PERTURBATION OF NONLINEAR HYPERCONTRACTIVE SEMIGROUPS

BRUCE CALVERT

(Received June 11, 1975, revised February 15, 1977)

We present an extension to nonlinear operators of some results of I. Segal. Let $S_A(t)$ generated by -A be a semigroup of nonlinear contractions in L^p , and take L^p to $L^{p+\varepsilon(t)}$. This strong condition allows us to perturb -A by -F, with weak conditions on F, so that -A - F has closure generating a semigroup in L^p . F is a nonlinear Nemytskii operator.

Introduction. This work extends some ideas of I. Segal [10, 11], following also B. Simon and R. Hoegh-Krohn [12, Section 2]. In their work, -A is self adjoint and generates a hypercontractive semigroup, while F is given by multiplication by the function V. They approximate V by $V_n \in L^{\infty}$, giving semigroups $S_{A+V_n}(t)$. In the linear case the convergence of $S_{A+V_n}(t)$ follows Du Hamel's formula; If A is *m*-accretive, B and C bounded, then

$$S_{{}_{A+B}}(t) = S_{{}_{A+C}}(t) + \int_{_{0}}^{_{t}} S_{{}_{A+B}}(t-u)(C-B)S_{{}_{A+C}}(u)du$$
 .

In the nonlinear case we do not have this formula, but we can show convergence of $S_{A+F_n}(t)$. Also we do not have their results [12, Lemma 2.15] on self adjoint operators. As in the linear case we do have the Trotter product formula for giving bounds on $S_{A+F_n}(t)$.

In this paper there are three sections: one on convergence of $A + F_n$, one on almost accretive Nemytskii operators, and one on hypercontractive semigroups.

The following comments raise a problem for further work. The section on hypercontractive semigroups $S_A(t)$ gives

$$|S_A(t)u - S_A(t)v|_{(p^{-1}-a(t))^{-1}} \leq C^t |u - v|_p$$

with a(t) linear only when S(z) is contractive for $\operatorname{Re}(z) \geq 0$, making it affine. This clashes with the result on Nemytskii operators F, where we have

$$|S_F(t)u - S_F(t)v|_p \leq K^t |u - v|_{(p^{-1}-a(t))^{-1}}$$

with a(t) nonlinear only when F satisfies very strong conditions.

I am grateful to colleagues at the University of Auckland and the referee for their help.

1. Convergence of $A + F_n$. Let (X, | |) be a Banach space over C or R with dual X^* , and pairing denoted by parentheses. Let $J: X \to P(X^*)$ be the duality map defined by $f \in Jx$ when $(x, f) = ||x||^2 = ||f||^2$. An operator A in X is a function from X to P(X). A is single-valued if Ax never contains more than one point. The domain D(A) of A is the set of x with Ax nonempty, and the range R(A) of A is the union of the sets Ax. We identify A with its graph in $X \times X$. We add operators, multiply by scalars and take inverses. Let $(,)_s: X \times X \to R$ be defined by

$$(f, g)_s = \lim_{d \to 0} d^{-1}(||g + df||^2 - ||g||^2)$$
.

If A is an operator in X, the following are equivalent by Bénilan [1] or Kato [7].

(1) If $\lambda > 0$, $x_1 \in Ax$, $y_1 \in Ay$, then $||(x + \lambda x_1) - (y + \lambda y_1)|| \ge ||x - y||$. (2) If $x_1 \in Ax$, $y_1 \in Ay$, then $(x_1 - y_1, x - y)_s \ge 0$.

(3) If $x_1 \in Ax$, $y_1 \in Ay$, then there is $f \in J(x - y)$ with $\operatorname{Re}(x_1 - y_1, f) \ge 0$.

A is called accretive iff. any of these hold. If there are several Banach spaces we will index the norms, duality map, functions $(,)_s$, closure operations, etc, by the space, as $|x|_x$, $J_x(x)$, and $(x, y)_{x,s}$, and $cl_x(A)$. Supposing A accretive, A is called *m*-accretive iff. $R(I + \lambda A) = X$ for $\lambda > 0$, and A is called maximal iff. it is maximal with respect to inclusion among accretive sets with domain contained in cl (D(A)).

We write $A \in A(w)$ to mean A + wI is accretive, in which case A is maximal means A + wI is maximal.

Let (Ω, B, μ) be a measure space. For $p \in [1, \infty]$, let $L^p = (L^p(M; X), ||_p)$ denote the space of (equivalence classes of) measurable functions $f: M \to X$, with $|f|_p^p = \int |f|^p d\mu < \infty$, and the usual modification for $p = \infty$.

THEOREM 1.1. Let $(Y, | |_{Y})$ and $(Z, | |_{Z})$ be Banach spaces over \mathbb{R} or \mathbb{C} , with Z continuously contained in Y. Let F_n be a sequence of single valued operators in Z, with $D(F_n) = D(F)$ for all n. Suppose $F_n: D(F) \to Y$ converges to $F: D(F) \to Y$ uniformly on bounded subsets of Z. Let A be an operator in Z. Suppose $w \in \mathbb{R}^+$ and $A + F_n + wI$ is accretive in Y for all n. Let C and D be subsets of Z.

Suppose one of the following hold. (1) C is bounded. (2) There is

464

 $x_0 \in D(A)$ with $F_n x_0$ bounded in Z and also $A + F_n + wI$ is accretive in Z for all n.

Suppose $(I + \lambda(A + F_n))C \supseteq D$ for $\lambda \in (0, w^{-1})$, and all n. Then the closure $\operatorname{cl}_{\operatorname{r}}(A + F)$ of A + F in $Y \times Y$ satisfies $(I + \lambda \operatorname{cl}_{\operatorname{r}}(A + F))\operatorname{cl}_{\operatorname{r}}(C) \supseteq \operatorname{cl}_{\operatorname{r}}(D)$ for $\lambda \in (0, w^{-1})$, and $wI + \operatorname{cl}_{\operatorname{r}}(A + F)$ is accretive in Y.

PROOF. Let $(1 + \lambda w)y_i + \lambda(a_i + Fy_i) = x_i$, i = 1, 2, with $w^{-1} > \lambda > 0$, and $a_i \in Ay_i$. Then $(1 + \lambda w)y_i + \lambda(a_i + F_ny_i) \rightarrow x_i$ in Y. Since $A + F_n + wI$ are accretive in Y, taking limits gives $|y_1 - y_2|_Y \leq |x_1 - x_2|_Y$. That is, A + F + wI is accretive in Y, and consequently $cl_Y(A + F) + wI$ is accretive in Y.

Since $cl_{y}(A + F) + wI$ is accretive it is enough to show

$$(I + \lambda \operatorname{cl}_{Y}(A + F)) \operatorname{cl}_{Y}(C) \supseteq D$$

for $\lambda \in (0, w^{-1})$. Given x in D, let $y_n = (I + \lambda(A + F_n))^{-1}x$. We claim y_n are bounded. If C is not bounded, take $a \in Az_0$. Since $A + F_n + wI$ are accretive in Z,

$$egin{aligned} & (1-\lambda w) \|y_n-x_0\|_Z^2 \leq (x-(x_0+\lambda a+\lambda F_n x_0),\ y_n-x_0)_{Z,s} \ & \leq K \|y_n-x_0\|_Z \end{aligned}$$

for some $K \in \mathbf{R}$, proving the claim. Take $a_n \in Ay_n$ with $y_n + \lambda a_n + \lambda F_n y_n = x$. Then

$$egin{aligned} &(1-\lambda w)\|y_n-y_m\|_Y^2 &\leq ((y_n+\lambda a_n+\lambda F_ny_n)-(y_m+\lambda a_m+\lambda F_ny_m),\ y_n-y_m)_{Y,s}\ &\leq \lambda (F_ny_m-F_ny_m,\ y_n-y_m)_{Y,s} \,. \end{aligned}$$

Now $F_n \to F$ uniformly on the bounded set $\{y_m\}$ of Z, giving $|y_n - y_m|_Y \to 0$. Hence, there is $y \in Y$ with $y_n \to y$ in Y. Since $y_n + \lambda a_n + \lambda F y_n = x + \lambda (F - F_n) y_n \to x$ in Y, we have $x \in (I + \lambda \operatorname{cl}_Y(A + F) \operatorname{cl}_Y(C))$. q.e.d.

LEMMA 1.1. Let X be a Banach space, with X and X^{*} uniformly convex. Suppose A and B are single-valued, and $A \in A(w_A)$, $B \in A(w_B)$. Let C be a closed convex subset of X such $cl(C \cap D(A + B)) = C$. Let A be maximal and B closed. Suppose that for λ small, $\lambda > 0$, $R(I + \lambda A) \supset D(A)$, $(I + \lambda A)^{-1}C \subset C$, $(I + \lambda B)C \supset C$ and $(I + \lambda(A + B))C \supset C$. Let S_A be generated on $\overline{D(A)}(= cl(D(A)))$ by -A, and let S_B and S_{A+B} be generated on C by $-B_{1C}$ and $-(A + B)_{1C}$, to use the terminology of Brezis and Pazy [3], i.e., $S_A(t)x = \lim_{n\to\infty} (I + (t/n)A)^{-n}$ for $x \in \overline{D(A)}$, and S_B and S_{A+B} likewise. Then for $x \in C$, $S_{A+B}(t)x = \lim_{n\to\infty} (S_A(t/n)S_B(t/n))^n x$, and the limit is uniform in t on every finite interval.

PROOF. Since $A \in A(w_A)$ and A is maximal, we have $R(I + \lambda A) \supset \overline{D(A)}$

for small $\lambda > 0$ and -A is the infinitesimal generator of the semigroup S_A defined by $S_A(t)u = \lim_{n \to \infty} (I + (t/n)A)^{-n}u$ for $u \in \overline{D(A)}$ and $t \ge 0$ (see [9, Theorem 3]). It follows from $(I + \lambda A)^{-1}C \subset C$ that each $S_A(t)$ maps C into itself. We next consider $B_1 = B_{1C}$ (the restriction of B to $C \cap D(B)$). Clearly $B_1 \in A(w_B)$ and $R(I + \lambda B_1)(=(I + \lambda B)C) \supset C = \overline{C \cap D(B)} = \overline{D(B_1)}$ for small $\lambda > 0$. Note that the closedness of B implies that B_1 is also closed. Therefore $-B_1$ is the infinitesimal generator of the semigroup S_B on C defined by $S_B(t)u = \lim_{n \to \infty} (I + (t/n)B)^{-n}u(=\lim_{n \to \infty} (I + (t/n)B_1)^{-n}u)$ for $u \in C$ and $t \ge 0$, i.e., $\lim_{t \to 0} t^{-1}(u - S_B(t)u) = B_1u = Bu$ for $u \in D(B_1) = D(B) \cap C$. (See [9. Cor. 2].) Also, $-(A + B)_{1C}(= -(A + B_1))$ generates a semigroup S_{A+B} on C, because $A + B_1 \in A(w_A + w_B)$ and $R(I + \lambda(A + B_1)) \supset C = \overline{D(A + B)} \cap C = \overline{D(A + B_1)}$ for small $\lambda > 0$.

We use the following result from [2, Cor. 4.3]. For t > 0, let T(t) be Lipschitz with constant M(t) mapping a closed convex subset C of X into itself. Let $\tilde{A} \in A(w)$ be single-valued, $\operatorname{cl} D(\tilde{A}) = C$, $\operatorname{cl} (R(I + \lambda \tilde{A})) \supset C$ for $\lambda \in (0, w^{-1})$. Then $-\operatorname{cl} (\tilde{A})$ generates a semigroup S(t) on C. If (i) M(t) = 1 + wt + o(t) as $t \to 0$ and (ii) $t^{-1}(x - T(t)x) \to \tilde{A}x$ as $t \to 0$ for $x \in D(\tilde{A})$, then $\lim_{n \to \infty} (T(t/n))^n x = S(t)x$ for $x \in C$, and the limit is uniform on bounded t intervals.

We now use the above results by putting $T(t) = S_A(t)S_B(t)$ and $\widetilde{A} = A + B_1$. For each $t \to 0$, $T(t): C \to C$ is Lipschitz with constant $e^{w_A t} e^{w_B t} = 1 + (w_A + w_B)t + o(t)$ as $t \to 0$. Thus, to prove the lemma, it suffices to show that

$$(*) \qquad \qquad \lim_{t \to 0} t^{-1}(u \, - \, T(t)u) = (A \, + \, B_{\scriptscriptstyle 1})u \quad {
m for} \quad u \in D(A \, + \, B_{\scriptscriptstyle 1}) \; .$$

For $u \in D(A + B_1)(=D(A + B) \cap C)$, $t^{-1}(u - T(t)u) = t^{-1}(u - S_A(t)u) + y_t$, where $y_t = t^{-1}(S_A(t)u - S_A(t)S_B(t)u)$. Now $|y_t| \leq e^{(w_A + w_B)t} |Bu|$. Apply $I - S_A(t)$ at $v \in D(A)$ and $S_B(t)u$, noting $I - S_A(t)$ is $A(w_A(t) + o(t))$.

$$egin{aligned} &\operatorname{Re}\left((v-S_{\scriptscriptstyle A}(t)v)-(u-S_{\scriptscriptstyle A}(t)u)+(u-S_{\scriptscriptstyle B}(t)u)-ty_{\scriptscriptstyle t},\,J(v-S_{\scriptscriptstyle B}(t)u)
ight)\ &\geq -(w_{\scriptscriptstyle A}t+o(t))ert v-S_{\scriptscriptstyle B}(t)uert^2. \end{aligned}$$

Suppose $t(n) \rightarrow 0$ and $y_{t(n)}$ converges weakly to y. Putting t = t(n), dividing by t(n) and letting $n \rightarrow \infty$, we obtain

$$\operatorname{Re}\left(Av - Au + Bu - y, J(v - u)\right) \geq -w_{A}|v - u|^{2}$$
.

Since A is maximal and $u \in cl(D(A))$, Au + y - Bu = Au. Then $y_{t(n)} \rightarrow Bu$, and consequently $y_t \rightarrow Bu$ as $t \rightarrow 0$. q.e.d.

LEMMA 1.2. Let X be a Banach space, X and X^{*} uniformly convex. Let C be a closed convex subset of $L^p = L^p(M; X)$, $p \in (1, \infty)$. Suppose A, F are single-valued operators in L^p , A and $F \in A(w)$, and

$$\operatorname{cl}\left(C\cap D(F+A)
ight) =C$$
 .

Let F be maximal and A closed. Suppose that for λ small, $\lambda > 0$, we have $R(I + \lambda F) \supseteq D(F)$, $(I + \lambda F)^{-1}C \subseteq C$, $(I + \lambda A)C \supseteq C$ and

$$(I + \lambda(F + A))C \supseteq C$$
.

Let S_F be generated on $\operatorname{cl}(D(F))$ by -F, and let S_A and S_{F+A} be generated on C by $-A_{+C}$ and $-(F+A)|_C$. For $u, v \in C$, and $t \in (0, 1)$, suppose $|S_A(t)u - S_A(t)v|_{(p^{-1}-a(t))^{-1}} \leq H^t |u-v|_p$ and

$$|S_{\scriptscriptstyle F}(t)u - S_{\scriptscriptstyle F}(t)v|_{\,p} \leq K^t |\,u - v\,|_{(p^{-1} - a(t))^{-1}}$$
 ,

where K, $H \in \mathbb{R}$ and a: $\mathbb{R}^+ \to \mathbb{R}^+$ are given. Then $S_{A+F}(t)$ is of type HK, i.e., $|S_{A+F}(t)u - S_{A+F}(t)v|_p \leq (HK)^t |u - v|_p$.

PROOF. By Day [5, 6], $L^{p}(M; X)$ and $L^{q}(M; X^{*})$ are uniformly convex. By Lemma 1.1,

$$\|S_{\scriptscriptstyle A+F}(t)u-S_{\scriptscriptstyle A+F}(t)v\|_{\scriptscriptstyle p}=\left|\lim_{n o\infty}\left(S_{\scriptscriptstyle F}\!\left(rac{t}{n}
ight)\!S_{\scriptscriptstyle A}\!\left(rac{t}{n}
ight)\!
ight)^{\!n}u-\!\left(S_{\scriptscriptstyle F}\!\left(rac{t}{n}
ight)\!S_{\scriptscriptstyle A}\!\left(rac{t}{n}
ight)\!
ight)^{\!n}v
ight|_{\scriptscriptstyle p}\,.$$

Since

$$\Big|S_{\scriptscriptstyle F}\!\Big(rac{t}{n}\Big)\!S_{\scriptscriptstyle A}\!\Big(rac{t}{n}\Big)\!x-S_{\scriptscriptstyle F}\!\Big(rac{t}{n}\Big)\!S_{\scriptscriptstyle A}\!\Big(rac{t}{n}\Big)\!y\Big|_{\scriptscriptstyle p} \leq H^{\scriptscriptstyle t/n}K^{\scriptscriptstyle t/n}|x-y|_{\scriptscriptstyle p}\,,$$

for x, y in C, the result follows.

COROLLARY 1.1. If F_n is sequence of operators satisfying the above for all $n, F_n \in A(w_n), A + F_n$ closed, then the restriction of $A + F_n$ to C is in $A(\log (HK))$.

PROOF. By Miyadera [9, Corollary 2], since $A + F_n$ is single-valued, for $x \in D(A + F_n)$, the right derivative of $S_{A+F_n}(t)x$ exists and is equal to $-(A + F_n)x$. q.e.d.

2. Almost accretive Nemytskii operators. Let (M, B, μ) be a measure space. Let (X, | |) be a separable Banach space over C. For $p \in [1, \infty]$, let $L^p = L^p(M; X)$. We also put L^p for $L^p(M; R)$ as in (2), (3) when there is no confusion. Given $f: M \times X \to X$, we define $F: U \to U$, where $U = \{u: M \to X\}$, by (Fu)(x) = f(x, u(x)). F also denotes the mapping on equivalence classes of functions equal a.e. F is called a Nemytskii operator. We will use the following conditions.

(1) f satisfies the Carathéodory conditions, i.e., f is measurable in x for $u \in X$, and continuous in u for x a.e.

(2) $W: M \to (-\infty, 0]$ is measurable, $e^{-tW} \in L^1$ for $t \ge 0$, and for $s \in M$, $u \to f(s, u) - W(s)u$ is accretive in X.

 $\begin{array}{c|c} (3) & |f(x, u)| \leq \sum_{i=1}^m T_i(x) |u|^{\beta_i}, \ \text{where} \ p_2\beta_i < p_1, \ p_1, \ p_2 \in [1, \ \infty), \ \text{and} \\ T_i \in L^{p_1 p_2 / (p_1 - p_2 \beta_i)}. \end{array}$

(4) $W_1: M \mapsto [0, \infty)$ is measurable, and for $s \in M$, $u \in X$, $|f(s, u)| \leq W_1(s)(1 + |u|)$.

(5) $E_n = \{s \in M: u \to f(s, u) + nu \text{ is accretive in } X \text{ and } |f(s, u)| \leq n(1 + |u|) \text{ for } u \in X\}.$ Let $f_n(s, u) = f(s, u) \text{ if } s \in E_n$, and $f_n(s, u) = 0$ if $s \notin E_n$.

THEOREM 2.1. Let f satisfy (1), (2), (3), and (4). Defining f_n by (5), and F_n and F from f_n and f, F_n and F are bounded continuous operators from L^{p_1} to L^{p_2} . F_n converges to F uniformly on bounded subsets of L^{p_1} . $F_n + nI$ is bounded, continuous, and accretive in L^p for $p \in [1, \infty)$. Letting S_n be generated by $-F_n$ in L^p , for all r,

$$|S_n(t)u - S_n(t)v|_{1/(1/p+t/r)} \leq |e^{-W}|_r^t |u - v|_p$$
.

PROOF. Since X is separable, the sets E_n are measurable. Hence, f_n satisfy (1). Also, f_n satisfy (3). Since f_n and f satisfy (1) and (3), F_n and F are bounded and continuous from L^{p_1} to L^{p_2} by Krasnoselskii [8]. By (2) and (4), $M = \bigcup_{n=1}^{\infty} E_n$. Consequently, $\int_{E_{n'}} T_i^{p_1 p_2/(p_1 - p_2 \beta_i)} \to 0$ as $n \to \infty$ for $1 \leq i \leq m$. By (3), F_n converges to F uniformly on bounded sets.

The definition of E_n gives $|f_n(s, u)| \leq n(1 + |u|)$, and so F_n is bounded and continuous from L^p to L^p for all p since (1) is satisfied by f_n [8]. Since $u \to f_n(s, u) + nu$ is accretive in X, it follows that $F_n + nI$ is accretive in L^p .

Let S_n be generated in L^p by $-F_n$. Then for $u, v \in L^p$, s a.e. in M, by (2),

$$|(S_n(t)u)(s) - (S_n(t)v)(s)| \le e^{-tW(s)} |u(s) - v(s)|.$$

Hence, we have $|S_n(t)u - S_n(t)v|_{1/(1/p+t/r)} \leq |e^{-W}|_r^t |u - v|_p$. q.e.d.

3. Hypercontractive semigroups. Let (M, B, μ) be a measure space. Let $\Sigma = \{z \in C : | \arg(z) | < \theta \pi\}$ where $\theta \in (0, 1/2]$. Let (X, | |) be a reflexive Banach space over C, and for $p \in [1, \infty]$ let $L^p = L^p(M; X)$. Let C be a closed convex nonempty subset of L^p , $p \in (1, \infty)$.

DEFINITION. We say $\{U(z): z \in \operatorname{cl} \Sigma\}$ is a hypercontractive semigroup on *C* if the following are satisfied. For $z \in \operatorname{cl} \Sigma$, $U(z): C \to C$ is nonexpansive, i.e., $|U(z)u - U(z)v|_p \leq |u - v|_p$. Also U(0)u = u and U(z)U(w)u =U(z + w)u for $u \in C$ and $z, w \in \operatorname{cl} \Sigma$. $U(z)u \to u$ for $x \in C$ as $z \to 0$. There is $\varepsilon \neq 0$, $K \in \mathbb{R}$, such that for $u, v \in C$, $|U(1)u - U(1)v|_{p+\varepsilon} \leq K|u - v|_p$. For u in $C, z \to U(z)u$ is holomorphic on Σ .

LEMMA 3.1. Let Ω denote the bent strip $\{z \in \Sigma : |\arg(z-1)| > \theta\pi\}$.

468

Let $f: cl(\Omega) \to C$ be continuous, and analytic on the region Ω . Suppose $|f(z)| \leq M_0$ on bdy Σ and $|f(z)| \leq M_1$ on bdy $\Sigma + 1$. Then there is a continuous function $a(t): [0, 1] \to R$, analytic on $(0, 1), a(t) \leq Ct$ for some C, satisfying $|f(t)| \leq M_1^{a(t)} M_0^{1-a(t)}$.

PROOF. We use the standard three lines theorem and a Schwartz-Christoffel transform. We map

 $\{z: \text{Im}(z) > 0, 0 < \text{Re}(z) < 1\}$ into $\{z \in \Omega: \text{Im}(z) > 0\}$

by the composition of $z(s) = -\cos \pi s$ and

$$w(z) = K \!\! \int_{0}^{z} \!\! (1 + p)^{ heta - 1} \! (1 - p)^{ heta} dp + H$$

where $K = 1/\int_{-1}^{1} (1+p)^{\theta-1}(1-p)^{\theta} dp$ and $H = -K \int_{0}^{-1} (1+p)^{\theta-1}(1-p)^{\theta} dp$. The map $s \to w(s)$ takes [0, 1] to [0, 1], and is continuous on the boundary. The derivative of $s \to w(s)$ at $s \in (0, 1)$ is a constant times

$$\sin \pi s (1 - \cos \pi s)^{ heta^{-1}} (1 + \cos \pi s)^{ heta}$$
 .

Let the inverse mapping be a. Since a'(w) = 1/w'(a(w)), by expanding the trig. functions we see there is $C \in \mathbf{R}$ such that for a(w) small, $a'(w) \leq Ca(w)^{2(1-\theta)}/a(w)$. Since $2\theta \leq 1$, a'(w) is bounded near 0. Thus there is Csuch that $a(w) \leq Cw$ for $w \in [0, 1]$. Extend a to Ω by reflection. Putting $g(s) = (M_0/M_1)^s f(a^{-1}(s))$ and applying the three lines theorem [13] to ggives the result. q.e.d.

LEMMA 3.2. Let $\{U(z): z \in cl \Sigma\}$ be a hypercontractive semigroup. Let a(t) be as in Lemma 3.1. Then there exists $\delta \neq 0$, with the same sign as ε , and M > 0 such that for $t \in [0, 1]$,

$$U(t)f - U(t)h|_{(p^{-1}-a(t)\delta)^{-1}} \leq H^t |f - h|_p$$

Also, if C has nonempty interior, and there is q with $|U(z)f - U(z)h|_q \leq |f - h|_q$, then given a closed interval I contained in the open interval between p and q, S and C may be taken so that the inequality above holds with p replaced by any $r \in I$.

PROOF. Given $f, h \in C, t \in [0, 1]$, put $s^{-1} = (1 - a(t))/p + a(t)/(p + \varepsilon)$, where a(t) is as in Lemma 3.1. Take g, a measurable simple function from M to X^* with support of finite measure, g(s) = G(s)e(s) where $G: M \to R^+$, $|e(s)|_{X^*} = 1$, and $|g|_{s'} = 1$. Define

$$\varphi(z) = \int (U(z)f - U(z)h, g(z))d\mu$$

where $g(z) = eG^{((1-a(z))/p'+a(z)/(p+\varepsilon)')s'}$. Then φ is analytic in the interior of

B. CALVERT

the bent strip of Lemma 3.1, and bounded and continuous on the closure. On bdy Σ , $|\varphi(z)| \leq |U(z)f - U(z)h|_{L^{p}(M;X)}|g(z)|_{L^{p'}(M;X^*)} \leq |f - h|_p$. And on bdy $\Sigma + 1$, $|\varphi(z)| \leq |U(z)f - U(z)h|_{L^{p}(M;X)}|g(z)|_{L^{p'}(M;X^*)} \leq k|f - h|_p$. By Lemma 3.1, we have $|U(t)f - U(t)h|_s \leq K^{a(t)}|f - h|_p$. Since $a(t) \leq Ct$ it follows that $|U(t)f - U(t)h|_{(p^{-1}-a(t)(p^{-1}-(p+\varepsilon)^{-1})^{-1}} \leq (K^C)^t|f - h|_p$. The second result follows from the nonlinear Riesz-Thorin theorem of Browder [4, Theorem 1, Proposition 1, and Remark in Section 3]. Note that U(t)may not take L^q to L^q , but a translate U(t) + z does take L^q to L^q , where $z \in L^p$. Hence, we may assume U(t) takes $X_0 = L^r \cap L^p \cap L^q$ (in the terminology of [4]) to itself.

THEOREM 3.2. Let X be a separable Banach space with X and X^{*} uniformly convex. Let f satisfy (1), (2), (3) and (4) of Section 2, and let $F: L^{p_1} \rightarrow L^p$, p_1 , $p \in (1, \infty)$, be given by f. Let C be a closed convex subset of L^p . Suppose $A \in A(0)$, single-valued, $(I + \lambda A)C \supseteq C$ for $\lambda > 0$ small, and $C \cap D(A)$ dense in C. Let $S_A(t)$ generated by $-A_{1C}$ on C have an extension to a hypercontractive semigroup $\{S_A(z): \operatorname{Re} z \ge 0\}$ on C, with $\varepsilon > 0$. Suppose for all $n, (I + \lambda F_n)C \supseteq C$ and $(I + \lambda(F_n + A))C \supseteq C$ for $\lambda > 0$ small, where F_n is defined by (5), Section 2. Suppose A is closed in L^p . Suppose $C \cap L^{p_1}$ is bounded in L^{p_1} and L^p , or C has nonempty interior and $S_A(z)$ is nonexpansive in the L^q norm, with p_1 strictly between p and q.

Then $A + F \in A(w)$ in L^{r} for some w, and $(I + \lambda \operatorname{cl} (A + F))C \supseteq C$ for $\lambda > 0$, small.

PROOF. Take $Z = L^p \cap L^{p_1}$. To apply Theorem 1.1, we need $A + F_n + wI$ accretive in L^p (and in L^{p_1} if $C \cap L^{p_1}$ not bounded). This follows by Lemma 3.2, Corollary 1.1, and Theorem 2.1. q.e.d.

COROLLARY 3.1. Let X be a separable Banach space with X and X^{*} uniformly convex. Let f satisfy (1), (2), (3), and (4) of Section 2, giving $F: L^{p_1} \rightarrow L^p$, p_1 , $p \in (1, \infty)$. Let A be m-accretive in L^p , with dense domain, and single valued. Let $S_A(t)$ generated on L^p by -A have an extension to a hypercontractive semigroup $\{S_A(z): \operatorname{Re}(z) \geq 0\}$, with $\varepsilon > 0$. Suppose $S_A(z)$ is nonexpansive in the L^q norm, p_1 strictly between p and q.

Then cl(A + F) + wI is m-accretive for some w.

PROOF. F_n is continuous we have $(I + \lambda F_n)$ and $I + \lambda (F_n + A)$ surjective for $\lambda > 0$, small, and $F_n + A$ is closed. The result follows by Theorem 3.2.

470

BIBLIOGRAPHY

- P. BÉNILAN, Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Orsay, 1972.
- [2] H. BRÉZIS AND A. PAZY, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis, 9 (1972), 63-74.
- [3] H. BRÉZIS AND A. PAZY, Semigroups of nonlinear contractions on convex sets, J. Functional Analysis, 6 (1970), 237-281.
- [4] F. BROWDER, Remarks on nonlinear interpolation in Banach spaces, J. Functional Analysis, 4 (1969), 390-403.
- [5] M. M. DAY, Some more uniformly convex spaces, Bull. Amer. Math. Soc., 47 (1941), 504-507.
- [6] M. M. DAY, Uniform convexity, III, Bull. Amer. Math. Soc. 49 (1943), 745-750.
- [7] T. KATO, Accretive operators and nonlinear evolution equations in Banach spaces, Nonlinear Functional Analysis, Proc. Symp. Pure Math. Vol. 13 Part I, Amer. Math. Soc., (1970), 138-161.
- [8] M. KRASNOSELSKII, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, (1964). Translation of Topologicheskiye metody v teoriyi nelineinykh integral'nykh uravnenii, Gostekhteoretizdat, Moscow, (1956).
- [9] I. MIYADERA, Some remarks on semi-groups of nonlinear operators, Tôhoku Math. J., 23 (1971), 245-258.
- [10] I. SEGAL, Notes towards the construction of nonlinear relativistic quantum fields. III Properties of the C* dynamics for a certain class of interactions. Bull. Amer. Math. Soc., 75 (1969), 1390-1395.
- [11] I. SEGAL, Construction of nonlinear local quantum processes I, Ann. of Math., to appear.
- [12] B. SIMON AND R. HOEGH-KROHN, Hypercontractive semigroups and two dimensional self coupled Bose fields, J. Functional Analysis, 9 (1972), 121-180.
- [13] E. STEIN, Interpolation of linear operators, Trans, Amer. Math. Soc., 83 (1956), 482-492.
- [14] G. F. WEBB, Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Functional Analysis, 10 (1972), 191-203.

UNIVERSITY OF AUCKLAND, AUCKLAND, NEW ZEALAND.