
Tδhoku Math. Journ.
30(1978), 623-637.

KINEMATICS AND DIFFERENTIAL GEOMETRY
OF SUBMANIFOLDS

Rolling a ball with a prescribed locus of contact

KATSUMI NOMIZU

(Received June 28, 1977)

The simplest and most illustrative of the kinematic models we dis-
cuss in this paper is the rolling of a ball on its tangent plane. Suppose
a smooth curve xt is given on the unit sphere S2 (boundary of the unit
ball B). Is it possible to roll (without skidding or spinning) the ball
B on the tangent plane Σ to S2 at xQ in such a way that at each time
instant t the point xt becomes a point of contact with the plane ΣΊ
We shall show that this is possible and that the locus yt of points of
contact on Σ is indeed the development of the curve xt in the sense of
E. Cartan.

When we replace S2 by an arbitrary smooth surface M, the rolling
of M on its tangent plane gives rise to a kinematic interpretation of
the Levi-Civita connection for M. We also find that we must impose a
certain condition on the curve xt to prevent the rolling from degenerat-
ing into an instantaneous standstill at any instant. This condition is
that the tangent vector of xt is not a principal direction for the zero
principal curvature; this condition is satisfied if the curve xt does not
go through a flat point.

In the end we shall study the model of rolling an ^-dimensional
submanif old M on another ^-dimensional submanif old N in a Euclidean
space Em and obtain a kinematic interpretation of the second funda-
mental form and the normal connection of a submanif old.

The paper is organized as follows. Section 1 is devoted to the basic
concepts in kinematics we need. We define the notion of rolling (with-
out skidding or spinning). In Section 2 we discuss the model of rolling
a ball and extend it to higher dimensions in Section 3. In Section 4
we treat the rolling of an arbitrary surface on a plane. Section 5 deals
with rolling of a surface on another surface. Finally, in Section 6, we
discuss the most general question—rolling an ^-dimensional sub manifold
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M on another ^-dimensional submanifold N in Em. The reference for
submanifolds is [2, Vol. II].

1. Motion, instantaneous motion, and rolling. By a motion of a
Euclidean space Em we mean an orientation-preserving isometry of Em.
If we take an arbitrary Euclidean (i.e., rectangular) coordinate system,
a motion / can be expressed by an (m + 1) x (m + 1) matrix of the
form

[C

U
where CeSO(m) and c is an m-dimensional (column) vector. A point x
is mapped by / upon f(x) = Cx + c.

By a 1-parametric motion {/t}, teJ, where J is an open or closed
interval containing 0 in its interior, we mean a differentiable mapping
of J into the space of matrices of the form (1), namely,

( 2 )
'Ct ct

0 1

where Ct is an SO(m)-valued differentiate function of t and ct is a
vector-valued differentiate function of t such that

/ OΊ
(identity transformation).

We remark once and for all that it does not matter which Euclidean
coordinate system we use in expressing motions and related concepts in
the following.

Given a 1-parametric motion {/J, we can define a time-dependent
vector field Xt on Em as follows. Fix t. Let y be an arbitrary point
and let x = ff\y). Let (Xt)y be the tangent vector [dfu(x)/du]u=t of the
orbit /„(#) at u = t, namely, at the point 7/ = /*(#).

Using the matrix (2) we can obtain the matrix representing the
vector field Xt as follows. Write

( 3 )

where

St = (dC/dQCr1 and vt = - Stce

Then it is easy to verify that

(Xt)y = Sty + vt .
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For this reason, we call (3) the instantaneous motion at instant t. If
x is an arbitrary point, we have

dft(x)/dt = (dC/dt)x + dc/dt = {dCldt)CrγCtx + dc/dt ,

namely,

( 4 ) dft(x)/dt = StCtx + dc/dί .

The instantaneous motion (3) is called an instantaneous standstill if
St = 0 and ^ = 0. It is called an instantaneous translation if St = 0
and ^ =£ 0. In this case, (Xt)y — vt for all points y, namely, all points
have the same velocity at instant t.

We say that (3) is an instantaneous rotation if there exists a point
y0 such that (Xt)VQ = 0. If xQ = frXVo), then dft(xQ)/dt = 0 and #0 is
called a center of instantaneous rotation. We shall also require that
St ^ o to avoid an instantaneous standstill.

In the case where m = 3, an instantaneous rotation has an axis,
namely, the line consisting of all points y such that (Xt)y = 0. Suppose
(Xt)y = (X,)^ = 0. Then from (4) we obtain St(y - yQ) = 0. Since the
null space of the skew-symmetric transformation St Φ 0 is a 1-dimen-
sional subspace, the set of y with (Xt)y = 0 forms a straight line.
Indeed, for St Φ 0, there is a uniquely determined vector ωt such that

. St(U) is equal to the cross product ωt x U for every vector U. The
vector ω, is called the angular velocity at instant t.

If sc is an arbitrary point, the velocity dft(x)/dt in (4) can be ex-
pressed by

dft(x)/dt = ωt x ft(0)ft(x)

since cf = /t(0) and C^ is equal to the vector ft(0)ft(x) from /f(0) to

We shall now define rolling of a surface M on another surface N.
Consider a 1-parametric motion {/J with the property that for each
instant t the image ft(M) is tangent to N at a certain point yt. If
(df/dtyff1 is an instantaneous translation, we have skidding at instant
ί. Suppose (dfjdt)frι is an instantaneous rotation with yt as center and
St Φ 0. If the angular velocity ωt is normal to N at ?/,, then we have
spinning at instant t. It ωt is tangent to N at ?/<, then we say that
(df/dt)/^1 is a rolling. Thus the 1-parametric motion {/J is a rolling
of M on iV (without skidding or spinning) if, for each instant t, (df/dt)/^1

is a rolling in the above sense. See [1], pp. 78-79; section called Roule-
ment et pivotment d'une surface mobile sur une surface fixe.
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REMARK. If {ft} is a rolling of M on N, then {/r1} is a rolling of
N on M.

2. Rolling a ball on a plane. Let us consider the unit sphere S2

and the tangent plane Σ of S2 at xp. We shall take a rectangular
coordinate system in E3 such that S2 is given by (x1)2 + {x2f + (#3)2 = 1,
x0 = (0, 0, —1) and J is given by #3 = — 1. Let βw β2, e3 be the unit
vectors (1, 0, 0), (0,1, 0), (0, 0,1), respectively.

Suppose xt is a smooth curve (with non-vanishing tangent vector
dx/dt) on S2 starting at xQ. We wish to roll S2 on Σ in such a way
that at instant t the point xt becomes a point of contact with Σ. Let
the rolling {/J be given by (2) and let yt = ft(xt).

Since ft(S2) is tangent to Σ at yt, we have

( 6 ) Ctxt = - β 8 .

Thus

2/« ^ + ct = ct - e3

t h a t is,

( 7 ) ct = τ/ί + β3 .

Since T/J is a center of instantaneous rotation, we have from (4), (6), and

(7)

(8) Sfa) = dy/dt .

Since the angular velocity ωt lies on Σ (by definition of rolling) and

since

ωt x e3 = Sβ(β8) = dy/dt ,

it follows that ωt is perpendicular to the tangent vector dy/dt of the
curve yt and {dy/dt, ωt} have the same orientation as {elf e2).

We shall now proceed to prove that the curve yt is the development
of the curve xt into the tangent plane Σ. First we observe

( 9 ) Ct(dx/dt) = dy/dt .

This can be seen as follows. From yt = Ctxt + ct, we have

dy/dt = (dC/dt)xt + Ct(dx/dt) + dc/dt .

Since yt is a center of instantaneous rotation, (4) gives

(dC/dt)xt + dc/dt = 0 .

These two equations give rise to (9).
We define vector fields \ = b^t) and δ2 = 62(ί) along the curve &t by
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b,(t) = Cr\e,) and 6t(ί) = Ct-\e2) .

Then

δi(0) - ex , 6,(0) = e2

»*> = <Cf W , Cf'(β,)) - <βw β3> = 0

<e2, e3> = 0 ,

since Ct preserves the inner product < , >. Thus bL(t) and &,(*) are tan-
gent to S2 at xt for each ί.

We shall show
( i ) &x(t) and b2(t) are parallel along the curve xt on S2 (relative to

the Levi-Civita connection of S2);
(ii) if we write dx/dt = fc^t^ + k2(t)b2f then we have dy/df =

To show (i), we differentiate the relation Ctbj(t) = ex and obtain

dbjdt = -Cf\dCldt)bt = -Cr\dCldt)Cr\C%bύ

= -crsM = - c r 1 ^ x β ι).
Here α>t x ex is in the direction of β3 and hence Cr\β)t x ej is in the
direction of #ί# This means that dbjdt is normal to S2 at αt and hence
Vtbx = 0. Thus δ^ί) is parallel along the curve xt relative to the Levi-
Civita connection V of S2. The proof for 62(ί) is similar. The assertion
(ii) is obvious, because Ct maps dx/dt, 6χ(ί) and bz(t) upon dy/dt, ex and
e2, respectively. Since b^t) and 62(t) are parallel along the curve xt, it
follows that the curve yt is the development of the curve xt into the
tangent plane Σ (see [2, Vol. I, Proposition 4.1]).

What we have shown is that if we roll S2 on Σ in such a way
that the point xt becomes a point of contact at instant t, then yt—ft(^t)
is the development of xt. We shall now prove that indeed such a roll-
ing {ft} exists uniquely.

Let &i(£) and δa(ί) be the vector fields which are parallel along the
curve xt such that 6^0) = ex and 62(0) = e2. They are uniquely deter-
mined. Let Ct be the unique matrix in SO(3) such that

Cfb^t) = βx, Cί62(ί) = β2, and Cta?t = — e3.

Let /̂ί be the development of the curve xt in Σ. It is, of course, uni-
quely determined by xt. We have

Ct(dx/dt) =

We set

ct = Vt
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and

It is now easy to verify that {ft} is a rolling for which yt = ft(xt) is
the center of instantaneous rotation.

Summarizing the discussions we have

THEOREM 1. Let xt be a smooth curve on the unit sphere S2. There
exists a unique rolling {ft} of S2 on the tangent plane Σ at x0 such
that yt = ft(xt) is the locus of points of contact on Σ. The curve yt is
the development of the curve xt into Σ in the sense of E. Cartan.

3. Rolling an ^-dimensional sphere. We extend the result in 2 to
higher dimensions. Let Sn be the unit sphere in (n + l)-dimensional
Euclidean space En+1, say, (x1)2 4- + (xn+1)2 = 1. Let xt be a smooth
curve on Sn starting at xQ = (0, , 0, —1). Let Σ be the tangent hyper-
plane xn+ί = — 1. We shall write el9 -—,en,en+ί for the standard basis
in the vector space En+ί.

We consider a 1-parametric motion ft as in (2) with Ct e SO(n + 1)
such that yt = ft(xt) is a point of contact with Σ at time instant t.
We have

(6') Ctxt - -en+1

Assuming that yt is a center of instantaneous rotation we obtain Styt +
dc/dt — 0 and thus

(80 St(en+1) = dy/dt .

For n > 2, we cannot speak of the angular velocity ωt. In order to
define ft as rolling on Σ we require that St maps every vector on Σ
into Span en+1. Under this condition, (8') determines St uniquely.

In order to prove that the curve yt is the development of the curve
xu we define δ,(ί) = Crγeu 1 ^ i ^n. They are vector fields tangent to
Sn along the curve xt. To show that they are parallel along xt with
respect to the Levi-Civita connection V on Sn, we obtain, as before,

dbjdt = -CrKSteJ .

Since S^ is a scalar multiple of en+ί, we see that dbjdt is normal to
S \ T h u s VJbi = 0. F r o m Ct(bt) = eu l ^ i ^ n , a n d Ct(dx/dt) = dy/dt,

it follows that yt is the development of xt.
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It is now clear that Theorem 1 extends to higher dimensions.

4. Rolling a surface on a plane. Let M be an arbitrary surface
in E3 and let Σ be the tangent plane to M at a point x0. Let xt be a
smooth curve on M. We wish to find a rolling {/J of I on ί such
that yt = ft(xt) is the locus of points of contact (and centers of instan-
taneous rotation). We choose a rectangular coordinate system with
origin x0 such that Σ is given by xz — 0. Let elf e2, e3 be the natural
basis. Let ξt be the field of unit normal vectors along xt such that

For ft given as in (2), we obtain as before

( 9 ) Ct(dx/dt) = dy/dt .

Since ft(M) is tangent to Σ at yt, we have

(10) Ct(ζt) = e5 .

We define

6i(ί) = Ct-\ex) and 6t(ί) = Cf\e2)

as before. They are tangent to M along the curve xt.
We may write

(11) dξ/dt = λΛQδi + λ2(ί)62.

Differentiating (10) we obtain

(dCfdt)ξt + Ct(dζ/dt) - 0

and hence

(dC/dt)ξt = - Ct(λ1δι + λ2δ2) = - λ ^ , - λ2β2 .

Thus we obtain by using (10) again

(12) St(es) = - λ A - λ2β2 .

Since St is not to be 0, λx(ί) and λ2(ί) should not vanish simultaneously.
Let ωt be the angular velocity so that St( U) = ωt x U for every vector
U. Since ωt lies on Σ (for {/J is a rolling), we see that both St{e^) —
ωt x eι and St(e2) — ωt x e2 are in the direction of ed. Actually, we have
ωt = λ2βx — \e2.

From

dbjdt = -CΠSteJ and dbjdt = -CfXStet) ,

we see that cίδi/dί and d62/dί are in the direction of ζt. This means
that 6i(i) and 62(ί) are parallel along the curve xt with respect to the
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Levi-Civita connection of M. Now the equation (9) implies that the
curve yt is the development of the curve xt.

As we stated, X^t) and X2(t) are not 0 simultaneously. We can
interpret this fact as follows. The equation (11) actually defines the
second fundamental form A on the vector dx/dt, that is,

dξ/dt = -A(dx/dt) .

So our condition St Φ 0 is equivalent to A(dx/dt) Φ 0 for each t.
Conversely, suppose this condition A(dx/dt) Φ 0 is satisfied for each

t. Then we may take parallel vector fields 6x(ί) and b2(t) along the
curve xt such that δ̂ O) = elf 62(0) = e2 and define Ct as the matrix in
SO(3) such that CJb^t) = elf Ctb2{t) = e2 and Ctζt = e3. Then define ct by

ct = yt ~ Ctxt ,

where the curve yt is the development of the curve xt in Σ. It is
then easy to check that

~Ct ct

ft ~ _o
is the rolling with the locus of contact yt = ft(xt).

The condition A(dx/dt) Φ 0 is satisfied if the second fundamental
form A does not admit 0 as an eigenvalue, namely, if 0 is not a prin-
cipal curvature at xt. This is certainly the case if the curve xt does
not go through a flat point of M.

THEOREM 2. Let xt be a smooth curve on a surface M which does
not go through a flat point of M. There exists a unique rolling {/J of
M on the tangent plane Σ at x0 such that yt=ft(%t) is the locus of points
of contact. The curve yt is the development of the curve xt into Σ.

The extreme opposite of the assumption A(dx/dt) Φ 0 is the case
where M is locally flat and A(dx/dt) = 0 for all t, for example, when
the curve xt is a generator on a cone or a cylinder M. One can easily
see that there is no rolling of the kind in Theorem 2.

We also remark that, in the situation of Theorem 2, a vector field
U(t) along the curve xt is parallel with respect to the Levi-Civita con-
nection of M if and only if Ct(U(t)) is a constant vector for all t. This
is the kinematic interpretation of the Levi-Civita connection for the
surface M.

5. Rolling a surface on another surface. Let M and N be two
orientable surfaces tangent to each other at x0. For a given smooth
curve xt on M, we shall find a rolling {/J of M on N such that yt =
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ft(xt) e N is the locus of contact.
We choose a field of unit normal vectors ξ for M and η for N such

that they coincide at x0. (For example, if two spheres M and N are
tangent and outside of each other, then when we choose ξ as an inward
unit normal for M, η will be an outward unit normal for N.) We
write ζt and ηt for ξ at xt and η at yt, respectively.

If {ft} is given by (2), then

(13) ηt = Ctξt .

Let ax — αx(ί) and α2 = a2(t) be orthonormal vector fields which are par-
allel along xt on M. We let

(14) &x(t) = Ct{am , δ.(ί) = Ct(a2(t)) .

We have

(15) dajdt = λif , dα2/dί = λ2f

dζ/dt = — λ^i — λ2α2

where λj. = \(t) and λ2 = λ2(ί) are suitable functions. On the other
hand, we have

(16) dbjdt = μj] + Λ:62

dbjdt =

where μt = ^(t), j " 2 = A(*)> a n d ^ = tc(t) are suitable functions. Differenti-
ating (14) and using (15), (16) we obtain for St = (dC/d^Cr1 the following:

St(b2) = -κbι + (μ2 -

From (13) we obtain

If Si ^ 0, the angular velocity ωt is given by

ωt = (ft - λ2)δ3 - (ft - \)b2 + ^ .

Since {/J is a rolling, ωt is tangent to iSΓ at yt. Thus /c must be 0.
This means that 6X and b2 are parallel along the curve yt. We should
also require that St Φ 0, that is,

(ft ~ λi) 2 + (A - λ

2 ) 2 Φ 0 for any t .

To discuss this condition, we introduce the following concept. Let
My N be two oriented surfaces with unit normal vectors ξ and 7), respec-
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tively. Let xeM, yeN, XeTx(M), and Ye Ty(N). We say that M
and N have the same shape along X and Y if there is a linear isometry
F of Tx{Em) onto Ty(Em) such that

F(ξ) = v , F(X) = Y and F{AX) = B(Y) ,

where A and B are the shape operators of M and N relative to ξ and
η, respectively.

Now the third equations of (15) and (16) can be written as

A(dx/dt) = λ^i + λ2α2

B(dy/dt) = μA + μ2b2 .

Since Ct maps dx/dt, aί9 a2 upon dy/dt, blf δ2, respectively, the equalities
μ1 = λx and μ2 = λ2 will mean that M and ΛΓ have the same shape along
the vectors dxfdt and dy/dt.

In order to find a rolling {/J from the given curve xt on Λf, we
must know how to determine the curve yt on N. This can be done by
making use of the development zt of xt into the tangent plane TXQ(M).
If we write

(19) dx/dt — fc^i + k2a2

with suitable functions fcx = fc^t) and Λ2 = fc2(£), then

(20) dy/dt = &A + fc2δ2

because of (14) and Ct(dx/dt) = dτ//dί.
Let ex = α^O) and e2 = αa(0). Since αx(ί) and αa(ί) are parallel along the
curve xt, the development zt of â  is given by integrating

(21) dz/dt = fc^ + Λ2e2 .

Similarly, the development of the curve yt into the tangent plane
TyQ(N) = TXo(M) is also given by (21), namely, zt is the development of
yt. This means that yt is determined as the unique curve in N with
y0 — x0 whose development into Tyo(N) is equal to zt.

Summarizing the discussions we can state

THEOREM 3. Let M and N be two orientable surfaces which are
tangent to each other at xQ. Let xt be a smooth curve on M. Then we
can find a unique rolling {ft} of M onto N such that yt = ft(%t) is the
locus of centers of instantaneous rotation provided the following condi-
tion is satisfied. Let zt be the development of the curve xt into the
tangent plane TXo(M). Let yt be the unique curve on N such that its
development into Tyo(N) = TXQ(M) is zt. Take the fields of unit normals
ξ and η for M and N such that they coincide at x0 = y0. The condition
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to be satisfied is that, for each t, M and N do not have the same shape
along the vectors dx/dt and dy/dt (for the chosen normals ξ and η).

We remark that in the case of two spheres tangent to, and outside
of, each other, the condition in question is satisfied for an arbitrary-
curve xt for the choice of inward normals ζ for one sphere M and out-
ward normals rj for the other sphere N.

It is possible to find a number of sufficient conditions under which
a rolling (with St Φ 0) is possible for a given curve xt. For example,

( i ) Aidxjdt) = 0 for every t and N has no fiat point; for example,
xt is a generator of a cylinder and N is a sphere.

(ii) A(dxjdt) Φ 0 for each t and N is a plane.
(iii) dx/dt is not a principal vector at any point and N is umbilical

(a plane or a sphere).
A rolling is possible for an arbitrary curve on M if M and N satisfy

the following condition:
(iv) the principal curvatures of M are greater than those of N;

here we assume that ξ and η are chosen so that ζXo = ηXQ.
If M and N have the same shape along unit vectors X and Y, then

we have (AX, X) = (BY, Y). But (AX, X) is greater than or equal
to the smaller principal curvature of M at the point and (BY, Y) is
smaller than or equal to the larger principal curvature of N at the cor-
responding point. Thus condition (iv) is sufficient.

6. The case of submanifolds. Now let M and N be two ^-dimen-
sional submanifolds in an m-dimensional Euclidean space Em which are
tangent to each other at a point x0. We shall first define the notion of
rolling {/J of M and N.

Let {ft} be a 1-parametric motion of Em given by (2). Assume that
ft(M) is tangent to N at a point yt at each instant t. We assume that
the instantaneous motion Xt vanishes at yt (that is, yt is a center of
instantaneous rotation) and that St Φ 0. We say that {/J is a rolling
if the skew-symmetric transformation St maps the tangent space Tyt{N)
into the normal space Ty\(N) and maps Ty\(N) into Tyt{N), thus,

(22) (St(X), Y) = 0 for all X, Ye Tn{N)

(St(U), V) = 0 for all U,Ve Ty\(N) .

This is clearly a generalization of the definition in the case where n = 2
and m = 3 as well as the case of Sn and its tangent plane.

Suppose that a smooth curve xt is given on M. We wish to find a
rolling {/J of M on N such that yt = ft(xt) is the locus of centers of
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instantaneous rotation. Let {α^O), •• ,αΛ(0)} be an orthonormal basis in
TXQ(M) and let {αw+1(0), •••, αm(0)} be an orthonormal basis in the normal
space T£Q(M). Let at(t), 1 ^ i ^ n, be the tangent vector parallel along
xt on M with initial condition α^O); thus

(23) Ftα, = 0

dc^/dί = a(dx/dt, at)

for 1 <; i <; w, where F is the Levi-Civita connection of M and a denotes
the second fundamental form as a bilinear mapping TX{M) x TJJd) —>

2V-(Λf) for each x e l .
For each j, n + 1 ^ j ^ m, let αy(ί) be the normal vector field

parallel along xt with respect to the normal connection of M with initial
vector aj(0). Thus

(24) Via, = 0

ddj/dt = —Aaj(dx/dt)

for w + 1 <; i ^ m, where F 1 denotes covariant differentiation for the
normal connection and Aaj denotes the shape operator corresponding to
the normal vector α, .

Now suppose {/J is a rolling given by (2). We define

(25) bk(t) = Ct(ak(t))

for 1 <̂  k ^ m. Since /ί(ikf) is tangent to iV at yt, it follows that
&iW> •"> WO are tangent to N at ^ and &»+1(t), •••, bm(t) are normal to
N at 2/t.

Let 1 ^ i ^ w. Differentiating (25) and using (23) we obtain

dbjdt = (dC/dt)ai + Ct(dajdt)

= (dC/dt)Cr% + Ct(a(dx/dt, at)) .

On the other hand, we have

dbjdt = Ftbi + β(dy/dt, 6,) ,

where V is the Levi-Civita connection for N and β is the second funda-
mental form Ty(N) x Ty(N) -> T̂ (ΛΓ) for JV. Thus we obtain

St(bt) = Vtb, + β(dy/dt, bt) - Ct(a(dx/dt, at)) .

By definition of a rolling, St(bt) is normal to N. Since β(dy/dt, bt) and
Ct(a(dx/dt, ax)) are normal to JV, we must have

Fί&ί = 0 , namely, 6f is parallel along yt ,

and
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(26) St(bt) - β(dy/dt, &«) - Ct(a(dx/dt, a,)) .

Now let n + 1 ^ j ^ m. Differentiating (25) and using (24) we
obtain

dbj/dt = (dC/dt)ad

= {dCldt)Cτιb5 + Ct(-Aaj(dx/dt)) .

On the other hand, we have

dbj/dt = -Bb.(dy/dt) + Vth ,

where JB6J. is the shape operator for N corresponding to the normal
vector bj and Vϊ is covariant differentiation along yt for the normal
connection of N. Thus we obtain

St(&;) = Ct(Aaj(dx/dt)) - Bbj(dy/dt) + Ft% .

Since St(&, ) must be tangent to N at yu we conclude that Vϊbά — 0,
namely, bj is F1-parallel along the curve yt. We have also

(27) Stfj) = Ct(Aaj(dx/dt)) - Bbj(dy/dt) .

The skew-symmetric transformation St given in the form (26) and
(27) can be expressed more conveniently if we adopt the following
operators p for M and τ for N.

For each point x of M, define for each X e TJJSd) a linear endomor-
phism of Tx(Em) = TX(M) + Γ, 1 ^) by

= a(Xf Y) for 7 e Γx(ilί)

= -Av(X) for C76 Ti(M) .

Then jOjj- is a skew-symmetric endomorphism of Tx(Em). Similarly, for
each point y of N, we define r x, Xe Ty(N), by

τ x (Γ) = i8(X, Γ) for YeTy(N)

Tχ(U) = -BV(X) for Ue T£(N) .

With these operators we may write (26) in the form

$(&,) = τt(bt) - Ct(pt(at))

where we write ^e for ^rfa;/rfί and τt for τd y / ( ί ί for brevity. From (27) we
have

Thus we may simply write
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(28) St = τt

In order to discuss conditions under which St Φ 0, we extend the
notion of same shape to ^-dimensional submanifolds M and N in Em.
Let Xe TJM) and Ye Ty(N). We say that M and N have the same
shape along X and Y if there is a linear isometry F of Tx(Em) onto
Ty(Em) such that

(29) F(TX(M)) = Ty(N) , F(Ti(M)) = TftN)

F(X)=Y and FoPx = zγoF.

From (28) we see that if St = 0, then F = Ct satisfies these condi-
tions for X = dx/dt and Y = dy/dt, namely, ilί and iV have the same
shape along X and Y.

We may find a number of sufficient conditions under which a rolling
(with St Φ 0) exists. Recall that the relative nullity space of a sub-
manifold M at x is the subspace of TX(M) consisting of all X e TX(M)
with ρx — 0. Its dimension is called the index of relative nullity. For
example, a rolling exists for a curve xt if

( i ) dx/dt is in the relative nullity space for every t and N has
index of relative nullity 0,
or (ii) dx/dt is not in the relative nullity space for any t and N is
a Euclidean n-plane,
or (iii) the sectional curvature of any plane containing the tangent
vector dx/dt never vanishes and N is a Euclidean n-plane.

The last case follows from the second because the sectional curvature
of any plane containing a vector X with px = 0 must vanish. We also
remark that the so-called Veronese variety (the image of Sn by a certain
isometric imbedding into Em, where m = n(n + 3)/2 has index of relative
nullity 0.

We also recall that a non-zero vector X e TX(M) is called a principal
vector if there is ξ, e Ti(M) such that Aξ(X) = <f, ξ^X for all ξ e Ti(M).
A rolling exists for a curve xt on M if

(iv) dx/dt is not a principal vector for each t and N is an n-plane
or an n-sphere.

Let us remark that the Veronese variety mentioned above has no
principal vector.

In any case, the relationship between the curve xt on M and the
curve yt on N is as before. Their developments into TXo(M) = TVo(N)
coincide.

We now consider the following special case.
Let M be an ^-dimensional submanifold in Em and xQ a point of M.
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As the second submanifold N we take the w-plane TH(M). We are going
to obtain a kinematic interpretation of the second fundamental form
and the normal connection of M.

Let X e TXQ(M) and take any curve xt with initial tangent vector
X. If we have a rolling {/J of M onto N determined by xt, then (28)
implies

This gives the kinematic interpretation of the second fundamental form
a of M at x0, because p determines a completely.

If ξt is a field of normal vectors along xtf we may write

ξt = Σ ?*(*)<*/,
i=n+l

where an+ί(t)f '—,am(t) are F1-parallel normal vector fields along xt as
before. Then

m

Ct(ζt)= Σ QjiΦs

and, as we have seen before, each b3- = Ct(α3 ) is F1-parallel along the
curve yt = ft(%t)- Since N is an w-plane, this means that each bd is a
constant vector in Em. It follows that ξt is F1-parallel along the curve
xt if and only if Ct(ζt) is a constant vector in Em (that is, each qά(t) is
constant). This is the kinematic interpretation of the normal connection
of M.
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