PERTURBATION OF NONLINEAR HYPERCONTRACTIVE SEMIGROUPS

Bruce Calvert

(Received June 11, 1975, revised February 15, 1977)

We present an extension to nonlinear operators of some results of I. Segal. Let $S_{A}(t)$ generated by $-A$ be a semigroup of nonlinear contractions in L^{p}, and take L^{p} to $L^{p+\varepsilon(t)}$. This strong condition allows us to perturb $-A$ by $-F$, with weak conditions on F, so that $-A-F$ has closure generating a semigroup in $L^{p} . \quad F$ is a nonlinear Nemytskii operator.

Introduction. This work extends some ideas of I. Segal [10, 11], following also B. Simon and R. Hoegh-Krohn [12, Section 2]. In their work, $-A$ is self adjoint and generates a hypercontractive semigroup, while F is given by multiplication by the function V. They approximate V by $V_{n} \in L^{\infty}$, giving semigroups $S_{A+V_{n}}(t)$. In the linear case the convergence of $S_{A+V_{n}}(t)$ follows Du Hamel's formula; If A is m-accretive, B and C bounded, then

$$
S_{A+B}(t)=S_{A+C}(t)+\int_{0}^{t} S_{A+B}(t-u)(C-B) S_{A+\sigma}(u) d u
$$

In the nonlinear case we do not have this formula, but we can show convergence of $S_{A+F_{n}}(t)$. Also we do not have their results [12, Lemma 2.15] on self adjoint operators. As in the linear case we do have the Trotter product formula for giving bounds on $S_{A+V_{n}}(t)$.

In this paper there are three sections: one on convergence of $A+F_{n}$, one on almost accretive Nemytskii operators, and one on hypercontractive semigroups.

The following comments raise a problem for further work. The section on hypercontractive semigroups $S_{A}(t)$ gives

$$
\left|S_{A}(t) u-S_{A}(t) v\right|_{\left(p^{-1}-a(t)\right)^{-1}} \leqq C^{t}|u-v|_{p}
$$

with $a(t)$ linear only when $S(z)$ is contractive for $\operatorname{Re}(z) \geqq 0$, making it affine. This clashes with the result on Nemytskii operators F, where we have

$$
\left|S_{F}(t) u-S_{F}(t) v\right|_{p} \leqq K^{t}|u-v|_{\left(p^{-1}-a(t)\right)^{-1}}
$$

with $a(t)$ nonlinear only when F satisfies very strong conditions.
I am grateful to colleagues at the University of Auckland and the referee for their help.

1. Convergence of $A+F_{n}$. Let $(X,| |)$ be a Banach space over C or \boldsymbol{R} with dual X^{*}, and pairing denoted by parentheses. Let $J: X \rightarrow P\left(X^{*}\right)$ be the duality map defined by $f \in J x$ when $(x, f)=\|x\|^{2}=\|f\|^{2}$. An operator A in X is a function from X to $P(X) . \quad A$ is single-valued if $A x$ never contains more than one point. The domain $D(A)$ of A is the set of x with $A x$ nonempty, and the range $R(A)$ of A is the union of the sets $A x$. We identify A with its graph in $X \times X$. We add operators, multiply by scalars and take inverses. Let $(,)_{s}: X \times X \rightarrow \boldsymbol{R}$ be defined by

$$
(f, g)_{s}=\lim _{d \downarrow 0} d^{-1}\left(\|g+d f\|^{2}-\|g\|^{2}\right)
$$

If A is an operator in X, the following are equivalent by Bénilan [1] or Kato [7].
(1) If $\lambda>0, x_{1} \in A x, y_{1} \in A y$, then $\left\|\left(x+\lambda x_{1}\right)-\left(y+\lambda y_{1}\right)\right\| \geqq\|x-y\|$.
(2) If $x_{1} \in A x, y_{1} \in A y$, then $\left(x_{1}-y_{1}, x-y\right)_{s} \geqq 0$.
(3) If $x_{1} \in A x, y_{1} \in A y$, then there is $f \in J(x-y)$ with $\operatorname{Re}\left(x_{1}-y_{1}\right.$, $f) \geqq 0$.
A is called accretive iff. any of these hold. If there are several Banach spaces we will index the norms, duality map, functions (, $)_{s}$, closure operations, etc, by the space, as $|x|_{X}, J_{X}(x)$, and $(x, y)_{X, s}$, and $\operatorname{cl}_{X}(A)$. Supposing A accretive, A is called m-accretive iff. $R(I+\lambda A)=X$ for $\lambda>0$, and A is called maximal iff. it is maximal with respect to inclusion among accretive sets with domain contained in $\mathrm{cl}(D(A))$.

We write $A \in A(w)$ to mean $A+w I$ is accretive, in which case A is maximal means $A+w I$ is maximal.

Let (Ω, B, μ) be a measure space. For $p \in[1, \infty]$, let $L^{p}=\left(L^{p}(M ; X),| |_{p}\right)$ denote the space of (equivalence classes of) measurable functions $f: M \rightarrow X$, with $|f|_{p}^{p}=\int|f|^{p} d \mu<\infty$, and the usual modification for $p=\infty$.

Theorem 1.1. Let $\left(Y,| |_{Y}\right)$ and $\left(Z,| |_{Z}\right)$ be Banach spaces over \boldsymbol{R} or C, with Z continuously contained in Y. Let F_{n} be a sequence of single valued operators in Z, with $D\left(F_{n}\right)=D(F)$ for all n. Suppose $F_{n}: D(F) \rightarrow Y$ converges to $F: D(F) \rightarrow Y$ uniformly on bounded subsets of Z. Let A be an operator in Z. Suppose $w \in \boldsymbol{R}^{+}$and $A+F_{n}+w I$ is accretive in Y for all n. Let C and D be subsets of Z.

Suppose one of the following hold. (1) C is bounded. (2) There is
$x_{0} \in D(A)$ with $F_{n} x_{0}$ bounded in Z and also $A+F_{n}+w I$ is accretive in Z for all n.

Suppose $\left(I+\lambda\left(A+F_{n}\right)\right) C \supseteqq D$ for $\lambda \in\left(0, w^{-1}\right)$, and all n. Then the closure $\operatorname{cl}_{Y}(A+F)$ of $A+F$ in $Y \times Y$ satisfies $\left(I+\lambda \operatorname{cl}_{Y}(A+F)\right) \mathrm{cl}_{Y}(C) \supseteqq$ $\operatorname{cl}_{Y}(D)$ for $\lambda \in\left(0, w^{-1}\right)$, and $w I+\operatorname{cl}_{Y}(A+F)$ is accretive in Y.

Proof. Let $(1+\lambda w) y_{i}+\lambda\left(\alpha_{i}+F y_{i}\right)=x_{i}, i=1,2$, with $w^{-1}>\lambda>0$, and $\alpha_{i} \in A y_{i}$. Then $(1+\lambda w) y_{i}+\lambda\left(\alpha_{i}+F_{n} y_{i}\right) \rightarrow x_{i}$ in Y. Since $A+F_{n}+w I$ are accretive in Y, taking limits gives $\left|y_{1}-y_{2}\right|_{Y} \leqq\left|x_{1}-x_{2}\right|_{Y}$. That is, $A+F+w I$ is accretive in Y, and consequently $\operatorname{cl}_{Y}(A+F)+w I$ is accretive in Y.

Since $\operatorname{cl}_{Y}(A+F)+w I$ is accretive it is enough to show

$$
\left(I+\lambda \operatorname{cl}_{Y}(A+F)\right) \mathrm{cl}_{Y}(C) \supseteqq D
$$

for $\lambda \in\left(0, w^{-1}\right)$. Given x in D, let $y_{n}=\left(I+\lambda\left(A+F_{n}\right)\right)^{-1} x$. We claim y_{n} are bounded. If C is not bounded, take $a \in A z_{0}$. Since $A+F_{n}+w I$ are accretive in Z,

$$
\begin{aligned}
(1-\lambda w)\left|y_{n}-x_{0}\right|_{Z}^{2} & \leqq\left(x-\left(x_{0}+\lambda \alpha+\lambda F_{n} x_{0}\right), y_{n}-x_{0}\right)_{Z, s} \\
& \leqq K\left|y_{n}-x_{0}\right|_{z}
\end{aligned}
$$

for some $K \in \boldsymbol{R}$, proving the claim. Take $\alpha_{n} \in A y_{n}$ with $y_{n}+\lambda \alpha_{n}+\lambda F_{n} y_{n}=$ x. Then

$$
\begin{aligned}
(1-\lambda w)\left|y_{n}-y_{m}\right|_{Y}^{2} & \leqq\left(\left(y_{n}+\lambda \alpha_{n}+\lambda F_{n} y_{n}\right)-\left(y_{m}+\lambda \alpha_{m}+\lambda F_{n} y_{m}\right), y_{n}-y_{m}\right)_{Y, s} \\
& \leqq \lambda\left(F_{m} y_{m}-F_{n} y_{m}, y_{n}-y_{m}\right)_{Y, s} .
\end{aligned}
$$

Now $F_{n} \rightarrow F$ uniformly on the bounded set $\left\{y_{m}\right\}$ of Z, giving $\left|y_{n}-y_{m}\right|_{Y} \rightarrow$ 0 . Hence, there is $y \in Y$ with $y_{n} \rightarrow y$ in Y. Since $y_{n}+\lambda a_{n}+\lambda F y_{n}=$ $x+\lambda\left(F-F_{n}\right) y_{n} \rightarrow x$ in Y, we have $x \in\left(I+\lambda \operatorname{cl}_{Y}(A+F) \operatorname{cl}_{Y}(C)\right.$. q.e.d.

Lemma 1.1. Let X be a Banach space, with X and X^{*} uniformly convex. Suppose A and B are single-valued, and $A \in A\left(w_{A}\right), B \in A\left(w_{B}\right)$. Let C be a closed convex subset of X such $\operatorname{cl}(C \cap D(A+B))=C$. Let A be maximal and B closed. Suppose that for λ small, $\lambda>0$, $R(I+\lambda A) \supset D(A),(I+\lambda A)^{-1} C \subset C,(I+\lambda B) C \supset C$ and $(I+\lambda(A+B)) C \supset C$. Let S_{A} be generated on $\overline{D(A)}(=\operatorname{cl}(D(A)))$ by $-A$, and let S_{B} and S_{A+B} be generated on C by $-B_{\mid C}$ and $-(A+B)_{\mid c}$, to use the terminology of Brezis and Pazy [3], i.e., $S_{A}(t) x=\lim _{n \rightarrow \infty}(I+(t / n) A)^{-n}$ for $x \in \overline{D(A)}$, and S_{B} and S_{A+B} likewise. Then for $x \in C, S_{A+B}(t) x=\lim _{n \rightarrow \infty}\left(S_{A}(t / n) S_{B}(t / n)\right)^{n} x$, and the limit is uniform in t on every finite interval.

Proof. Since $A \in A\left(w_{A}\right)$ and A is maximal, we have $R(I+\lambda A) \supset \overline{D(A)}$
for small $\lambda>0$ and $-A$ is the infinitesimal generator of the semigroup S_{A} defined by $S_{A}(t) u=\lim _{n \rightarrow \infty}(I+(t / n) A)^{-n} u$ for $u \in \overline{D(A)}$ and $t \geqq 0$ (see [9, Theorem 3]). It follows from $(I+\lambda A)^{-1} C \subset C$ that each $S_{A}(t)$ maps C into itself. We next consider $B_{1}=B_{\mid C}$ (the restriction of B to $C \cap D(B)$). Clearly $B_{1} \in A\left(w_{B}\right)$ and $R\left(I+\lambda B_{1}\right)(=(I+\lambda B) C) \supset C=\overline{C \cap D(B)}=\overline{D\left(B_{1}\right)}$ for small $\lambda>0$. Note that the closedness of B implies that B_{1} is also closed. Therefore $-B_{1}$ is the infinitesimal generator of the semigroup S_{B} on C defined by $S_{B}(t) u=\lim _{n \rightarrow \infty}(I+(t / n) B)^{-n} u\left(=\lim _{n \rightarrow \infty}\left(I+(t / n) B_{1}\right)^{-n} u\right)$ for $u \in C$ and $t \geqq 0$, i.e., $\lim _{t \rightarrow 0} t^{-1}\left(u-S_{B}(t) u\right)=B_{1} u=B u$ for $u \in D\left(B_{1}\right)=D(B) \cap C$. (See [9. Cor. 2].) Also, $-(A+B)_{\mid c}\left(=-\left(A+B_{1}\right)\right)$ generates a semigroup S_{A+B} on C, because $A+B_{1} \in A\left(w_{A}+w_{B}\right)$ and $R\left(I+\lambda\left(A+B_{1}\right)\right) \supset C=$ $\overline{D(A+B) \cap C}=\overline{D\left(A+B_{1}\right)}$ for small $\lambda>0$.

We use the following result from [2, Cor. 4.3]. For $t>0$, let $T(t)$ be Lipschitz with constant $M(t)$ mapping a closed convex subset C of X into itself. Let $\widetilde{A} \in A(w)$ be single-valued, $\operatorname{cl} D(\widetilde{A})=C, \operatorname{cl}(R(I+\lambda \widetilde{A})) \supset C$ for $\lambda \in\left(0, w^{-1}\right)$. Then $-\operatorname{cl}(\tilde{A})$ generates a semigroup $S(t)$ on C. If (i) $M(t)=1+w t+o(t)$ as $t \rightarrow 0$ and (ii) $t^{-1}(x-T(t) x) \rightarrow \widetilde{A} x$ as $t \rightarrow 0$ for $x \in D(\widetilde{A})$, then $\lim _{n \rightarrow \infty}(T(t / n))^{n} x=S(t) x$ for $x \in C$, and the limit is uniform on bounded t intervals.

We now use the above results by putting $T(t)=S_{A}(t) S_{B}(t)$ and $\widetilde{A}=$ $A+B_{1}$. For each $t \rightarrow 0, T(t): C \rightarrow C$ is Lipschitz with constant $e^{w \omega_{A} t} e^{w_{B} t}=$ $1+\left(w_{A}+w_{B}\right) t+o(t)$ as $t \rightarrow 0$. Thus, to prove the lemma, it suffices to show that

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{-1}(u-T(t) u)=\left(A+B_{1}\right) u \quad \text { for } \quad u \in D\left(A+B_{1}\right) \tag{*}
\end{equation*}
$$

For $u \in D\left(A+B_{1}\right)(=D(A+B) \cap C), t^{-1}(u-T(t) u)=t^{-1}\left(u-S_{A}(t) u\right)+y_{t}$, where $y_{t}=t^{-1}\left(S_{A}(t) u-S_{A}(t) S_{B}(t) u\right)$. Now $\left|y_{t}\right| \leqq e^{\left(w_{A}+w_{B}\right)^{t}}|B u|$. Apply $I-S_{A}(t)$ at $v \in D(A)$ and $S_{B}(t) u$, noting $I-S_{A}(t)$ is $A\left(w_{A}(t)+o(t)\right)$.

$$
\begin{aligned}
& \operatorname{Re}\left(\left(v-S_{A}(t) v\right)-\left(u-S_{A}(t) u\right)+\left(u-S_{B}(t) u\right)-t y_{t}, J\left(v-S_{B}(t) u\right)\right) \\
& \quad \geqq-\left(w_{A} t+o(t)\right)\left|v-S_{B}(t) u\right|^{2} .
\end{aligned}
$$

Suppose $t(n) \rightarrow 0$ and $y_{t(n)}$ converges weakly to y. Putting $t=t(n)$, dividing by $t(n)$ and letting $n \rightarrow \infty$, we obtain

$$
\operatorname{Re}(A v-A u+B u-y, J(v-u)) \geqq-w_{A}|v-u|^{2}
$$

Since A is maximal and $u \in \operatorname{cl}(D(A)), A u+y-B u=A u$. Then $y_{t(n)} \rightarrow$ $B u$, and consequently $y_{t} \rightarrow B u$ as $t \rightarrow 0$.

Lemma 1.2. Let X be a Banach space, X and X^{*} uniformly convex. Let C be a closed convex subset of $L^{p}=L^{p}(M ; X), p \in(1, \infty)$. Suppose A, F are single-valued operators in L^{p}, A and $F \in A(w)$, and

$$
\operatorname{cl}(C \cap D(F+A))=C
$$

Let F be maximal and A closed. Suppose that for λ small, $\lambda>0$, we have $R(I+\lambda F) \supseteqq D(F),(I+\lambda F)^{-1} C \cong C,(I+\lambda A) C \supseteqq C$ and

$$
(I+\lambda(F+A)) C \supseteqq C
$$

Let S_{F} be generated on $\operatorname{cl}(D(F))$ by $-F$, and let S_{A} and S_{F+A} be generated on C by $-A_{\left.\right|_{c}}$ and $-\left.(F+A)\right|_{c}$. For $u, v \in C$, and $t \in(0,1)$, suppose $\left|S_{A}(t) u-S_{A}(t) v\right|_{\left(p^{-1}-a(t)\right)^{-1}} \leqq H^{t}|u-v|_{p}$ and

$$
\left|S_{F}(t) u-S_{F}(t) v\right|_{p} \leqq K^{t}|u-v|_{\left(p^{-1}-a(t)\right)^{-1}},
$$

where $K, H \in \boldsymbol{R}$ and $a: \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+}$are given. Then $\boldsymbol{S}_{A+F}(t)$ is of type $H K$, i.e., $\left|S_{A+F}(t) u-S_{A+F}(t) v\right|_{p} \leqq(H K)^{t}|u-v|_{p}$.

Proof. By Day [5, 6], $L^{p}(M ; X)$ and $L^{q}\left(M ; X^{*}\right)$ are uniformly convex. By Lemma 1.1,

$$
\left|S_{A+F}(t) u-S_{A+F}(t) v\right|_{p}=\left|\lim _{n \rightarrow \infty}\left(S_{F}\left(\frac{t}{n}\right) S_{A}\left(\frac{t}{n}\right)\right)^{n} u-\left(S_{F}\left(\frac{t}{n}\right) S_{A}\left(\frac{t}{n}\right)\right)^{n} v\right|_{p}
$$

Since

$$
\left|S_{F}\left(\frac{t}{n}\right) S_{A}\left(\frac{t}{n}\right) x-S_{F}\left(\frac{t}{n}\right) S_{A}\left(\frac{t}{n}\right) y\right|_{p} \leqq H^{t / n} K^{t / n}|x-y|_{p},
$$

for x, y in C, the result follows.
Corollary 1.1. If F_{n} is sequence of operators satisfying the above for all $n, F_{n} \in A\left(w_{n}\right), A+F_{n}$ closed, then the restriction of $A+F_{n}$ to C is in $A(\log (H K))$.

Proof. By Miyadera [9, Corollary 2], since $A+F_{n}$ is single-valued, for $x \in D\left(A+F_{n}\right)$, the right derivative of $S_{A+F_{n}}(t) x$ exists and is equal to $-\left(A+F_{n}\right) x$.
2. Almost accretive Nemytskii operators. Let (M, B, μ) be a measure space. Let $(X,| |)$ be a separable Banach space over C. For $p \in[1, \infty]$, let $L^{p}=L^{p}(M ; X)$. We also put L^{p} for $L^{p}(M ; R)$ as in (2), (3) when there is no confusion. Given $f: M \times X \rightarrow X$, we define $F: U \rightarrow U$, where $U=\{u: M \rightarrow X\}$, by $(F u)(x)=f(x, u(x)) . \quad F$ also denotes the mapping on equivalence classes of functions equal a.e. F is called a Nemytskii operator. We will use the following conditions.
(1) f satisfies the Carathéodory conditions, i.e., f is measurable in x for $u \in X$, and continuous in u for x a.e.
(2) $W: M \rightarrow(-\infty, 0]$ is measurable, $e^{-t W} \in L^{1}$ for $t \geqq 0$, and for $s \in$ $M, u \rightarrow f(s, u)-W(s) u$ is accretive in X.
(3) $|f(x, u)| \leqq \sum_{i=1}^{m} T_{i}(x)|u|^{\beta_{i}}$, where $p_{2} \beta_{i}<p_{1}, p_{1}, p_{2} \in[1, \infty)$, and $T_{i} \in L^{p_{1} p_{2} /\left(p_{1}-p_{2} \beta_{i}\right)}$.
(4) $W_{1}: M \rightarrow[0, \infty)$ is measurable, and for $s \in M, u \in X,|f(s, u)| \leqq$ $W_{1}(s)(1+|u|)$.
(5) $E_{n}=\{s \in M: u \rightarrow f(s, u)+n u$ is accretive in X and $|f(s, u)| \leqq$ $n(1+|u|)$ for $u \in X\}$. Let $f_{n}(s, u)=f(s, u)$ if $s \in E_{n}$, and $f_{n}(s, u)=0$ if $s \notin E_{n}$.

Theorem 2.1. Let f satisfy (1), (2), (3), and (4). Defining $f_{n} b y$ (5), and F_{n} and F from f_{n} and f, F_{n} and F are bounded continuous operators from $L^{p_{1}}$ to $L^{p_{2}}$. F_{n} converges to F uniformly on bounded subsets of $L^{p_{1}} . F_{n}+n I$ is bounded, continuous, and accretive in L^{p} for $p \in[1, \infty)$. Letting S_{n} be generated by $-F_{n}$ in L^{p}, for all r,

$$
\left|S_{n}(t) u-S_{n}(t) v\right|_{1 /(1 / p+t / r)} \leqq\left|e^{-W}\right|_{r}^{t}|u-v|_{p}
$$

Proof. Since X is separable, the sets E_{n} are measurable. Hence, f_{n} satisfy (1). Also, f_{n} satisfy (3). Since f_{n} and f satisfy (1) and (3), F_{n} and F are bounded and continuous from $L^{p_{1}}$ to $L^{p_{2}}$ by Krasnoselskii [8]. By (2) and (4), $M=\bigcup_{n=1}^{\infty} E_{n}$. Consequently, $\int_{E_{n^{\prime}}} T_{i}^{p_{1} p_{2} /\left(p_{1}-p_{2} \beta_{i}\right)} \rightarrow 0$ as $n \rightarrow \infty$ for $1 \leqq i \leqq m$. By (3), F_{n} converges to F uniformly on bounded sets.

The definition of E_{n} gives $\left|f_{n}(s, u)\right| \leqq n(1+|u|)$, and so F_{n} is bounded and continuous from L^{p} to L^{p} for all p since (1) is satisfied by f_{n} [8]. Since $u \rightarrow f_{n}(s, u)+n u$ is accretive in X, it follows that $F_{n}+n I$ is accretive in L^{p}.

Let S_{n} be generated in L^{p} by $-F_{n}$. Then for $u, v \in L^{p}, s$ a.e. in M, by (2),

$$
\left|\left(S_{n}(t) u\right)(s)-\left(S_{n}(t) v\right)(s)\right| \leqq e^{-t W(s)}|u(s)-v(s)|
$$

Hence, we have $\left|S_{n}(t) u-S_{n}(t) v\right|_{1 /(1 / p+t / r)} \leqq\left|e^{-W}\right|_{r}^{t}|u-v|_{p}$. q.e.d.
3. Hypercontractive semigroups. Let (M, B, μ) be a measure space. Let $\Sigma=\{z \in C:|\arg (z)|<\theta \pi\}$ where $\theta \in(0,1 / 2]$. Let $(X,| |)$ be a reflexive Banach space over C, and for $p \in[1, \infty]$ let $L^{p}=L^{p}(M ; X)$. Let C be a closed convex nonempty subset of $L^{p}, p \in(1, \infty)$.

Definition. We say $\{U(z): z \in \operatorname{cl} \Sigma\}$ is a hypercontractive semigroup on C if the following are satisfied. For $z \in \operatorname{cl} \Sigma, U(z): C \rightarrow C$ is nonexpansive, i.e., $|U(z) u-U(z) v|_{p} \leqq|u-v|_{p}$. Also $U(0) u=u$ and $U(z) U(w) u=$ $U(z+w) u$ for $u \in C$ and $z, w \in \operatorname{cl} \Sigma . \quad U(z) u \rightarrow u$ for $x \in C$ as $z \rightarrow 0$. There is $\varepsilon \neq 0, K \in R$, such that for $u, v \in C,|U(1) u-\dot{U}(1) v|_{p+\varepsilon} \leqq K|u-v|_{p}$. For u in $C, z \rightarrow U(z) u$ is holomorphic on Σ.

Lemma 3.1. Let Ω denote the bent strip $\{z \in \Sigma:|\arg (z-1)|>\theta \pi\}$.

Let $f: \operatorname{cl}(\Omega) \rightarrow \boldsymbol{C}$ be continuous, and analytic on the region Ω. Suppose $|f(z)| \leqq M_{0}$ on bdy Σ and $|f(z)| \leqq M_{1}$ on bdy $\Sigma+1$. Then there is a continuous function $a(t):[0,1] \rightarrow R$, analytic on $(0,1), a(t) \leqq C t$ for some C, satisfying $|f(t)| \leqq M_{1}^{a(t)} M_{0}^{1-a(t)}$.

Proof. We use the standard three lines theorem and a SchwartzChristoffel transform. We map

$$
\{z: \operatorname{Im}(z)>0,0<\operatorname{Re}(z)<1\} \text { into }\{z \in \Omega: \operatorname{Im}(z)>0\}
$$

by the composition of $z(s)=-\cos \pi s$ and

$$
w(z)=K \int_{0}^{z}(1+p)^{\theta-1}(1-p)^{\theta} d p+H
$$

where $K=1 / \int_{-1}^{1}(1+p)^{\theta-1}(1-p)^{\theta} d p$ and $H=-K \int_{0}^{-1}(1+p)^{\theta-1}(1-p)^{\theta} d p$. The map $s \rightarrow w(s)$ takes $[0,1]$ to $[0,1]$, and is continuous on the boundary. The derivative of $s \rightarrow w(s)$ at $s \in(0,1)$ is a constant times

$$
\sin \pi s(1-\cos \pi s)^{\theta-1}(1+\cos \pi s)^{\theta}
$$

Let the inverse mapping be a. Since $\alpha^{\prime}(w)=1 / w^{\prime}(a(w))$, by expanding the trig. functions we see there is $C \in \boldsymbol{R}$ such that for $\alpha(w)$ small, $a^{\prime}(w) \leqq$ $C a(w)^{2(1-\theta)} / a(w)$. Since $2 \theta \leqq 1, a^{\prime}(w)$ is bounded near 0 . Thus there is C such that $a(w) \leqq C w$ for $w \in[0,1]$. Extend a to Ω by reflection. Putting $g(s)=\left(M_{0} / M_{1}\right)^{s} f\left(\alpha^{-1}(s)\right)$ and applying the three lines theorem [13] to g gives the result.
q.e.d.

Lemma 3.2. Let $\{U(z): z \in \operatorname{cl} \Sigma\}$ be a hypercontractive semigroup. Let $a(t)$ be as in Lemma 3.1. Then there exists $\delta \neq 0$, with the same sign as ε, and $M>0$ such that for $t \in[0,1]$,

$$
|U(t) f-U(t) h|_{\left(p^{-1}-a(t) \delta\right)^{-1}} \leqq H^{t}|f-h|_{p} .
$$

Also, if C has nonempty interior, and there is q with $|U(z) f-U(z) h|_{q} \leqq$ $|f-h|_{q}$, then given a closed interval I contained in the open interval between p and q, S and C may be taken so that the inequality above holds with p replaced by any $r \in I$.

Proof. Given $f, h \in C, t \in[0,1]$, put $s^{-1}=(1-a(t)) / p+a(t) /(p+\varepsilon)$, where $a(t)$ is as in Lemma 3.1. Take g, a measurable simple function from M to X^{*} with support of finite measure, $g(s)=G(s) e(s)$ where $G: M \rightarrow \boldsymbol{R}^{+},|e(s)|_{X^{*}}=1$, and $|g|_{s^{\prime}}=1$. Define

$$
\varphi(z)=\int(U(z) f-U(z) h, g(z)) d \mu
$$

where $g(z)=e G^{\left((1-a(z)) / p^{\prime}+a(z) /(p+\varepsilon)^{\prime}\right)^{\prime}}$. Then φ is analytic in the interior of
the bent strip of Lemma 3.1, and bounded and continuous on the closure. On bdy $\Sigma,|\varphi(z)| \leqq|U(z) f-U(z) h|_{L^{p}(M ; X)}|g(z)|_{L^{p \prime}\left(M ; X^{*}\right)} \leqq|f-h|_{p}$. And on bdy $\Sigma+1,|\varphi(z)| \leqq|U(z) f-U(z) h|_{L^{p}(M ; X)}|g(z)|_{L^{p \prime}\left(M ; X^{*}\right)} \leqq k|f-h|_{p} \quad$ By Lemma 3.1, we have $|U(t) f-U(t) h|_{s} \leqq K^{a(t)}|f-h|_{p}$. Since $a(t) \leqq C t$ it follows that $|U(t) f-U(t) h|_{\left(p^{-1}-a(t)\left(p^{-1}-(p+\varepsilon)^{-1}\right)^{-1}\right.} \leqq\left(K^{c}\right)^{t}|f-h|_{p}$. The second result follows from the nonlinear Riesz-Thorin theorem of Browder [4, Theorem 1, Proposition 1, and Remark in Section 3]. Note that $U(t)$ may not take L^{q} to L^{q}, but a translate $U(t)+z$ does take L^{q} to L^{q}, where $z \in L^{p}$. Hence, we may assume $U(t)$ takes $X_{0}=L^{r} \cap L^{p} \cap L^{q}$ (in the terminology of [4]) to itself. q.e.d.

Theorem 3.2. Let X be a separable Banach space with X and X^{*} uniformly convex. Let f satisfy (1), (2), (3) and (4) of Section 2, and let $F: L^{p_{1}} \rightarrow L^{p}, p_{1}, p \in(1, \infty)$, be given by f. Let C be a closed convex subset of L^{p}. Suppose $A \in A(0)$, single-valued, $(I+\lambda A) C \supseteq C$ for $\lambda>0$ small, and $C \cap D(A)$ dense in C. Let $S_{A}(t)$ generated by $-A_{1 C}$ on C have an extension to a hypercontractive semigroup $\left\{S_{A}(z): \operatorname{Re} z \geqq 0\right\}$ on C, with $\varepsilon>0$. Suppose for all $n,\left(I+\lambda F_{n}\right) C \supseteq C$ and $\left(I+\lambda\left(F_{n}+A\right)\right) C \supseteq C$ for $\lambda>0$ small, where F_{n} is defined by (5), Section 2. Suppose A is closed in L^{p}. Suppose $C \cap L^{p_{1}}$ is bounded in $L^{p_{1}}$ and L^{p}, or C has nonempty interior and $S_{A}(z)$ is nonexpansive in the L^{q} norm, with p_{1} strictly between p and q.

Then $A+F \in A(w)$ in L^{p} for some w, and $(I+\lambda \operatorname{cl}(A+F)) C \supseteqq C$ for $\lambda>0$, small.

Proof. Take $Z=L^{p} \cap L^{p_{1}}$. To apply Theorem 1.1, we need $A+$ $F_{n}+w I$ accretive in L^{p} (and in $L^{p_{1}}$ if $C \cap L^{p_{1}}$ not bounded). This follows by Lemma 3.2, Corollary 1.1, and Theorem 2.1. q.e.d.

Corollary 3.1. Let X be a separable Banach space with X and X^{*} uniformly convex. Let f satisfy (1), (2), (3), and (4) of Section 2, giving $F: L^{p_{1}} \rightarrow L^{p}, p_{1}, p \in(1, \infty)$. Let A be m-accretive in L^{p}, with dense domain, and single valued. Let $S_{A}(t)$ generated on L^{p} by $-A$ have an extension to a hypercontractive semigroup $\left\{S_{A}(z): \operatorname{Re}(z) \geqq 0\right\}$, with $\varepsilon>0$. Suppose $S_{A}(z)$ is nonexpansive in the L^{q} norm, p_{1} strictly between p and q.

Then $\operatorname{cl}(A+F)+w I$ is m-accretive for some w.
Proof. F_{n} is continuous we have $\left(I+\lambda F_{n}\right)$ and $I+\lambda\left(F_{n}+A\right)$ surjective for $\lambda>0$, small, and $F_{n}+A$ is closed. The result follows by Theorem 3.2.

Bibliography

[1] P. BÉnilan, Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Orsay, 1972.
[2] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis, 9 (1972), 63-74.
[3] H. Brézis and A. Pazy, Semigroups of nonlinear contractions on convex sets, J. Functional Analysis, 6 (1970), 237-281.
[4] F. Browder, Remarks on nonlinear interpolation in Banach spaces, J. Functional Analysis, 4 (1969), 390-403.
[5] M. M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc., 47 (1941), 504-507.
[6] M. M. DAy, Uniform convexity, III, Bull. Amer. Math. Soc. 49 (1943), 745-750.
[7] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Nonlinear Functional Analysis, Proc. Symp. Pure Math. Vol. 13 Part I, Amer. Math. Soc., (1970), 138-161.
[8] M. Krasnoselskir, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, (1964). Translation of Topologicheskiye metody v teoriyi nelineinykh integral'nykh uravnenii, Gostekhteoretizdat, Moscow, (1956).
[9] I. Miyadera, Some remarks on semi-groups of nonlinear operators, Tôhoku Math. J., 23 (1971), 245-258.
[10] I. Segal, Notes towards the construction of nonlinear relativistic quantum fields. III Properties of the C^{*} dynamics for a certain class of interactions. Bull. Amer. Math. Soc., 75 (1969), 1390-1395.
[11] I. Segal, Construction of nonlinear local quantum processes I, Ann. of Math., to appear.
[12] B. Simon and R. Hoegh-Krohn, Hypercontractive semigroups and two dimensional self coupled Bose fields, J. Functional Analysis, 9 (1972), 121-180.
[13] E. Stein, Interpolation of linear operators, Trans, Amer. Math. Soc., 83 (1956), 482-492.
[14] G. F. Webs, Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Functional Analysis, 10 (1972), 191-203.

University of Auckland,
Auckland,
New Zealand.

