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1. In [2], Foias and Kovacs proved that a finite von Neumann algebra
is characterized by the terms of contractions in it. The essential part
of their proof is a trace argument. Our interest is how to prove this
without using such trace argument because we can not use it in more
general algebra (for example, ATF*-algebra).

We say that a bounded linear operator T on a Hubert space H is
hyponormal if T*T^TT*, or equivalently, if || Tx\\ ^ || T*x\\ for all
x 6 H. If T is an invertible hyponormal operator on H, then T'1 is also
hyponormal and T*~1T is a contraction (i.e., || T^TH ^ 1) in R(T) which
denotes the von Neumann algebra generated by T. On the other hand,
for a contraction T on H, we can construct a hyponormal operator in
R(T) associated with T. And there is an interesting and useful relation
between hyponormal operators and contractions in a von Neumann algebra.
From this point of view, it is important to study the behaviour of
hyponormal operators in a von Neumann algebra and, in §2, we shall
study such relation between hyponormal operators and contractions and
show some applications of it.

The most effective technique being used in this section is the decom-
position theorem (called canonical decomposition) of a contraction T and
moreover such decomposition can be done in R(T). This follows from the
characterization (due to [6] and also [4]) of the subspace H(u] on which
the unitary part of T acts as follows;

H™ = { x e H : \ \ T k x \ \ = \\x\\ = || Γ**a?||, ft = 1, 2, •••}

H: T*kTkx = x = TkT*kx] .

Concerning this decomposition, it is known that every bounded linear
operator T on H can be written uniquely as the direct sum of a normal
part and a completely non-normal part of T. But, in this case, known
characterizations of H(n) on which the normal part of T acts is not so
precise as that of H(u) for the case T is a contraction. In §3, we shall
show that the subspace H(n} for the case where T is hyponormal is
characterized as follows;
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Hw = {xeH:\\Tkx\\ = ]] T*"x\\, k = 1,2, •••}

= Π {xe H: T*kTkx = TkT*kx]
k=l

and that this characterization does not hold for general operators. Of
course, we see that this kind of decomposition of T can be done in R(T).

2. Hyponormal operators associated with contractions. For a von
Neumann algebra 2t, the following statements are equivalent: (a) every
isometry in St is unitary (b) there exist sufficiently many finite normal
traces of St.

Using this and by using a trace argument, Foias and Kovacs [2]
proved that, for any contraction T in 2t, each strong limit of the sequences
{T*kTk} and {TkT*k} is the projection in SI which commutes with T and
consequently showed the following.

THEOREM 1 ([2]). Given von Neumann algebra 31 is finite if and
only if, for every completely non-unitary contraction T in 31, the sequence
{Tk} converges to 0 in the strong operator topology.

However, it is of interest how to prove this without using such trace
argument.

Let T be a contraction on H. From the inequality Γ*fc(I - Γ*T)T k ^ 0
it follows that the sequence {T*kTk} is monotonically decreasing and hence
converges strongly to a non-negative contraction. If we denote the unique
non-negative square root of this contraction by AT9 then Aτ — 0 if and
only if the sequence {Tk} converges to 0 in the strong operator topology.
Moreover, since T*A%T = AT, we have

| | A T T x \ \ 2 = (T*A2

TTx, x} = (Afx, x) = \\Aτx\\2 ^ || T*Aτx\\2

for all xeH and hence ATT is hyponormal. In this section, we shall
consider these hyponormal operators associated with contractions. Easily
we see that every isometry V is a hyponormal operator AVV associated
with V itself.

Recall that a contraction T on H is called to be completely non-
unitary if T has no non-zero reducing subspace restricted to which T is
unitary.

LEMMA 1. For a completely non-unitary contraction T on H, if
ATT is normal, then Aτ — 0.

PROOF. If ATT is normal, then we have ATTT*AT = (ATT)(ATT)* =
(ATTY(ATT) = T*A2

TT - A2

T and hence AT(I - 2T*)AΓ - 0. This implies
that (I - TT*Y/2AT = 0 and also (I - TT*)AT = 0. Hence we have
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(/ _ TT*)A2

TT = 0 and A2

TT - TA2

T = 0. From this, we have T*kTkA2

T =
T*kA2

TT
k = A2

T for all k = 1, 2, and hence A*τ = A2

T. Therefore Aί
(and also Aτ) is a projection commuting with T. Hence T is unitary on
ATH. Since T is completely non-unitary, ^.fl" = {0} and hence Aτ = 0.

The following theorem follows from Theorem 1. But we shall prove
this without using such trace argument as in the proof of Theorem 1.

THEOREM 2. Every hyponormal operator in a von Neumann algebra
2t c B(H) is normal if and only if, for every completely non-unitary
contraction Te SI, Aτ = 0.

PROOF. If every hyponormal operator in §1 is normal, then, for
every completely non-unitary contraction Te§ί, ATT is also normal and
hence, by Lemma 1, Aτ = 0. Conversely, let S be a hyponormal operator
in §ί, then, for any complex number λ, S — λ/ is also a hyponormal
operator in 2t. And hence we have only to prove that S is normal in
the case where S is an invertible hyponormal operator in 21. Let C =
S*~1S, then, since the inverse of a hyponormal operator is also hyponor-
mal, we have | |Ca?| | - HS*'1^! ^ HS^SxH = \\x\\ for all xe H, that is,
C is a contraction in St and S = S*C and hence S = C*fcSC* for all fc =
1, 2, . Suppose that C •= C(u) 0 C(0) on H = H(u} 0 jfϊ(0) is the canonical
decomposition of the contraction C, then 0 0 C(0) is a completely non-
unitary contraction in 2t as stated in §1. Hence, by the hypothesis,
the sequence {(0 0 C(0))fe} and also the sequence {C(0)fe} converges to 0
strongly. And, for any xeH(0\ we have

||Sα?|| - ||C**SC*a?||^ \\S\\\\Ckx\\ = \\S\\ \\C(0)kx\\ — 0 (as k-+<*>)

and Sx = 0. Therefore Hw c Ns = {x e H: Sx = 0). Since S is invertible,
Ns = {0} and H(0} = {0}. This implies that C is unitary and ||S*a?|| =
\\C*Sx\\ = \\Sx\\ for all xsH.

LEMMA 2. Let T be a contraction on H and let {xk} be a sequence
of unit vectors xk in H. For a real number r > 0, if ATTxk — reiθxk—*Q
(as k—> oo), then we have Txk — eiθxk-+Q (as k—»oo).

PROOF. ATTxk — reiθxk-+Q (as fc—> oo) implies that

T*A2

TTxk - reiθ.T*Aτxk -+ 0 and A2

τxk - reίθT*Aτxk -> 0 . •••(!)

On the other hand, since ATT is hyponormal, ATTxk — reίθxk—+Q implies
that

T* Aτxk - re~iθxk -> 0 . (2 )

By (1) and (2), we have AτXk — rzxk —»• 0 and also
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Aτxk — τxk — * 0 . ( 3 )

Since r is non-zero, by (2) and (3), we have T*xk — e~ίθxk — » 0 and, since
T is a contraction, we have Txk — eίθxk—*Q (as k— *> °o).

As an another application, we have an alternative proof of the following.

THEOREM 3 ([7]). For a completely non-unitary contraction T on H,
if m[σ(T) Π {zeC: \z\ = 1}] = 0, then Aτ = 0 where σ(T) denotes the
spectrum of T and m[ ] denotes the Lebesgue measure on the unit circle.

PROOF. Let w2[ ] be the two dimensional Lebesgue measure on the
complex plane C and let

D = [ret9:Q£r ^ 1, eίθeσ(T)} .

If m[σ(T) Π {zeC: \z\ = 1}] = 0, then, by Fubini's theorem, mz[D] = 0.
Let σap(AτT) be the approximate point spectrum of ATT, then, by Lemma
2, σap(AτT)dD. Since dσ(AτT) (the boundary of σ(AτT))dσap(AτT) (see
[3]) and since D does not separate the plane by its construction, we have
σ(AτT)(i.D and hence m2[σ(AτT)] = 0. It is known, by [8], that, for
every hyponormal operator S on H, if m2[σ(S)] = 0, then S is normal.
Therefore ATT is normal. Then, by Lemma 1, Aτ = 0.

3. Normal part of hyponormal operators. The following is a charac-
terization of the subspace H(n} on which the normal part of a general
operator T acts, due to Apostol [1];

H™ = {x e H: T* TSx = TT*Sx for all S e J^}

where ̂  denotes the set of all finite products of T, T* and the identity
operator I. Recently, Morrel [5] characterized the subspace H(n) more
precisely as follows;

H(n] = Π {xeH: T*rTsx = T*T*rx} .
r=l s = l

In the case where T be hyponormal, we have the following.

THEOREM 4. The subspace H(n} for a hyponormal operator T on a
Hilbert space H is characterized as follows]

H(n> = {xeH:\\Tkx\\ = \\ T*kx\\, k = 1, 2, •••}

- Π [xzH: T*kTkx = TkT*kx} .
k=ι

Before proving the Theorem 4, we prepare several lemmas.

LEMMA 3 ([9]). For a hyponormal operator T on H, \\Tx\\ = \\ T*x\\
is equivalent to T* Tx = TT*x.
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PROOF. By the hyponormality, we have

- \\T*x\\2 = <[Γ*Γ- 2T*]z, x) = | |[T*Γ- TT*]1/2x\\2 .

For a hyponormal operator T on H, let

^f = {xeH:\\Tkx\\ = ||Γ**a?||, k = 1,2, •••}

and let

^r = fj {x e #: T**T*z - TfcT**x} ,
fc = l

then we have

LEMMA 4. ̂  reduces T and ̂  = Λi

PROOF. If xe^, then \\Tx\\ = \\T*x\\ and, by Lemma 3,

T*Tx = TT*x. ••• (1)

From this and by the hyponormality, | |T2x| | ^ | |!Γ*T&|| = || ZT*α|| ̂
| |Γ* 2aj | | . Since

||Γ2α;|| - \\T*2x\\, \\T(Tx)\\ = ||Γ*(Γa?)|| - ||Γ(Γ*a?)|| - ||Γ*(Γ*α?)||

and, by Lemma 3, we have T*T(Tx) = TT*(Tx) and T*T(T*z) = TT*(T*x).
And hence, by (1), we have

T*T2x = TT*Tx = T2T*x and T*zTx = T*TT*x = TT**x . ( 2 )

From this and by the hyponormality, || T3^|| ^ || T*T2x\\ = \\ TT*Tx\\ =
|| Γ2Γ*α;|| ^ || T*TT*x\\ = \\ T**Tx\\ = \\ TT*2x\\ ^ || Γ*8a?||. Since || Γ3x|| =
|| Γ*8α||, || T(T2x)\\ = ||Γ*(T2^)|| - ||Γ(Γ*Γa?)|| - ||Γ*(Γ*Γα?)|| - ||Γ(ΓΓ*a?)|| =
II τ*(TT*x) || = || T(T*2x)\\ = | |T*(Γ*2ίc)|| and, by Lemma 3, we have
T*T(T2x)= TT*(T2x\ T*T(T*Tx)= ΓΓ*(Γ*Γx), T*T(TT*x)= TT*(TT*x)
and T*r(T*2£) = ΓΓ*(Γ*2^). And hence, by (1) and (2), we have

T*T3£ = TT*T2x = T2T*Tx = T*T*x ,

T*2Tzχ = τ*TT*Tx = T*T2T*x = TT*TT*x = TT*2Tx = T2T*2x

and T**Tx = Γ*2TΓ*ίc = T*TT*2x = TT**x . ( 3 )

Repeating this, we have

|]Tfc(2V)|| - ||T* fc(ϊ¥)|| = \\Tk(T*x)\\ = | |T**(T*x)||

and T*kTkx = TkT*kx ΐ or all k = 1, 2, - . ( 4 )

And hence Tx, T*xe ̂ . Therefore Λ reduces T. Since, for any k =
1, 2, •••, T*kTkx = TkT*kx implies that | |Γ*aj | | = | |T**α||, we have Λ* c

. Conversely, if x e ̂ K then, by (4), x e ̂ K Therefore f̂ = ̂

PROOF OF THEOREM 4. For each fc = 1, 2, , {x e H: T*kTkx = TkT*kx]
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is a closed subspace of H because it is the null space of the operator
T*kTk - TkT*k. And hence Λ* is also a closed subspace of H. There-
fore, by Lemma 4, ̂  is a closed subspace of H and reduces T. By
the construction of ̂  it is clear that the restriction T\^ is normal
and the restriction T \ H Q ̂  is completely non-normal. Therefore

Applying this theorem to an isometry, we have the following.

COROLLARY ([6]). The subspace Hw for an isometry V on H is
characterized as follows]

H™ = {x e H: \\x\\ = \\V*'x\\, k = 1,2, •••}

= Π {* e H: x = VkV*kx] = Hw .
k=ι

The Theorem 4 does not hold for general operators.

EXAMPLE. Let T = (V Q) on a two dimensional Hubert space H =

{x = (\ μ): λ, μ e C}, then clearly T is not hyponormal and is completely
non-normal (i.e., H(n) = {0}). On the other hand, we have easily that, for
any λeC,

Therefore H(n] ^{xeH: \\Tkx\\ = | |T**z||, k = 1,2, •••}.
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