ), one has on U the following local expressions

= ώi Λ (Fr4 + Sτ)^ , tf?> = -Σ ώ* V
• •

for φ € J^?><?, where S? and St are operators of order zero with analytic
coefficients defined on the open set U' given in the above definition. Now
if we set for a 6-frame (Lτ) that

( 7 ) λ<7 = <33r, L, Λ L, > , 1 ̂  i, j£ n ,

then from the fact <3r, I/,) = §ΐ one can easily verify that

( 8 ) <3r, [Lt, L,]> - λ ΐ7 , <ar, [L4> Ly]> - 0 .

In view of the fact that λ^ with 1 <^ i, j ^ n — 1 represent the matrix
coefficients of the Levi form, we define the trace of the Levi form by
tr (L) = ΣS ^iϊ> which has an analytic extension to Ω'p.

Letting (I/;) be a 6-frame, we set for φ, ψ G

Σ <^ ̂ t>^ ̂  , (<P, tk* = ̂  Σ <?L

which are well-defined since the integrands are independent of the choice
of the 6-frame. Replacing Li by L* we define (φ, 0^)7 and (φ, ι/r)-t

similarly. Finally we define \\φ\\z, \\φ\\-ZJ \\φ\\n,t and \\φ\\τ,t by \\φ\\l =
(φ, Φ)*, and so on. Then in view of (4) and (8), we can verify by (3)
that there exists a constant C> 0 such that for all φe

( 9 )
V ' JbM

Similar calculation gives us for φ e J^p

p

>q vanishing on 6M,

(10) IH/ 7 ^!] 2 — l l ^ ^ l l 2 1 ^ C(||<£>||j + \\φ\\)\\φ\\ .

Now we define a norm N( ) on J^p>? as follows:

N(φ)2= \ [ φ \ \ ί + \\9>\\l.t+ H ^ l l 2 ,

Since the Levi form is non-degenerate on Ω'p, one can verify by (8) that
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for each X e Γ ( Ω f

p 9 CT) there exists a constant Cx > 0 such that

(11) I (?τ9>, t) I ̂  CzN(φ)N(ψ) for all 9, f e J^p 9 .

3. A priori estimate and a special vector field. We say that the

basic estimate holds in <&*•* if for some constant C > 0,

[ I φ |2 dS ̂  CQ(φ, φ) for all φ e ̂ " .
J6jtf

Recall (see [2]) that the, basic estimate holds in &p 9 if and only if the
Levi form has either at least n — q positive or at least q + 1 negative
eigenvalues at every point of bM. Then it follows from the assumption
that the basic estimate holds in &p>q in the present case.

Now one has the following a priori estimate.

LEMMA 1. If the basic estimate holds in &p'q, then there exists a
constant C > 0 such that

^ Q(φ, φ) ̂  CN(φ)2 for all φ e &p-« .

PROOF. Since —dr\/φ = σ(&, dr)φ = 0 on bM, it follows from (5)

and (10) that ||3r V PR9\\ ^ CN(φ), which implies in view of (6) that
Q(Φ9 Φ) ̂  CN(φf. Now it is well-known (see, e.g., [1]) that if the basic
estimate holds in &p>q then for some C > 0,

I l 9 > l l ί + I I 9 Ί Γ + \ \<P\2dS^CQ(φ,φ) for all φe&f *.
JbM

Therefore, the estimate N(φf ^ CQ(φ, φ) follows from (9) and the above
inequality. q.e.d.

Our a priori estimate is weaker than the so-called Garding's inequality.
To cover it up we construct in the following lemma a certain special
vector field Y, which will play an essential role in our commutator estimates
in the next section.

LEMMA 2. Suppose that the Levi form is non-degenerate in Ω'p. If
p is sufficiently small, then there exists an analytic vector field Ye
Γ(Ω'P, Tt) with 7= -Y such that

(12) <3r, [X, ΓJ> - 0 in Ω'P for all XeΓ(Ω'P, Γ} °0 2T) ,

(13) <3r, [R, Y]> - 0 on bM , <3r, Γ> - 1 on bM ,

where T?'1 denotes the subbundle of Tt consisting of vectors of type (0, 1).

PROOF. We first note that the condition (12) can be rewritten in
terms of 6-frame as follows: For every &-frame (I/*) on each δ-chart Z7,
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(14) <3r, [Lif Γ]> = <3r, [Li9 Γ]> = 0 in U for i ^ n - 1 .

Suppose that YeΓ(Ωp, Tt) is expressed on U as

(15) Y = w(JZ - R) + Σ ^% - Σ wy^y »
j=l J=l

with unknown functions u, vj and w*. Then by (8) we see that the con-
dition (14) is satisfied if and only if

(16) v* = Σ λ*(L, - \nΊ)u , w* =
ί=l <=1

where λ j are given in (7), and λίj' with i, ? <^ n — 1 are defined by
Σpί λjyλ** = δj. Now if v3' and wy are defined by (16), then the condition
(13) is fulfilled if and only if u satisfies

(17) Pu = 0 on bM and u = l on bM,

where P is a differential operator defined globally on Ωp by

P = R - λ^ - Σ λ^λ'Γ(Li - λn?) .
i,j=l

If u is real-valued, then from (15) and (16) it follows that Ϋ= -Y.
Thus it suffices to construct a real-valued analytic function u on Ω'p
satisfying (17). Now denoting by P the complex conjugate of the diffe-
rential operator P, we consider the following initial value problem:

(18) (P + P)u = 0 in Ωp , u = 1 on bM.

Since σ(P + P, dr) = <dr, R + R) = 2, the initial surface 6M is nowhere
characteristic with respect to the operator P + P. It then follows by
virtue of the Cauchy-Kowalewski theorem that there exists a real-valued
solution u of the problem (18) having an analytic extension to Ωp provided
p is small enough. Meanwhile, from the definition of the operator P we
see that the operator P — P consists of only first order terms and further-
more satisfies σ(P — P, dr) = {dr, R — R} — 0. In view of the fact that
u = 1 on bM, we obtain (P — P)u = 0 on bM, which implies together
with (18) that this solution u satisfies (17). q.e.d.

4. Commutator estimates. We begin with some algebraic formulas.

LEMMA 3 (Leibniz' formula). If D19 •••, Dm and B are linear diffe-
rential operators, then

(19) [Dm A, B] = Σ Σ (ad Dσ(m) ad Dσ(k+ί)(B))Dσ(k) - 0.ω ,
k=0 σe(m,k)
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(20) [B, A DJ = Σ'( - I)"1"* Σ D.ω - D.lκ(aά Da(k+lί . . . ad £>.(.,(B)) ,
fc=0 σe(m,fc)

where adD is defined by adD(B) — [Z>, 5], and (m, k) denotes the set of

all ί 7 j permutations a of 1, , m SMC/& that σ(ί) < < σ(Λ ) αm£

σ(k + 1)< < σ(m).

PROOF. The proof of (19) is contained in [7, pp. 575-576], and (20)
can be proved similarly. q.e.d.

Now let Xlf , Xm be arbitrary complex vector fields on Ω'p, Θ be a
1-form on Ω'p and B: J^p

p>9 — > J^p>g be a linear differential operator. Then
in view of (5) we get by induction the following two formulas:

(21)

= Σ Σ (?,<*> ?.<ι>0) Λ (ad Fσ(m) ••• ad
f c = 0 σ e ( m , f c )

(22) (ad^.-.-adF^ V

= Σ Σ ( ^ )̂ V (ad Fo(m) ... ad
fc=0 σe(m,fe)

for all 9> 6 J^P

p'q, where we use the abbreviated notations Vk = VΣk and

r* = v-**
We shall need two commutator estimates, the first of which is the

following.

LEMMA 4. There exist constants C09 Cl > 0 such that for all φ e SFf*
and all integers m ̂  1,

kl

where FJ denotes the formal adjoint (— FF — div Ϋ) of Vγ.

PROOF. Since <cZr, F> = 0, the formula (3) gives us

(3F?9>, 3F^φ) - (3φ, ΪVΓn<P) - ([3, F?]^, 3F?^)

From Lemma 1 we first get

I ([3, F?]9>, 3F?9>)|

Now if (LO is a δ-frame on a δ-chart U and (ω*) is its dual δ-coframe,
then in view of the expression in (6) we have from (19) in Lemma 3
and (21) that on Z7,
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[5,F?J?>=-Σ Σ -^<F'Fώ<)Λ((adFr)*(Fr4

From (4) we_see that the first order term of (ad Fr)*(Ff. + S?) is Fz with
J5Γ = (adr)*(L,), thus by Lemma 2 we have <3r, X> = 0 on bM. Since
all quantities are analytic, we obtain in view of (10),

I I [5,
ι=o l\

Similarly, the formula (20) in Lemma 3 gives us

Since F J = — 7γ — divΓ = FF + divΓ, we have

1 1 ((ad ΓJ)"-'5)F?9> 1 1 ^ C0CΓ-J'(m - j) !

while from the fact that P3

γd = 3PF + [F£, 3] we get

Therefore,

P) Σ C'o(2C1)
m~fc—-1

Next we consider the terms for λ Similarly to the case for 3, the term

[«?, Pγ]φ can be expanded by (22) into the sum of terms of the form

V

The same argument for 3 applies when ί <^ n — ί. In the case i — n,

if we notice that (F£3r) V Vl

Ύφ = 0 on bM, we can again use the inequality
(10) to obtain

) Σ C0Cr-fc

fc=o fe!

The term (&φ, [FJm, ^]F*?>) can be estimated similarly. q.e.d.

Now the Gram-Schmidt orthogonalization process gives us analytic
vector fields Zlf , Z2n e Γ(β;, T} ° φ Γ?'1) which span ΓJ'° 0 ΓJ 1 at every

point of Ω'p. Letting \K\ = l and Ff = F^ΛI VZκι for an ordered multi-
index K = (κlf ••-,£,) with 1 ̂  Ki ^ 2w, we set
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N(φ°, I, m) — max N(7j7%φ) for φ e ^fp

p

>g .
(I + m)\ ι*ι-ι

Then our second commutator estimate can be stated as follows.

LEMMA 5. There exist CQ, C^ > 0 such that /or all φ e ̂ op 9, integers
m^O and ordered multi-indices K with \K\ = I ^ 1,

/ I I "t

^ C^of Σ Cί~'N(φ; j, m) + Σ C[~sN(φ; j — 1, m + 1) + C[—1| 7γ+1q
\j=o j=ι m!

•(.̂ Σm C[-'+»-*N(φ; j, k) + .Σ^Cl-''+m~kN((P', j - 1, k + 1)

where (FfF?)* denotes the formal adjoint of 7j7γ.

PROOF. Similarly to the proof of Lemma 4, we get from (19) in
Lemma 3,

(I + m)r2|([3,

Σ

where we abbreviate F^4 to F,. Taking the commutator between Vγ and

^o(i) ^»ω» we get from (20) in Lemma 3,

v
/Ί τ \ | ^—' M -ί *σ(ι') *o(l) j r y "
^6 ~Γ Λ//i σe ^'^")

^ cίN(φ; j-l,k + l) + ± Cί-i'N(φ; j', k) + C/-i-||F£+19>||) .
V jv=o k\ /

Meanwhile, if we notice that (ΓfΓ?)* = F^mFΛ* F?lf then similar calcula-
tion gives us

(I + m)Γ2\(dφ, [(FfF?)*, d]7j7?φ)\

^ N(φ; I, m) gCoCr fe

/T *
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m Z-l Π Λ \ f ~ ~
II V ...17

1 '•<" • F« ω'

* ||[FfFi,,
(I + k)l

+ (N(φ; I, m) + N(φ; I - 1, m + 1) + +* || [Fr, FflF?9>||)

Σ Σ Cβ[-^-"N(φ; j, k)
k=0 j=0

These commutators have been estimated, and we obtain the estimate for
3. Similar argument also applies for $. q.e.d.

5. Proof of Theorem. With the lemmas established in the previous
sections, we shall prove our theorem stated in Section 1.

We first refer to the fact (see, e.g., [1]) that the solution φ of the
variational equation (1) satisfies, along with the so-called d-Neumann
conditions

(23) φeίjrp'q, dφe<irp'9+1,

the second order differential equation

(24) O + (1 + λ)?> - a ,

where Π denotes the complex Laplacian 9$ + #9. Since the operator
Π is of elliptic type and has analytic coefficients, the analyticity of φ
in Ωp — bM follows from that of a. Recalling that the boundary bM is
nowhere characteristic with respect to the operator Π> the analyticity
of φ in a neighborhood of bM will be obtained by virtue of the Holmgren's
theorem from that of the Cauchy data of φ on bM.

Now let ζ = ζ(r) be a real-valued C°° function of r satisfying ζ(r) — 1
f or r > - |0/3 and ζ(r) = 0 f or r < - 2/0/3. Recalling that

for all α^

we see by the routine calculation that the analyticity of the Cauchy
data of φ follows from the estimates of the rearranged form

(25) N(ζφ; I, m) ̂  C0C[CT for all Z, m ^ 0 .

Now we shall prove (25) by induction. We first show (25) in the
case I = 0, then for I > 0. In the following, the letters B0 and B^ will
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be used to denote known positive constants, depending only on the given
data, which may change from instance to instance, and the letters C0, Ct

and C2 constants which should be determined in the induction process.

PROOF OF (25) FOR I = 0. From Lemma 1 we have

Recalling the fact ^ g Π J^p'9 = &p'g (see, e.g., [1]), we see by (2) that
ζφ satisfies the 3-Neumann conditions (23), or more precisely, satisfies
ζφe&pp'g and d(ζφ)e&f'q+ί, from which we have

= ((D + 1

Since φ is analytic in Ωp — bM and so is a in Ωp, we have from the
equation (24) that

?; 0, m) .

Meanwhile, from the inequality (11) we get

Therefore, in view of Lemma 4 we obtain finally
m—1

which imply (25) for Z = 0.

PROOF OF (25) FOR Z > 0. We proceed by induction on the pair
(Z, m). To show (25) for (Z, m), we assume (25) for the pairs (j, K) with
j + k < I + m, and with j + k = Z + m and j < I. Now letting K be an
arbitrary ordered multi-index with K = Z, we have

The sum of the first and the second terms on the right is dominated by

(Z + m)\*B0(B[+™ + N(ζφ; I - 1, m))ΛΓ(ζ^; Z - 1, m) .

Then using Lemma 5, taking the maximum for \K\ = l and shifting
N(ζφm, Z, m) to the left, we obtain finally
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N(ζφ; I, m) ^
ft!

+ Σ B0B[->'+m-kN(ζφ', j, k) + Σ BQB[-'+m-kN(ζφ', j - 1, k + 1) .

If we notice that

kΓl\\7t+lζφ\\ ^ BQ(k + 1)N(&; 0, k + 1) ̂  £0

2£? ,

then the induction hypothesis gives us

j,k

which indicates that (25) holds for the pair (ϊ, m). This completes the
proof.
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