Tôhoku Math. Journ. **28** (1976), 135-143.

ADJOINT EQUATIONS OF AUTONOMOUS LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE RETARDATIONS

TOSHIKI NAITO

(Received August 25, 1975)

1. Introduction. Let $\rho \ge r \ge 0$, $p \ge 1$ be given real numbers (ρ may be $+\infty$) and $g(\theta)$ be Lebesgue integrable, positive and nondecreasing on $[-\rho, 0]$, where $[-\rho, 0]$ denotes $(-\infty, 0]$ when $\rho = +\infty$. Let $\mathscr{B} = \mathscr{B}([-\rho, 0], C^d)$ be the Banach space of functions ϕ mapping $[-\rho, 0]$ into C^d , the complex *d*-dimensional column vector space, which are Lebesgue measurable on $[-\rho, 0]$, are continuous on [-r, 0] and have the property such that

$$||\,\phi\,|| = \left[\sup_{-r\leq heta\leq 0} |\,\phi(heta)\,|^p\, + \int_{-
ho}^0 |\,\phi(heta)\,|^p\, g(heta) d heta
ight]^{1/p} < \, \infty \,\,,$$

where |v| denotes a norm of v in C^{d} . We shall discuss the adjoint equation of a linear functional differential equation

(1.1)
$$\frac{dx}{dt} = f(x_t) ,$$

where f is a bounded linear operator on \mathscr{B} into C^d . Denote by ${}^{T}v$ the transposed vector of $v \in C^d$ and by ${}^{T}C^d$ the space $\{{}^{T}v; v \in C^d\}$. For a given function ϕ mapping $[-\rho, 0]$ into C^d , the function ϕ^* mapping $[0, \rho]$ into ${}^{T}C^d$ is defined by $\phi^*(s) = {}^{T}\phi(-s), s \in [0, \rho]$. For a family \mathscr{F} of those functions ϕ , set $\mathscr{F}^* = \{\phi^*; \phi \in \mathscr{F}\}$. For a function x defined on $[t - \rho, t]$ (or $[t, t + \rho]$), designate by x_t (or x^t) the function on $[-\rho, 0]$ (or $[0, \rho]$) such that $x_t(\theta) = x(t + \theta), \theta \in [-\rho, 0]$ (or $x^t(s) = x(t + s), s \in [0, \rho]$).

Now consider a linear functional differential equation for a row vector y

(1.2)
$$\frac{dy}{dt} = -(y^t)\overline{f}|.$$

The symbol $\overline{f|}$ denotes the operator on \mathscr{B}^* naturally induced by f which operates on \mathscr{B}^* to the right (see (3.6) and (3.7)). However, we restrict the domain of $\overline{f|}$ on a space \mathscr{H}^* such that \mathscr{H} can be imbedded continuously in \mathscr{B} and that for any $\xi \in \mathscr{H}^*$ and any $\phi \in \mathscr{B}$, the convolution

T. NAITO

 $\xi * \phi$ (see (3.1)) is defined and belongs to \mathscr{B} . Then we can define a bilinear form $\langle \cdot, \cdot \rangle$ on $\mathscr{X}^* \times \mathscr{B}$ (see (3.9)) which satisfies the following properties;

- (i) $\langle \xi, A\phi \rangle = \langle A^*\xi, \phi \rangle$ for $\xi \in \mathscr{D}(A^*)$ and $\phi \in \mathscr{D}(A)$,
- (ii) for any $(\xi, \phi) \in \mathscr{X}^* \times \mathscr{B}$, $\langle T^*(t-t_2)\xi, T(t-t_1)\phi \rangle = \text{constant for } t \in [t_1, t_2]$,

where A and $-A^*$ are the infinitesimal generators of the solution semigroups $\{T(t)\}_{t\geq 0}$ on \mathscr{B} corresponding to (1.1) and $\{T^*(t)\}_{t\leq 0}$ on \mathscr{X}^* corresponding to (1.2), respectively. As \mathscr{X} , we can take the space of continuous functions $C([-\rho, 0], C^d)$ with the supremum norm if $\rho < \infty$ and the space of continuous functions $\mathscr{C}_{\tau} = \mathscr{C}_{\tau}((-\infty, 0], C^d)$ if $\rho = \infty$, where \mathscr{C}_{τ} is defined to be a Banach space of continuous functions ϕ mapping $(-\infty, 0]$ into C^d such that $\lim_{\theta \to -\infty} |\phi(\theta)| e^{-\tau\theta} = 0$ with norm

$$|| \phi ||_{\gamma} = \sup_{\theta \in (-\infty, 0]} | \phi(\theta) | e^{-\gamma \theta}$$
.

The parameter γ is greater than a constant β which depends on $g(\theta)$ (see (3.3)), and we assume that $g(\theta)$ satisfies some condition (see (3.4)). Under the above restriction on the domain of $\overline{f}|$, we call equation (1.2) the "adjoint" equation of equation (1.1), which is an extension of the definition in [1]. The operator A^* is said to be "adjoint of A" relative to the bilinear form $\langle \cdot, \cdot \rangle$. Finally, in terms of the "adjoint" A^* , we shall give an explicit representation for the projection operator which corresponds to the direct sum decomposition of \mathscr{B} relative to the point spectrum of A. Since the theory is almost trivial when ρ is finite, we shall prove the theorems when ρ is infinite. For discussions on functional differential equations with infinite retardations, see [2] and [4]. The theory of adjoint equations of functional differential equations with finite retardation is found in [1]. The space \mathscr{C}_{γ} was taken up by Hino in [3] as an example of the phase spaces of functional differential equations with infinite retardations.

2. Linear functional differential equations with phase space \mathscr{C}_{γ} . Let $\mathscr{C}_{\gamma}, \gamma \in \mathbf{R}$, be the Banach space defined in the above and F be in $\mathscr{L}(\mathscr{C}_{\gamma}, \mathbb{C}^d)$, the family of bounded linear operators on \mathscr{C}_{γ} into \mathbb{C}^d . Consider a linear functional differential equation

(2.1)
$$\frac{dx}{dt} = F(x_t) .$$

Denote by $x(t, \phi)$ the solution of (2.1) such that $x_0(\phi) = \phi$. It is easy to

prove that the norm $||\cdot||_{\tau}$ in \mathscr{C}_{τ} satisfies the conditions similar to (H_1) , \cdots , (H_4) in [4]. With the aid of these properties we can prove the existence, the uniqueness and the continuation in the future of $x(\phi)$. Furthermore, it holds that $x_i(\phi) \rightarrow \phi$ as $t \rightarrow 0+$ and that for each fixed $t \geq 0$ there exists a constant c(t) such that $||x_t(\phi)||_{\tau} \leq c(t) ||\phi||_{\tau}$ for $\phi \in \mathscr{C}_{\tau}$ (see the proof of Lemma 2.1 in [4]). Namely, the family of operators $\{S(t)\}_{t\geq 0}$ defined by $S(t)\phi = x_i(\phi), \phi \in \mathscr{C}_{\tau}$, is a continuous semi-group on \mathscr{C}_{τ} . We call such a semi-group the solution semi-group on \mathscr{C}_{τ} corresponding to equation (2.1). Denote by $\mathscr{C}_{\tau}^{(1)}$ the set of functions in \mathscr{C}_{τ} which have continuous first derivatives, and define the function $\tilde{\phi}$ for ϕ in $\mathscr{C}_{\tau}^{(1)}$ by

$$ilde{\phi}(heta) = egin{cases} F(\phi) & ext{ for } heta = 0 \ rac{d\phi}{d heta}(heta) & ext{ for } heta < 0 \ . \end{cases}$$

The infinitesimal generator B of $\{S(t)\}$ is given as follow.

THEOREM 2.1. $\mathscr{D}(B) = \{\phi; \phi \in \mathscr{C}_{r}^{(1)} \text{ and } \tilde{\phi} \in \mathscr{C}_{r}\}, \text{ and } B\phi = \tilde{\phi} \text{ for } \phi \in \mathscr{D}(B).$

PROOF. Set $X = \{\phi; \phi \in \mathscr{C}_{7}^{(1)} \text{ and } \tilde{\phi} \in \mathscr{C}_{7}\}$. It is easy to see that $\mathscr{D}(B) \subset X$ and $B\phi = \tilde{\phi}$ for $\phi \in \mathscr{D}(B)$. Now suppose that ϕ is in X. Then

$$\lim_{ heta
ightarrow
ightarrow \infty} \left| rac{d\phi}{d heta}(heta)
ight| e^{- au heta} = 0 \; .$$

Since $S(h)\phi(\theta) = \phi(\theta + h)$ for $\theta + h \leq 0$, the mean value theorem implies that for any $\varepsilon_1 > 0$ there exists a $\delta(\varepsilon_1) \leq 0$ such that for any $h \in (0, 1)$

$$(2.2) \qquad \left| \frac{S(h)\phi(\theta) - \phi(\theta)}{h} - \tilde{\phi}(\theta) \right| e^{-\gamma \theta} \leq \varepsilon_1 \quad \text{for } \theta \in (-\infty, \, \delta(\varepsilon_1)] \; .$$

Furthermore, since $\tilde{\phi}$ is continuous at $\theta = 0$, $x(t, \phi)$ is continuously differentiable on **R**. Hence $(dx/dt)(t, \phi)$ is uniformly continuous on $[\delta(\varepsilon_1), 1]$ and consequently for any $\varepsilon_2 > 0$, there exists a $\rho(\delta(\varepsilon_1), \varepsilon_2)$ such that $|(dx/dt)(t_1, \phi) - (dx/dt)(t_2, \phi)| \leq \varepsilon_2$ if $|t_1 - t_2| \leq \rho$ and $t_1, t_2 \in [\delta(\varepsilon_1), 1]$. Therefore, if $h < \rho$,

$$(2.3) \qquad \left|\frac{S(h)\phi(\theta)-\phi(\theta)}{h}-\tilde{\phi}(\theta)\right|e^{-\gamma\theta}\leq \varepsilon_2 c(\gamma,\,\varepsilon_1)\quad\text{for }\,\theta\in[\delta(\varepsilon_1),\,0]\;,$$

where $c(\gamma, \varepsilon_1) \leq e^{\gamma \delta(\varepsilon_1)}$ if $\gamma \geq 0$ and $c(\gamma, \varepsilon_1) \leq 1$ if $\gamma < 0$. Inequalities (2.2) and (2.3) mean that $\lim_{h\to 0^+} (S(h)\phi - \phi)/h = \tilde{\phi}$. Thus we obtain $X \subset \mathscr{D}(B)$. q.e.d.

T. NAITO

3. The adjoint equation. For a given function ϕ mapping an interval I into C^k , denote by $\overline{\phi}|$ and ϕ^* the functions on the interval $J = \{-\theta; \theta \in I\}$ defined by

$$\overline{\phi}|(\theta) = \phi(-\theta) \text{ and } \phi^*(\theta) = {}^T \overline{\phi}|(\theta) \text{ for } \theta \in J,$$

respectively. As in Section 1, let $\mathscr{B}^* = \{\phi^*; \phi \in \mathscr{B}\}$ and $\mathscr{C}_r^* = \{\phi^*; \phi \in \mathscr{C}_r\}$. For norms in \mathscr{B}^* and \mathscr{C}_r^* , we use the same notations as for norms in \mathscr{B} and \mathscr{C}_r , that is, we put $||\phi^*|| = ||\phi||$ for $\phi \in \mathscr{B}$ and $||\phi^*||_r = ||\phi||_r$ for $\phi \in \mathscr{C}_r$. For functions $\xi \colon [0, \infty) \to C$ and $\phi \colon (-\infty, 0] \to C^d$, we define the convolution $\xi \ast \phi$ of ξ and ϕ formally by

(3.1)
$$(\xi * \phi)(\theta) = \int_{\theta}^{0} \xi(u - \theta)\phi(u)du \text{ for } \theta \in (-\infty, 0].$$

For $\lambda \in C$, define the operator $M(\lambda)$ on \mathscr{B} by

$$M(\lambda)\phi = \overline{\omega(\lambda)} * \phi$$
 for $\phi \in \mathscr{B}$,

where $\omega(\lambda)$ is the function on $(-\infty, 0]$ such that

(3.2)
$$\omega(\lambda)(\theta) = \exp \lambda \theta \text{ for } \theta \in (-\infty, 0].$$

 \mathbf{Set}

$$(3.3) \qquad \qquad \beta = \inf \left\{ \operatorname{Re} \lambda; \int_{-\infty}^{0} |e^{\lambda \theta}|^{p} g(\theta) d\theta < \infty \right\}.$$

LEMMA 3.1. Assume that the function g in the definition of \mathscr{B} satisfies the condition

$$(3.4) g(u+v) \leq g(u)g(v) \quad for \quad u, v \in (-\infty, 0].$$

Then the operator function $M(\lambda)$ is a holomorphic function from $C_{\beta} = \{\lambda \in C; \text{Re } \lambda > \beta\}$ into $\mathcal{L}(\mathcal{B}, \mathcal{B}).$

For a proof of this lemma, see [4].

LEMMA 3.2. Assume that condition (3.4) holds. Then, if $\gamma > \beta$, for any $\xi \in \mathcal{C}_{\gamma}((-\infty, 0], C)^*$ and $\phi \in \mathscr{B}((-\infty, 0], C^d)$ the convolution $\xi * \phi$ is well defined and is in $\mathscr{B}((-\infty, 0], C^d)$ with norm

$$||\,\xi * \phi\,|| \leq c(\gamma)\,||\,\xi\,||_{r}\,||\,\phi\,||$$
 ,

where $c(\gamma)$ is a constant which depends on γ .

PROOF. Suppose that $\gamma > \beta$, $\xi \in \mathscr{C}_{\gamma}^{*}$ and $\phi \in \mathscr{B}$. Obviously for any $\theta \in (-\infty, 0]$,

$$\left|\int_{\theta}^{0} \xi(u-\theta)\phi(u)du\right| \leq \int_{\theta}^{0} |\overline{\xi}|(\theta-u)| e^{-\gamma(\theta-u)}e^{\gamma(\theta-u)} |\phi(u)| du.$$

From the definition of $||\xi||_r$ we have

$$(3.5) |\xi * \phi(\theta)| \leq ||\xi||_{\tau} \int_{\theta}^{0} e^{\gamma(\theta-u)} |\phi(u)| du \text{ for } \theta \in (-\infty, 0].$$

Using the notation $M(\lambda)$, we can express by $(M(\gamma) | \phi |)(\theta)$ the integral term in (3.5). Since condition (3.4) holds, Lemma 3.1 implies that $\xi * \phi$ is in \mathscr{B} and

$$||\xi * \phi|| \leq ||M(\gamma)|| ||\xi||_{r} ||\phi||. \qquad \text{q.e.d.}$$

Put $e_j = \text{column}(\delta_{j_1} \cdots \delta_{j_d}), \ j = 1, \cdots, d$, where δ_{j_k} are Kronecker's δ . For any f in $\mathscr{L}(\mathscr{B}, \mathbb{C}^d)$, we define ${}^T f \in \mathscr{L}(\mathscr{B}, \mathbb{C}^d)$ by the relation

$$(^Tf)(\phi) = \sum_{k=1}^d \left\{ \sum_{j=1}^d f_j(\phi_j e_k) \right\} e_k \quad ext{for} \quad \phi = \sum_{j=1}^d \phi_j e_j \in \mathscr{B} \; ,$$

where $f_j(\psi)$ is the *j*-th component of $f(\psi)$, $\psi \in \mathscr{B}$, and define $\overline{f} \in \mathscr{L}(\mathscr{B}^*, {}^{T}C^d)$ by the relation

(3.6)
$$(\xi)\overline{f} = {}^{T}(({}^{T}f)(\xi^{*})) \text{ for } \xi \in \mathscr{B}^{*}.$$

In fact, corresponding to f in $\mathscr{L}(\mathscr{B}, \mathbb{C}^d)$, there exist $d \times d$ matrix functions $\eta(\theta) = (\eta_{jk}(\theta))$ and $\zeta(\theta) = (\zeta_{jk}(\theta))$ such that $\eta_{jk}(\theta)$ are of bounded variation on [-r, 0] and $\zeta_{jk}(\theta)$ are measurable with

$$\int_{-\infty}^{-r} |\, \zeta_{jk}(heta)\,|^q\,g(heta)d(heta)<\infty\,\,,\,\,\,rac{1}{q}+rac{1}{p}=1\,,\,\,\,\,j,\,k=1,\,\cdots,\,d\,\,,$$

and that

$$f(\phi) = \int_{-r}^{0} d\eta(heta) \phi(heta) + \int_{-\infty}^{-r} \zeta(heta) \phi(heta) g(heta) d heta ext{ for } \phi \in \mathscr{B} ext{ .}$$

Then ${}^{T}f$ and $\overline{f|}$ are expressed by

$$(^{T}f)(\phi) = \int_{-r}^{0} d^{T}\eta(\theta) \phi(\theta) + \int_{-\infty}^{-r} {}^{T}\zeta(\theta)\phi(\theta)g(\theta)d\theta \text{ for } \phi \in \mathscr{B} ,$$

(3.7)
$$(\xi)\overline{f} = \int_{-r}^{0} \xi(-\theta)d\eta(\theta) + \int_{-\infty}^{-r} \xi(-\theta)\zeta(\theta)g(\theta)d\theta \text{ for } \xi \in \mathscr{B}^*.$$

The following lemma can be easily proved.

LEMMA 3.3. If
$$\gamma > \beta$$
, then $\mathscr{C}_{\tau} \subset \mathscr{B}$ and
 $||\phi|| \leq c(\gamma) ||\phi||_{\tau}$ for $\phi \in \mathscr{C}_{\tau}$

where the constant $c(\gamma)$ is less than $\left\{\sup_{\theta \in [-r,0]} |e^{\gamma \theta}|^p + \int_{-\infty}^0 |e^{\gamma \theta}|^p g(\theta) d\theta\right\}^{1/p}$.

By Lemma 3.3, for any $f \in \mathscr{L}(\mathscr{B}, \mathbb{C}^d)$ and any $\gamma > \beta$, the restriction of f on \mathscr{C}_{γ} , which we denote by f again, is in $\mathscr{L}(\mathscr{C}_{\gamma}, \mathbb{C}^d)$, and therefore

^{*T*} f is in $\mathscr{L}(\mathscr{C}_{r}, C^{d})$ and \overline{f} is in $\mathscr{L}(\mathscr{C}_{r}^{*}, {}^{T}C^{d})$.

Now, define an operator A^* on \mathscr{C}_r^* , $\gamma > \beta$, in the following way. The domain of A^* consists of all functions ξ in \mathscr{C}_r^* which have continuous first derivatives and satisfy $\hat{\xi} \in \mathscr{C}_r^*$, where $\hat{\xi}(0) = (\xi)\overline{f}$ and $\hat{\xi}(s) = -(d\xi/ds)(s)$ for $s \in (0, \infty)$. The operation of A^* is defined by

Assume that condition (3.4) holds. By Lemma 3.2, for any $\xi = (\xi_1(s), \dots, \xi_d(s)) \in \mathscr{C}_r((-\infty, 0], \mathbb{C}^d)^*$ and any $\phi \in \mathscr{B}((-\infty, 0], \mathbb{C}^d]$ the convolutions $\xi_j * \phi$, $j = 1, \dots, d$, are in \mathscr{B} . Hence we can define a bilinear form $\langle \xi, \phi \rangle$ on $\mathscr{C}_r^* \times \mathscr{B}$ by

(3.9)
$$\langle \xi, \phi \rangle = \xi(0) \cdot \phi(0) + \sum_{j=1}^d f_j(\xi_j * \phi)$$
,

where $x \cdot y = x_1y_1 + \cdots + x_dy_d$ for $x \in {}^{\mathrm{\scriptscriptstyle T}}C^d$ and $y \in C^d$.

Let $\{T(t)\}_{t\geq 0}$ be the solution semi-group on \mathscr{B} corresponding to the equation

$$\frac{dx}{dt} = f(x_i)$$

and A be the infinitesimal generator of $\{T(t)\}$. It was proved in [4] that the domain of A consists of all functions ϕ in \mathscr{B} which are absolutely continuous on any compact interval of $(-\infty, 0]$ and satisfy $\tilde{\phi} \in \mathscr{B}$, where $\tilde{\phi}(0) = f(\phi)$ and $\tilde{\phi}(\theta) = (d\phi/d\theta)(\theta)$ a.e. in $\theta \in (-\infty, 0)$, and that

$$A\phi=\widetilde{\phi} \quad ext{for} \quad \phi\in \mathscr{D}(A)$$
 .

PROPOSITION 3.4. Assume that condition (3.4) holds and that $\gamma > \beta$. Then the bilinear form $\langle \cdot, \cdot \rangle$ is continuous on $\mathscr{C}_{\tau}^* \times \mathscr{B}$, and

$$(3.11) \qquad \langle \xi, A\phi \rangle = \langle A^*\xi, \phi \rangle \ for \ \xi \in \mathscr{D}(A^*) \ , \ \phi \in \mathscr{D}(A) \ .$$

PROOF. The continuity of $\langle \cdot, \cdot \rangle$ follows from Lemma 3.2. Suppose that ξ is in $\mathscr{D}(A^*)$ and ϕ is in $\mathscr{D}(A)$. Integration by parts implies that (3.12) $\xi_j * A\phi = \overline{\xi_j} \phi(0) - \xi_j(0)\phi + (A^*\xi)_j * \phi$, $j = 1, \dots, d$.

By Lemma 3.2, $\xi_j * A\phi$, and $(A^*\xi)_j * \phi$, $j = 1, \dots, d$, are in \mathscr{B} , since ξ is in $\mathscr{D}(A^*)$ and ϕ is in $\mathscr{D}(A)$. By the definition of \overline{f} ,

$$\sum_{j=1}^d f_j(\overline{\xi_j}|\phi(0)) = \sum_{k=1}^d \left\{ \sum_{j=1}^d f_j(\overline{\xi_j}|e_k) \right\} \phi_k(0) = (\xi)\overline{f}| \cdot \phi(0) ,$$

which together with relation (3.12) implies that

$$\sum_{j=1}^{d} f_{j}(\xi_{j} * A\phi) = (\xi)\overline{f} | \cdot \phi(0) - \xi(0) \cdot f(\phi) + \sum_{j=1}^{d} f_{j}((A^{*}\xi)_{j} * \phi) .$$

Hence we obtain

$$egin{aligned} &\langle \xi,\, A\phi
angle &= \xi(0) \cdot f(\phi) + \sum\limits_{j=1}^d f_j(\xi_j * A\phi) \ &= (\xi) \overline{f} | \cdot \phi(0) + \sum\limits_{j=1}^d f_j((A^*\xi)_j * \phi) \ &= \langle A^*\xi,\, \phi
angle \,. \end{aligned}$$
 q.e.d.

Now, consider the equation

$$\frac{dy}{dt} = -(y^t)\overline{f}|,$$

where y is a row vector. It is clear that y is a solution of (3.13) if and only if $z \equiv y^*$ is a solution of

$$(3.14) \qquad \qquad \frac{dz}{dt} = {}^{\mathrm{\scriptscriptstyle T}} f(z_t) \; .$$

Notice that ${}^{r}f$ is in $\mathscr{L}(\mathscr{C}_{7}, \mathbb{C}^{d})$. From the discussion in Section 2 it follows that for any $\phi \in \mathscr{C}_{7}$, the solution $z(\phi)$ of (3.14) such that $z_{0} = \phi$ exists uniquely on $[0, \infty)$ and satisfies the condition $z_{t} \in \mathscr{C}_{7}$ for $t \geq 0$. This implies that for any $\xi \in \mathscr{C}_{7}^{*}$, the solution $y(\xi)$ of (3.13) such that $y^{0}(\xi) = \xi$ exists uniquely on $(-\infty, 0]$ and satisfies $y^{t}(\xi) \in \mathscr{C}_{7}^{*}$ for $t \in (-\infty, 0]$. Define the operators $T^{*}(t)$ on \mathscr{C}_{7}^{*} , $t \leq 0$, by

$$T^*(t) \xi = y^t(\xi) \quad ext{for} \quad \xi \in \mathscr{C}^*_r$$
 .

Let $\{S(t)\}_{t\geq 0}$ be the solution semi-group on \mathscr{C}_{γ} corresponding to equation (3.14) and *B* be its infinitesimal generator. Clearly, $T^*(t)\xi = (S(-t)\xi^*)^*$ for $\xi \in \mathscr{C}_{\gamma}^*$. Furthermore, by Theorem 2.1, $\mathscr{D}(A^*) = \mathscr{D}(B)^*$ and $A^*\xi = (B\xi^*)^*$ for ξ in $\mathscr{D}(A^*)$, where A^* is the operator defined by (3.8). Therefore, by easy computations, we have

(3.15)
$$\frac{d}{dt} T^*(t)\xi = -A^*T^*(t)\xi = -T^*(t)A^*\xi$$

for $t \leq 0$ and $\xi \in \mathscr{D}(A^*)$.

THEOREM 3.5. Let x and y be solutions of (3.10) and (3.13) defined on $[t_1, \infty)$ and $(-\infty, t_2]$ with initial conditions $x_{t_1} = \phi \in \mathscr{B}$ and $y^{t_2} = \xi \in \mathscr{C}_7^*$, respectively, where $\gamma > \beta$ and $-\infty < t_1 \leq t_2 < +\infty$. Then $\langle y^t, x_t \rangle$ is a constant on $[t_1, t_2]$, that is,

$$(3.16) \qquad \langle T^*(t-t_2)\xi, T(t-t_1)\phi \rangle = constant \ for \ t \in [t_1, t_2] \ .$$

PROOF. If ξ is in $\mathscr{D}(A^*)$ and ϕ is in $\mathscr{D}(A)$, by Proposition 3.4 and (3.15) we have

T. NAITO

$$egin{aligned} &rac{d}{dt} \langle T^*(t-t_2) \xi, \ T(t-t_1) \phi
angle \ &= \langle -A^* \, T^*(t-t_2) \xi, \ T(t-t_1) \phi
angle + \langle T^*(t-t_2) \xi, \ A \, T(t-t_1) \phi
angle \ &= 0 \ \ ext{for} \ \ t \in [t_1, \ t_2] \ , \end{aligned}$$

which implies (3.16). Since $\mathscr{D}(A^*)$ and $\mathscr{D}(A)$ are dense in \mathscr{C}_{γ}^* and \mathscr{B} , respectively, relation (3.16) holds for any $(\xi, \phi) \in \mathscr{C}_{\gamma}^* \times \mathscr{B}$. q.e.d.

4. A representation of projection operators. Let $\omega(\lambda)$ be the function defined by (3.2). Suppose f is in $\mathscr{L}(\mathscr{B}, \mathbb{C}^d)$ and denote by $D(\lambda)$ the $d \times d$ matrix $\lambda E - f(\omega(\lambda)E)$, where E is the $d \times d$ unit matrix. We define matrices F_j by

$$F_j=F_j(\lambda)=rac{1}{j!}rac{d^j}{d\lambda^j}D(\lambda)$$
 , $j=0,\,1,\,2,\,\cdots$,

and define $md \times md$ matrices $D_m = D_m(\lambda)$ by

$$D_m = egin{bmatrix} F_0 & F_1 \cdots F_{m-1} \ 0 & F_0 \cdots F_{m-2} \ & \ddots & \ 0 & 0 & \cdots F_0 \end{bmatrix}, \quad m = 1, 2, \cdots$$

In [4], it has been shown that $D(\lambda)$ is holomorphic on $C_{\beta} = \{\lambda \in C; \text{Re } \lambda > \beta\}$ and that $P_{\sigma}(A) = \{\lambda; \det D(\lambda) = 0\}$. Suppose that $\mu \in C_{\beta}$ is a zero of det $D(\lambda)$ with order n. Then μ is a pole of $D(\lambda)^{-1}$ with order $m \leq n$. In this section, (n, m) is said to be the index of μ . From the result in [4] it follows that under condition (3.4) on g, \mathscr{B} can be decomposed into the direct sum $\mathscr{B} = \Re((\mu I - A)^m) \bigoplus \mathscr{B}((\mu I - A)^m), \Re((\mu I - A)^m)$ is n-dimensional and that for $k = 1, 2, \dots, \Re((\mu I - A)^k)$ coincides with the set of functions ϕ of the form

$$\phi(heta)=e^{\mu heta}\sum\limits_{j=0}^{k-1}rac{1}{j!}\, heta^jb_j \quad ext{for} \quad heta\in(-\infty,\,0]$$
 ,

where $\hat{b} = \operatorname{col}(b_0, b_1, \cdots, b_{k-1})$ satisfies $D_k(\mu)\hat{b} = 0$.

For any γ , $\beta < \gamma < \text{Re }\mu$, the bilinear form $\langle \cdot, \cdot \rangle$ can be defined on $\mathscr{C}_{\gamma}^{*} \times \mathscr{B}$ and it satisfies relation (3.11). Therefore we can prove the following propositions and theorem by the same way as in [1].

PROPOSITION 4.1. Let A and $-A^*$ be the infinitesimal generators of semi-groups $\{T(t)\}_{t\geq 0}$ on \mathscr{B} and $\{T^*(t)\}_{t\leq 0}$ on \mathscr{C}^*_{τ} defined in Section 3, where $\gamma > \beta$. Then the point spectrum $P_{\sigma}(A^*)$ coincides with $P_{\sigma}(A) \cap C_{\tau}$. Let (n, m) be the index of $\mu \in P_{\sigma}(A^*)$. Then $\mathfrak{N}((\mu I - A^*)^m)$ is n-dimen-

sional. For $k = 1, 2, \dots, \mathfrak{N}((\mu I - A^*)^*)$ coincides with the set of functions ξ of the form

$$\xi(s) = e^{-\mu s} \sum_{j=0}^{k-1} (-s)^j \frac{a_{k-1-j}}{j!} \quad for \quad s \in [0, \infty) ,$$

where $\hat{a} = row (a_0, a_1, \cdots, a_{k-1})$ satisfies $\hat{a}D_k(\mu) = 0$.

PROPOSITION 4.2. Under the same assumption as in Proposition 4.1, ψ is in $\mathscr{R}((\mu I - A)^k)$ if and only if $\langle \xi, \psi \rangle = 0$ for all ξ in $\mathfrak{N}((\mu I - A^*)^k)$, $k = 1, 2, \cdots$.

THEOREM 4.3. Let μ be in $P_{\sigma}(A) \cap C_{\beta}$ with index (n, m) and π be the projection from \mathscr{B} onto $\mathfrak{N}((\mu I - A)^m)$ which corresponds to the direct sum decomposition $\mathscr{B} = \mathfrak{N}((\mu I - A)^m) \bigoplus \mathscr{B}((\mu I - A)^m)$. Then for any base $\{\phi_1, \dots, \phi_n\}$ of $\mathfrak{N}((\mu I - A)^m)$, there exists a base $\{\psi_1, \dots, \psi_n\}$ of $\mathfrak{N}((\mu I - A^*)^m)$ such that

$$\pi \phi = \sum_{j=1}^n \langle \psi_j, \phi
angle \phi_j \quad for \quad \phi \in \mathscr{B}$$
 .

References

- J. K. HALE, Functional Differential Equations, Springer, New York-Heidelberg-Berlin, 1971.
- [2] J. K. HALE, Functional differential equations with infinite delays, J. Math. Anal. Appl., 48 (1974), 276-283.
- [3] Y. HINO, Asymptotic behavior of solutions of some functional differential equations, Tôhoku Math. J., 22 (1970), 98-108.
- [4] T. NAITO, On autonomous linear functional differential equations with infinite retardations, to appear in J. Differential Equations.

MATHEMATICAL INSTITUTE Tôhoku University Sendai, Japan.