ADJOINT EQUATIONS OF AUTONOMOUS LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE RETARDATIONS

Toshiki Naito

(Received August 25, 1975)

1. Introduction. Let $\rho \geqq r \geqq 0, p \geqq 1$ be given real numbers (ρ may be $+\infty$) and $g(\theta)$ be Lebesgue integrable, positive and nondecreasing on $[-\rho, 0]$, where $[-\rho, 0]$ denotes $(-\infty, 0]$ when $\rho=+\infty$. Let $\mathscr{B}=$ $\mathscr{B}\left([-\rho, 0], C^{d}\right)$ be the Banach space of functions ϕ mapping $[-\rho, 0]$ into \boldsymbol{C}^{d}, the complex d-dimensional column vector space, which are Lebesgue measurable on $[-\rho, 0]$, are continuous on $[-r, 0]$ and have the property such that

$$
\|\phi\|=\left[\sup _{-r \leq \theta \leq 0}|\phi(\theta)|^{p}+\int_{-\rho}^{0}|\phi(\theta)|^{p} g(\theta) d \theta\right]^{1 / p}<\infty,
$$

where $|v|$ denotes a norm of v in \boldsymbol{C}^{d}. We shall discuss the adjoint equation of a linear functional differential equation

$$
\begin{equation*}
\frac{d x}{d t}=f\left(x_{t}\right) \tag{1.1}
\end{equation*}
$$

where f is a bounded linear operator on \mathscr{B} into C^{d}. Denote by ${ }^{T} v$ the transposed vector of $v \in \boldsymbol{C}^{d}$ and by ${ }^{T} \boldsymbol{C}^{d}$ the space $\left\{{ }^{T} v ; v \in \boldsymbol{C}^{d}\right\}$. For a given function ϕ mapping $[-\rho, 0]$ into C^{d}, the function ϕ^{*} mapping $[0, \rho]$ into ${ }^{r} \boldsymbol{C}^{d}$ is defined by $\phi^{*}(s)={ }^{T} \phi(-s), s \in[0, \rho]$. For a family \mathscr{F} of those functions ϕ, set $\mathscr{F}^{*}=\left\{\phi^{*} ; \phi \in \mathscr{F}\right\}$. For a function x defined on $[t-\rho, t]$ (or $[t, t+\rho]$), designate by x_{t} (or x^{t}) the function on $[-\rho, 0]$ (or $[0, \rho]$) such that $x_{t}(\theta)=x(t+\theta), \theta \in[-\rho, 0]$ (or $\left.x^{t}(s)=x(t+s), s \in[0, \rho]\right)$.

Now consider a linear functional differential equation for a row vector y

$$
\begin{equation*}
\frac{d y}{d t}=-\left(y^{t}\right) \overline{f \mid} \tag{1.2}
\end{equation*}
$$

The symbol $\overline{f \mid}$ denotes the operator on \mathscr{B}^{*} naturally induced by f which operates on \mathscr{B}^{*} to the right (see (3.6) and (3.7)). However, we restrict the domain of $\overline{f \mid}$ on a space \mathscr{P}^{*} such that \mathscr{X} can be imbedded continuously in \mathscr{B} and that for any $\xi \in \mathscr{P}^{*}$ and any $\phi \in \mathscr{B}$, the convolution
$\xi * \phi$ (see (3.1)) is defined and belongs to \mathscr{B}. Then we can define a bilinear form $\langle\cdot, \cdot\rangle$ on $\mathscr{X}^{*} \times \mathscr{B}$ (see (3.9)) which satisfies the following properties;
(i) $\langle\xi, A \phi\rangle=\left\langle A^{*} \xi, \phi\right\rangle$ for $\xi \in \mathscr{D}\left(A^{*}\right)$ and $\phi \in \mathscr{D}(A)$,
(ii) for any $(\xi, \phi) \in \mathscr{X}^{*} \times \mathscr{B}$,

$$
\left\langle T^{*}\left(t-t_{2}\right) \xi, T\left(t-t_{1}\right) \phi\right\rangle=\text { constant for } t \in\left[t_{1}, t_{2}\right],
$$

where A and $-A^{*}$ are the infinitesimal generators of the solution semigroups $\{T(t)\}_{t \geq 0}$ on \mathscr{B} corresponding to (1.1) and $\left\{T^{*}(t)\right\}_{t \leq 0}$ on \mathscr{X}^{*} corresponding to (1.2), respectively. As \mathscr{X}, we can take the space of continuous functions $C\left([-\rho, 0], \boldsymbol{C}^{d}\right)$ with the supremum norm if $\rho<\infty$ and the space of continuous functions $\mathscr{C}_{r}=\mathscr{C}_{r}\left((-\infty, 0], \boldsymbol{C}^{d}\right)$ if $\rho=\infty$, where \mathscr{C}_{r} is defined to be a Banach space of continuous functions ϕ mapping $\left(-\infty, 0\right.$] into C^{d} such that $\lim _{\theta \rightarrow-\infty}|\phi(\theta)| e^{-r \theta}=0$ with norm

$$
\|\phi\|_{r}=\sup _{\theta \in(-\infty, 0]}|\phi(\theta)| e^{-\gamma \theta}
$$

The parameter γ is greater than a constant β which depends on $g(\theta)$ (see (3.3)), and we assume that $g(\theta)$ satisfies some condition (see (3.4)). Under the above restriction on the domain of $\overline{f \mid}$, we call equation (1.2) the "adjoint" equation of equation (1.1), which is an extension of the definition in [1]. The operator A^{*} is said to be "adjoint of A " relative to the bilinear form $\langle\cdot, \cdot\rangle$. Finally, in terms of the "adjoint" A^{*}, we shall give an explicit representation for the projection operator which corresponds to the direct sum decomposition of \mathscr{B} relative to the point spectrum of A. Since the theory is almost trivial when ρ is finite, we shall prove the theorems when ρ is infinite. For discussions on functional differential equations with infinite retardations, see [2] and [4]. The theory of adjoint equations of functional differential equations with finite retardation is found in [1]. The space \mathscr{C}_{r} was taken up by Hino in [3] as an example of the phase spaces of functional differential equations with infinite retardations.
2. Linear functional differential equations with phase space \mathscr{C}_{r}. Let $\mathscr{C}_{r}, \gamma \in \boldsymbol{R}$, be the Banach space defined in the above and F be in $\mathscr{L}\left(\mathscr{C}_{r}, \boldsymbol{C}^{d}\right)$, the family of bounded linear operators on \mathscr{C}_{r} into \boldsymbol{C}^{d}. Consider a linear functional differential equation

$$
\begin{equation*}
\frac{d x}{d t}=F\left(x_{t}\right) \tag{2.1}
\end{equation*}
$$

Denote by $x(t, \phi)$ the solution of (2.1) such that $x_{0}(\phi)=\phi$. It is easy to
prove that the norm $\|\cdot\|_{r}$ in \mathscr{C}_{r} satisfies the conditions similar to $\left(H_{1}\right)$, $\cdots,\left(H_{4}\right)$ in [4]. With the aid of these properties we can prove the existence, the uniqueness and the continuation in the future of $x(\phi)$. Furthermore, it holds that $x_{t}(\phi) \rightarrow \phi$ as $t \rightarrow 0+$ and that for each fixed $t \geqq 0$ there exists a constant $c(t)$ such that $\left\|x_{t}(\phi)\right\|_{r} \leqq c(t)\|\phi\|_{r}$ for $\phi \in \mathscr{C}_{r}$ (see the proof of Lemma 2.1 in [4]). Namely, the family of operators $\{S(t)\}_{t \geq 0}$ defined by $S(t) \phi=x_{t}(\phi), \phi \in \mathscr{C}_{r}$, is a continuous semi-group on \mathscr{C}_{r}. We call such a semi-group the solution semi-group on \mathscr{C}_{r} corresponding to equation (2.1). Denote by $\mathscr{C}_{r}^{(1)}$ the set of functions in \mathscr{C}_{r} which have continuous first derivatives, and define the function $\tilde{\phi}$ for ϕ in $\mathscr{C}_{r}^{(1)}$ by

$$
\tilde{\phi}(\theta)= \begin{cases}F(\phi) & \text { for } \theta=0 \\ \frac{d \phi}{d \theta}(\theta) & \text { for } \theta<0\end{cases}
$$

The infinitesimal generator B of $\{S(t)\}$ is given as follow.
Theorem 2.1. $\mathscr{D}(B)=\left\{\phi ; \phi \in \mathscr{C}_{r}^{(1)}\right.$ and $\left.\tilde{\phi} \in \mathscr{C}_{r}\right\}$, and $B \dot{\phi}=\tilde{\phi}$ for $\phi \in \mathscr{D}(B)$.

Proof. Set $X=\left\{\phi ; \phi \in \mathscr{C}_{r}^{(1)}\right.$ and $\left.\tilde{\phi} \in \mathscr{C}_{r}\right\}$. It is easy to see that $\mathscr{D}(B) \subset X$ and $B \phi=\tilde{\phi}$ for $\phi \in \mathscr{D}(B)$. Now suppose that ϕ is in X. Then

$$
\lim _{\theta \rightarrow-\infty}\left|\frac{d \phi}{d \theta}(\theta)\right| e^{-\gamma \theta}=0 .
$$

Since $S(h) \phi(\theta)=\phi(\theta+h)$ for $\theta+h \leqq 0$, the mean value theorem implies that for any $\varepsilon_{1}>0$ there exists a $\delta\left(\varepsilon_{1}\right) \leqq 0$ such that for any $h \in(0,1)$

$$
\begin{equation*}
\left|\frac{S(h) \phi(\theta)-\phi(\theta)}{h}-\tilde{\phi}(\theta)\right| e^{-r \theta} \leqq \varepsilon_{1} \quad \text { for } \theta \in\left(-\infty, \delta\left(\varepsilon_{1}\right)\right] \tag{2.2}
\end{equation*}
$$

Furthermore, since $\tilde{\phi}$ is continuous at $\theta=0, x(t, \phi)$ is continuously differentiable on \boldsymbol{R}. Hence $(d x / d t)(t, \phi)$ is uniformly continuous on [$\left.\delta\left(\varepsilon_{1}\right), 1\right]$ and consequently for any $\varepsilon_{2}>0$, there exists a $\rho\left(\delta\left(\varepsilon_{1}\right), \varepsilon_{2}\right)$ such that $\left|(d x / d t)\left(t_{1}, \phi\right)-(d x / d t)\left(t_{2}, \phi\right)\right| \leqq \varepsilon_{2}$ if $\left|t_{1}-t_{2}\right| \leqq \rho$ and $t_{1}, t_{2} \in\left[\delta\left(\varepsilon_{1}\right), 1\right]$. Therefore, if $h<\rho$,

$$
\begin{equation*}
\left|\frac{S(h) \phi(\theta)-\phi(\theta)}{h}-\tilde{\phi}(\theta)\right| e^{-\gamma \theta} \leqq \varepsilon_{2} c\left(\gamma, \varepsilon_{1}\right) \quad \text { for } \theta \in\left[\delta\left(\varepsilon_{1}\right), 0\right] \tag{2.3}
\end{equation*}
$$

where $c\left(\gamma, \varepsilon_{1}\right) \leqq e^{\gamma\left(\varepsilon_{1}\right)}$ if $\gamma \geqq 0$ and $c\left(\gamma, \varepsilon_{1}\right) \leqq 1$ if $\gamma<0$. Inequalities (2.2) and (2.3) mean that $\lim _{h \rightarrow 0+}(S(h) \phi-\phi) / h=\tilde{\phi}$. Thus we obtain $X \subset \mathscr{D}(B)$. q.e.d.
3. The adjoint equation. For a given function ϕ mapping an interval I into C^{k}, denote by $\bar{\phi}$ and ϕ^{*} the functions on the interval $J=\{-\theta ; \theta \in I\}$ defined by

$$
\bar{\phi}(\theta)=\phi(-\theta) \quad \text { and } \quad \phi^{*}(\theta)={ }^{T} \bar{\phi} \mid(\theta) \text { for } \quad \theta \in J,
$$

respectively. As in Section 1, let $\mathscr{B}^{*}=\left\{\phi^{*} ; \phi \in \mathscr{B}\right\}$ and $\mathscr{C}_{r}^{*}=\left\{\phi^{*} ; \phi \in\right.$ $\left.\mathscr{C}_{r}\right\}$. For norms in \mathscr{B}^{*} and \mathscr{C}_{r}^{*}, we use the same notations as for norms in \mathscr{B} and \mathscr{C}_{r}, that is, we put $\left\|\phi^{*}\right\|=\|\phi\|$ for $\phi \in \mathscr{B}$ and $\left\|\phi^{*}\right\|_{r}=\|\phi\|_{r}$ for $\phi \in \mathscr{C}_{r}$. For functions $\xi:[0, \infty) \rightarrow \boldsymbol{C}$ and $\phi:(-\infty, 0] \rightarrow \boldsymbol{C}^{d}$, we define the convolution $\xi * \phi$ of ξ and ϕ formally by

$$
\begin{equation*}
(\xi * \phi)(\theta)=\int_{\theta}^{0} \xi(u-\theta) \phi(u) d u \quad \text { for } \quad \theta \in(-\infty, 0] \tag{3.1}
\end{equation*}
$$

For $\lambda \in \boldsymbol{C}$, define the operator $M(\lambda)$ on \mathscr{B} by

$$
M(\lambda) \phi=\overline{\omega(\lambda)} * \phi \quad \text { for } \quad \phi \in \mathscr{B},
$$

where $\omega(\lambda)$ is the function on $(-\infty, 0]$ such that

$$
\begin{equation*}
\omega(\lambda)(\theta)=\exp \lambda \theta \quad \text { for } \quad \theta \in(-\infty, 0] \tag{3.2}
\end{equation*}
$$

Set

$$
\begin{equation*}
\beta=\inf \left\{\operatorname{Re} \lambda ; \int_{-\infty}^{0}\left|e^{\lambda \theta}\right|^{p} g(\theta) d \theta<\infty\right\} . \tag{3.3}
\end{equation*}
$$

Lemma 3.1. Assume that the function g in the definition of \mathscr{B} satisfies the condition

$$
\begin{equation*}
g(u+v) \leqq g(u) g(v) \quad \text { for } \quad u, v \in(-\infty, 0] \tag{3.4}
\end{equation*}
$$

Then the operator function $M(\lambda)$ is a holomorphic function from $\boldsymbol{C}_{\beta}=$ $\{\lambda \in \boldsymbol{C} ; \operatorname{Re} \lambda>\beta\}$ into $\mathscr{L}(\mathscr{B}, \mathscr{B})$.

For a proof of this lemma, see [4].
Lemma 3.2. Assume that condition (3.4) holds. Then, if $\gamma>\beta$, for any $\xi \in \mathscr{C}_{r}((-\infty, 0], C)^{*}$ and $\phi \in \mathscr{B}\left((-\infty, 0], C^{d}\right)$ the convolution $\xi * \phi$ is well defined and is in $\mathscr{B}\left((-\infty, 0], C^{d}\right)$ with norm

$$
\|\xi * \phi\| \leqq c(\gamma)\|\xi\|_{r}\|\phi\|,
$$

where $c(\gamma)$ is a constant which depends on γ.
Proof. Suppose that $\gamma>\beta, \xi \in \mathscr{C}_{r}^{*}$ and $\phi \in \mathscr{B}$. Obviously for any $\theta \in(-\infty, 0]$,

$$
\left|\int_{\theta}^{0} \xi(u-\theta) \phi(u) d u\right| \leqq \int_{\theta}^{0}|\bar{\xi}|(\theta-u)\left|e^{-\gamma(\theta-u)} e^{\gamma(\theta-u)}\right| \phi(u) \mid d u
$$

From the definition of $\|\xi\|_{r}$ we have

$$
\begin{equation*}
|\xi * \phi(\theta)| \leqq\|\xi\|_{r} \int_{\theta}^{0} e^{r(\theta-u)}|\phi(u)| d u \text { for } \theta \in(-\infty, 0] \tag{3.5}
\end{equation*}
$$

Using the notation $M(\lambda)$, we can express by $(M(\gamma)|\phi|)(\theta)$ the integral term in (3.5). Since condition (3.4) holds, Lemma 3.1 implies that $\xi * \phi$ is in \mathscr{B} and

$$
\|\xi * \phi\| \leqq\|M(\gamma)\|\|\xi\|_{r}\|\phi\| . \quad \text { q.e.d. }
$$

Put $e_{j}=\operatorname{column}\left(\delta_{j_{1}} \cdots \delta_{j_{d}}\right), j=1, \cdots, d$, where $\delta_{j_{k}}$ are Kronecker's δ. For any f in $\mathscr{L}\left(\mathscr{B}, C^{d}\right)$, we define ${ }^{T} f \in \mathscr{L}\left(\mathscr{B}, C^{d}\right)$ by the relation

$$
\left({ }^{T} f\right)(\phi)=\sum_{k=1}^{d}\left\{\sum_{j=1}^{d} f_{j}\left(\phi_{j} e_{k}\right)\right\} e_{k} \text { for } \phi=\sum_{j=1}^{d} \phi_{j} e_{j} \in \mathscr{B},
$$

where $f_{j}(\psi)$ is the j-th component of $f(\psi), \psi \in \mathscr{B}$, and define $\bar{f} \mid \in \mathscr{L}\left(\mathscr{B}^{*}\right.$, ${ }^{T} \boldsymbol{C}^{d}$) by the relation

$$
\begin{equation*}
(\xi) \overline{f \mid}={ }^{T}\left(\left(^{T} f\right)\left(\xi^{*}\right)\right) \quad \text { for } \quad \xi \in \mathscr{B}^{*} . \tag{3.6}
\end{equation*}
$$

In fact, corresponding to f in $\mathscr{L}\left(\mathscr{B}, \boldsymbol{C}^{d}\right)$, there exist $d \times d$ matrix functions $\eta(\theta)=\left(\eta_{j_{k}}(\theta)\right)$ and $\zeta(\theta)=\left(\zeta_{j_{k}}(\theta)\right)$ such that $\eta_{j k}(\theta)$ are of bounded variation on $[-r, 0]$ and $\zeta_{j k}(\theta)$ are measurable with

$$
\int_{-\infty}^{-r}\left|\zeta_{j_{k}}(\theta)\right|^{q} g(\theta) d(\theta)<\infty, \quad \frac{1}{q}+\frac{1}{p}=1, \quad j, k=1, \cdots, d
$$

and that

$$
f(\phi)=\int_{-r}^{0} d \eta(\theta) \phi(\theta)+\int_{-\infty}^{-r} \zeta(\theta) \phi(\theta) g(\theta) d \theta \text { for } \phi \in \mathscr{B} .
$$

Then ${ }^{T} f$ and $\overline{f \mid}$ are expressed by

$$
\begin{align*}
& \left({ }^{T} f\right)(\phi)=\int_{-r}^{0} d^{T} \eta(\theta) \phi(\theta)+\int_{-\infty}^{-r}{ }^{r} \zeta(\theta) \phi(\theta) g(\theta) d \theta \text { for } \phi \in \mathscr{B}, \\
& (\xi) \bar{f}=\int_{-r}^{0} \xi(-\theta) d \eta(\theta)+\int_{-\infty}^{-r} \xi(-\theta) \zeta(\theta) g(\theta) d \theta \text { for } \xi \in \mathscr{B}^{*} \tag{3.7}
\end{align*}
$$

The following lemma can be easily proved.
Lemma 3.3. If $\gamma>\beta$, then $\mathscr{C}_{r} \subset \mathscr{B}$ and

$$
\|\phi\| \leqq c(\gamma)\|\phi\|_{r} \quad \text { for } \quad \phi \in \mathscr{C}_{r},
$$

where the constant $c(\gamma)$ is less than $\left\{\sup _{\theta \in[-r, 0]}\left|e^{\gamma \theta}\right|^{p}+\int_{-\infty}^{0}\left|e^{r \theta}\right|^{p} g(\theta) d \theta\right\}^{1 / p}$.
By Lemma 3.3, for any $f \in \mathscr{L}\left(\mathscr{B}, \boldsymbol{C}^{d}\right)$ and any $\gamma>\beta$, the restriction of f on \mathscr{C}_{r}, which we denote by f again, is in $\mathscr{L}\left(\mathscr{C}_{r}, C^{d}\right)$, and therefore
${ }^{r} f$ is in $\mathscr{L}\left(\mathscr{C}_{r}, \boldsymbol{C}^{d}\right)$ and \bar{f} is in $\mathscr{L}\left(\mathscr{C}_{r}^{*},{ }^{T} \boldsymbol{C}^{d}\right)$.
Now, define an operator A^{*} on $\mathscr{C}_{r}^{*}, \gamma>\beta$, in the following way. The domain of A^{*} consists of all functions ξ in \mathscr{C}_{r}^{*} which have continuous first derivatives and satisfy $\hat{\xi} \in \mathscr{C}_{r}^{*}$, where $\hat{\xi}(0)=(\xi) f \mid$ and $\hat{\xi}(s)=$ $-(d \xi / d s)(s)$ for $s \in(0, \infty)$. The operation of A^{*} is defined by

$$
\begin{equation*}
A^{*} \xi=\hat{\xi} \quad \text { for } \quad \xi \in \mathscr{D}\left(A^{*}\right) \tag{3.8}
\end{equation*}
$$

Assume that condition (3.4) holds. By Lemma 3.2, for any $\xi=\left(\xi_{1}(s)\right.$, $\left.\cdots, \xi_{d}(s)\right) \in \mathscr{C}_{r}\left((-\infty, 0], \boldsymbol{C}^{d}\right)^{*}$ and any $\phi \in \mathscr{B}\left((-\infty, 0], \boldsymbol{C}^{d}\right]$ the convolutions $\xi_{j} * \phi, j=1, \cdots, d$, are in \mathscr{B}. Hence we can define a bilinear form $\langle\xi, \phi\rangle$ on $\mathscr{C}_{r}^{*} \times \mathscr{B}$ by

$$
\begin{equation*}
\langle\xi, \phi\rangle=\xi(0) \cdot \phi(0)+\sum_{j=1}^{d} f_{j}\left(\xi_{j} * \phi\right) \tag{3.9}
\end{equation*}
$$

where $x \cdot y=x_{1} y_{1}+\cdots+x_{d} y_{d}$ for $x \in{ }^{T} \boldsymbol{C}^{d}$ and $y \in \boldsymbol{C}^{d}$.
Let $\{T(t)\}_{t \geq 0}$ be the solution semi-group on \mathscr{B} corresponding to the equation

$$
\begin{equation*}
\frac{d x}{d t}=f\left(x_{t}\right) \tag{3.10}
\end{equation*}
$$

and A be the infinitesimal generator of $\{T(t)\}$. It was proved in [4] that the domain of A consists of all functions ϕ in \mathscr{B} which are absolutely continuous on any compact interval of $(-\infty, 0]$ and satisfy $\tilde{\phi} \in \mathscr{B}$, where $\tilde{\phi}(0)=f(\phi)$ and $\tilde{\phi}(\theta)=(d \phi / d \theta)(\theta)$ a.e. in $\theta \in(-\infty, 0)$, and that

$$
A \phi=\tilde{\phi} \quad \text { for } \quad \phi \in \mathscr{D}(A) .
$$

Proposition 3.4. Assume that condition (3.4) holds and that $\gamma>\beta$. Then the bilinear form $\langle\cdot, \cdot\rangle$ is continuous on $\mathscr{C}_{r}^{*} \times \mathscr{B}$, and

$$
\begin{equation*}
\langle\xi, A \phi\rangle=\left\langle A^{*} \xi, \phi\right\rangle \text { for } \xi \in \mathscr{D}\left(A^{*}\right), \quad \phi \in \mathscr{D}(A) \tag{3.11}
\end{equation*}
$$

Proof. The continuity of $\langle\cdot, \cdot\rangle$ follows from Lemma 3.2. Suppose that ξ is in $\mathscr{D}\left(A^{*}\right)$ and ϕ is in $\mathscr{D}(A)$. Integration by parts implies that

$$
\begin{equation*}
\xi_{j} * A \phi=\overline{\xi_{j} \mid \phi}(0)-\xi_{j}(0) \phi+\left(A^{*}\right)_{j} * \phi, \quad j=1, \cdots, d \tag{3.12}
\end{equation*}
$$

By Lemma 3.2, $\xi_{j} * A \phi$, and $\left(A^{*} \xi\right)_{j} * \phi, j=1, \cdots, d$, are in \mathscr{B}, since ξ is in $\mathscr{D}\left(A^{*}\right)$ and ϕ is in $\mathscr{D}(A)$. By the definition of $\left.\bar{f}\right]$,

$$
\sum_{j=1}^{d} f_{j}\left(\overline{\xi_{j}} \mid \phi(0)\right)=\sum_{k=1}^{d}\left\{\sum_{j=1}^{d} f_{j}\left(\overline{\xi_{j}} \mid e_{k}\right)\right\} \phi_{k}(0)=(\xi) \overline{f \mid} \cdot \phi(0)
$$

which together with relation (3.12) implies that

$$
\sum_{j=1}^{d} f_{j}\left(\xi_{j} * A \phi\right)=(\xi) \bar{f} \mid \cdot \phi(0)-\xi(0) \cdot f(\phi)+\sum_{j=1}^{d} f_{j}\left(\left(A^{*} \xi\right)_{j} * \phi\right)
$$

Hence we obtain

$$
\begin{aligned}
\langle\xi, A \phi\rangle & =\xi(0) \cdot f(\phi)+\sum_{j=1}^{d} f_{j}\left(\xi_{j} * A \phi\right) \\
& =(\xi) \bar{f} \mid \cdot \phi(0)+\sum_{j=1}^{d} f_{j}\left(\left(A^{*} \xi\right)_{j} * \phi\right) \\
& =\left\langle A^{*} \xi, \phi\right\rangle
\end{aligned}
$$

q.e.d.

Now, consider the equation

$$
\begin{equation*}
\left.\frac{d y}{d t}=-\left(y^{t}\right) \bar{f} \right\rvert\, \tag{3.13}
\end{equation*}
$$

where y is a row vector. It is clear that y is a solution of (3.13) if and only if $z \equiv y^{*}$ is a solution of

$$
\begin{equation*}
\frac{d z}{d t}={ }^{T} f\left(z_{t}\right) \tag{3.14}
\end{equation*}
$$

Notice that ${ }^{T} f$ is in $\mathscr{L}\left(\mathscr{C}_{r}, \boldsymbol{C}^{d}\right)$. From the discussion in Section 2 it follows that for any $\phi \in \mathscr{C}_{r}$, the solution $z(\phi)$ of (3.14) such that $z_{0}=\phi$ exists uniquely on $[0, \infty)$ and satisfies the condition $z_{t} \in \mathscr{C}_{r}$ for $t \geqq 0$. This implies that for any $\xi \in \mathscr{C}_{r}^{*}$, the solution $y(\xi)$ of (3.13) such that $y^{0}(\xi)=\xi$ exists uniquely on $(-\infty, 0]$ and satisfies $y^{t}(\xi) \in \mathscr{C}_{r}^{*}$ for $t \in(-\infty, 0]$. Define the operators $T^{*}(t)$ on $\mathscr{C}_{r}^{*}, t \leqq 0$, by

$$
T^{*}(t) \xi=y^{t}(\xi) \quad \text { for } \quad \xi \in \mathscr{C}_{r}^{*}
$$

Let $\{S(t)\}_{t \geqq 0}$ be the solution semi-group on \mathscr{C}_{γ} corresponding to equation (3.14) and B be its infinitesimal generator. Clearly, $T^{*}(t) \xi=\left(S(-t) \xi^{*}\right)^{*}$ for $\xi \in \mathscr{C}_{r}^{*}$. Furthermore, by Theorem 2.1, $\mathscr{D}\left(A^{*}\right)=\mathscr{D}(B)^{*}$ and $A^{*} \xi=$ $\left(B \xi^{*}\right)^{*}$ for ξ in $\mathscr{D}\left(A^{*}\right)$, where A^{*} is the operator defined by (3.8). Therefore, by easy computations, we have

$$
\begin{equation*}
\frac{d}{d t} T^{*}(t) \xi=-A^{*} T^{*}(t) \xi=-T^{*}(t) A^{*} \xi \tag{3.15}
\end{equation*}
$$

for $t \leqq 0$ and $\xi \in \mathscr{D}\left(A^{*}\right)$.
Theorem 3.5. Let x and y be solutions of (3.10) and (3.13) defined on $\left[t_{1}, \infty\right)$ and $\left(-\infty, t_{2}\right]$ with initial conditions $x_{t_{1}}=\phi \in \mathscr{B}$ and $y^{t_{2}}=$ $\xi \in \mathscr{C}_{r}^{*}$, respectively, where $\gamma>\beta$ and $-\infty<t_{1} \leqq t_{2}<+\infty$. Then $\left\langle y^{t}, x_{t}\right\rangle$ is a constant on $\left[t_{1}, t_{2}\right]$, that is,

$$
\begin{equation*}
\left\langle T^{*}\left(t-t_{2}\right) \xi, T\left(t-t_{1}\right) \phi\right\rangle=\text { constant for } t \in\left[t_{1}, t_{2}\right] \tag{3.16}
\end{equation*}
$$

Proof. If ξ is in $\mathscr{D}\left(A^{*}\right)$ and ϕ is in $\mathscr{D}(A)$, by Proposition 3.4 and (3.15) we have

$$
\begin{aligned}
\frac{d}{d t} & \left\langle T^{*}\left(t-t_{2}\right) \xi, T\left(t-t_{1}\right) \phi\right\rangle \\
& =\left\langle-A^{*} T^{*}\left(t-t_{2}\right) \xi, T\left(t-t_{1}\right) \phi\right\rangle+\left\langle T^{*}\left(t-t_{2}\right) \xi, A T\left(t-t_{1}\right) \phi\right\rangle \\
& =0 \text { for } t \in\left[t_{1}, t_{2}\right]
\end{aligned}
$$

which implies (3.16). Since $\mathscr{D}\left(A^{*}\right)$ and $\mathscr{D}(A)$ are dense in \mathscr{C}_{r}^{*} and \mathscr{B}, respectively, relation (3.16) holds for any $(\xi, \phi) \in \mathscr{C}_{r}^{*} \times \mathscr{B}$. q.e.d.
4. A representation of projection operators. Let $\omega(\lambda)$ be the function defined by (3.2). Suppose f is in $\mathscr{L}\left(\mathscr{B}, C^{d}\right)$ and denote by $D(\lambda)$ the $d \times d$ matrix $\lambda E-f(\omega(\lambda) E)$, where E is the $d \times d$ unit matrix. We define matrices F_{j} by

$$
F_{j}=F_{j}(\lambda)=\frac{1}{j!} \frac{d^{j}}{d \lambda^{j}} D(\lambda), \quad j=0,1,2, \cdots,
$$

and define $m d \times m d$ matrices $D_{m}=D_{m}(\lambda)$ by

$$
\left.D_{m}=\left[\begin{array}{cc}
F_{0} & F_{1} \cdots F_{m-1} \\
0 & F_{0} \cdots F_{m-2} \\
& \cdots \\
0 & 0
\end{array}\right], \quad F_{0} .\right]=1,2, \cdots
$$

In [4], it has been shown that $D(\lambda)$ is holomorphic on $\boldsymbol{C}_{\boldsymbol{\beta}}=\{\lambda \in \boldsymbol{C}$; $\operatorname{Re} \lambda>\beta\}$ and that $P_{\sigma}(A)=\{\lambda ; \operatorname{det} D(\lambda)=0\}$. Suppose that $\mu \in \boldsymbol{C}_{\beta}$ is a zero of $\operatorname{det} D(\lambda)$ with order n. Then μ is a pole of $D(\lambda)^{-1}$ with order $m \leqq n$. In this section, (n, m) is said to be the index of μ. From the result in [4] it follows that under condition (3.4) on g, \mathscr{B} can be decomposed into the direct sum $\mathscr{B}=\mathfrak{R}\left((\mu I-A)^{m}\right) \oplus \mathscr{R}\left((\mu I-A)^{m}\right), \mathfrak{N}\left((\mu I-A)^{m}\right)$ is n-dimensional and that for $k=1,2, \cdots, \mathfrak{N}\left((\mu I-A)^{k}\right)$ coincides with the set of functions ϕ of the form

$$
\phi(\theta)=e^{\mu \theta} \sum_{j=0}^{k-1} \frac{1}{j!} \theta^{j} b_{j} \quad \text { for } \quad \theta \in(-\infty, 0],
$$

where $\hat{b}=\operatorname{col}\left(b_{0}, b_{1}, \cdots, b_{k-1}\right)$ satisfies $D_{k}(\mu) \hat{b}=0$.
For any $\gamma, \beta<\gamma<\operatorname{Re} \mu$, the bilinear form $\langle\cdot, \cdot\rangle$ can be defined on $\mathscr{C}_{r}^{*} \times \mathscr{B}$ and it satisfies relation (3.11). Therefore we can prove the following propositions and theorem by the same way as in [1].

Proposition 4.1. Let A and $-A^{*}$ be the infinitesimal generators of semi-groups $\{T(t)\}_{t \geq 0}$ on \mathscr{B} and $\left\{T^{*}(t)\right\}_{t \leq 0}$ on \mathscr{C}_{r}^{*} defined in Section 3 , where $\gamma>\beta$. Then the point spectrum $P_{o}\left(A^{*}\right)$ coincides with $P_{o}(A) \cap \boldsymbol{C}_{r}$. Let (n, m) be the index of $\mu \in P_{o}\left(A^{*}\right)$. Then $\mathfrak{N}\left(\left(\mu I-A^{*}\right)^{m}\right)$ is n-dimen-
sional. For $k=1,2, \cdots, \mathfrak{R}\left(\left(\mu I-A^{*}\right)^{k}\right)$ coincides with the set of functions ξ of the form

$$
\xi(s)=e^{-\mu s} \sum_{j=0}^{k-1}(-s)^{j} \frac{a_{k-1-j}}{j!} \text { for } s \in[0, \infty)
$$

where $\hat{a}=\operatorname{row}\left(\alpha_{0}, \alpha_{1}, \cdots, a_{k-1}\right)$ satisfies $\hat{a} D_{k}(\mu)=0$.
Proposition 4.2. Under the same assumption as in Proposition 4.1, ψ is in $\mathscr{R}\left((\mu I-A)^{k}\right)$ if and only if $\langle\xi, \psi\rangle=0$ for all ξ in $\mathfrak{R}\left(\left(\mu I-A^{*}\right)^{k}\right)$, $k=1,2, \cdots$.

Theorem 4.3. Let μ be in $P_{\sigma}(A) \cap C_{\beta}$ with index (n, m) and π be the projection from \mathscr{B} onto $\mathfrak{R}\left((\mu I-A)^{m}\right)$ which corresponds to the direct sum decomposition $\mathscr{B}=\mathfrak{R}\left((\mu I-A)^{m}\right) \oplus \mathscr{R}\left((\mu I-A)^{m}\right)$. Then for any base $\left\{\phi_{1}, \cdots, \phi_{n}\right\}$ of $\mathfrak{N}\left((\mu I-A)^{m}\right)$, there exists a base $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ of $\mathfrak{N}\left(\left(\mu I-A^{*}\right)^{m}\right)$ such that

$$
\pi \phi=\sum_{j=1}^{n}\left\langle\psi_{j}, \phi\right\rangle \phi_{j} \quad \text { for } \quad \phi \in \mathscr{B}
$$

References

[1] J. K. Hale, Functional Differential Equations, Springer, New York-Heidelberg-Berlin, 1971.
[2] J. K. Hale, Functional differential equations with infinite delays, J. Math. Anal. Appl., 48 (1974), 276-283.
[3] Y. Hino, Asymptotic behavior of solutions of some functional differential equations, Tôhoku Math. J., 22 (1970), 98-108.
[4] T. Naito, On autonomous linear functional differential equations with infinite retardations, to appear in J. Differential Equations.
Mathematical Institute
Tôhoku University
Sendai, Japan.

