KINEMATICS AND DIFFERENTIAL GEOMETRY
OF SUBMANIFOLDS

—Rolling a ball with a prescribed locus of contact—

KATSUMI NOMIZU

(Received June 28, 1977)

The simplest and most illustrative of the kinematic models we discuss in this paper is the rolling of a ball on its tangent plane. Suppose a smooth curve \(x_t \) is given on the unit sphere \(S^2 \) (boundary of the unit ball \(B \)). Is it possible to roll (without skidding or spinning) the ball \(B \) on the tangent plane \(\Sigma \) to \(S^2 \) at \(x_0 \) in such a way that at each time instant \(t \) the point \(x_t \) becomes a point of contact with the plane \(\Sigma \)? We shall show that this is possible and that the locus \(y_t \) of points of contact on \(\Sigma \) is indeed the development of the curve \(x_t \), in the sense of E. Cartan.

When we replace \(S^2 \) by an arbitrary smooth surface \(M \), the rolling of \(M \) on its tangent plane gives rise to a kinematic interpretation of the Levi-Civita connection for \(M \). We also find that we must impose a certain condition on the curve \(x_t \) to prevent the rolling from degenerating into an instantaneous standstill at any instant. This condition is that the tangent vector of \(x_t \) is not a principal direction for the zero principal curvature; this condition is satisfied if the curve \(x_t \) does not go through a flat point.

In the end we shall study the model of rolling an \(n \)-dimensional submanifold \(M \) on another \(n \)-dimensional submanifold \(N \) in a Euclidean space \(E^m \) and obtain a kinematic interpretation of the second fundamental form and the normal connection of a submanifold.

The paper is organized as follows. Section 1 is devoted to the basic concepts in kinematics we need. We define the notion of rolling (without skidding or spinning). In Section 2 we discuss the model of rolling a ball and extend it to higher dimensions in Section 3. In Section 4 we treat the rolling of an arbitrary surface on a plane. Section 5 deals with rolling of a surface on another surface. Finally, in Section 6, we discuss the most general question—rolling an \(n \)-dimensional submanifold

Work supported by NSF Grant MCS 76-06324.
M on another n-dimensional submanifold N in E^m. The reference for submanifolds is [2, Vol. II].

1. Motion, instantaneous motion, and rolling. By a motion of a Euclidean space E^m we mean an orientation-preserving isometry of E^m. If we take an arbitrary Euclidean (i.e., rectangular) coordinate system, a motion f can be expressed by an $(m + 1) \times (m + 1)$ matrix of the form

$$
\begin{bmatrix}
C & c \\
0 & 1
\end{bmatrix}
$$

where $C \in SO(m)$ and c is an m-dimensional (column) vector. A point x is mapped by f upon $f(x) = Cx + c$.

By a 1-parametric motion $\{f_t\}$, $t \in J$, where J is an open or closed interval containing 0 in its interior, we mean a differentiable mapping of J into the space of matrices of the form (1), namely,

$$
\begin{bmatrix}
C_t & c_t \\
0 & 1
\end{bmatrix}
$$

where C_t is an $SO(m)$-valued differentiable function of t and c_t is a vector-valued differentiable function of t such that $f_0 = \begin{bmatrix} I & 0 \\ 0 & 1 \end{bmatrix}$ (identity transformation).

We remark once and for all that it does not matter which Euclidean coordinate system we use in expressing motions and related concepts in the following.

Given a 1-parametric motion $\{f_t\}$, we can define a time-dependent vector field X_t on E^m as follows. Fix t. Let y be an arbitrary point and let $x = f_t^{-1}(y)$. Let $(X_t)_y$ be the tangent vector $[df_u(x)/du]_{u=t}$ of the orbit $f_u(x)$ at $u = t$, namely, at the point $y = f_t(x)$.

Using the matrix (2) we can obtain the matrix representing the vector field X_t as follows. Write

$$
(df/dt)f_t^{-1} = \begin{bmatrix} S_t & v_t \\ 0 & 0 \end{bmatrix}
$$

where

$$
S_t = (dC/dt)C_t^{-1} \quad \text{and} \quad v_t = -S_t c_t + dc/dt .
$$

Then it is easy to verify that

$$(X_t)_y = S_t y + v_t .$$
For this reason, we call (3) the instantaneous motion at instant t. If x is an arbitrary point, we have
\[
d f_t(x)/dt = (dC/dt)x + dc/dt = (dC/dt)C_\i x + dc/dt,
\]
namely,
\[
d f_t(x)/dt = S_t C_\i x + dc/dt.
\]

The instantaneous motion (3) is called an instantaneous standstill if $S_t = 0$ and $v_t = 0$. It is called an instantaneous translation if $S_t = 0$ and $v_t \neq 0$. In this case, $(X_t)_y = v_t$ for all points y, namely, all points have the same velocity at instant t.

We say that (3) is an instantaneous rotation if there exists a point y_0 such that $(X_t)_y = 0$. If $x_0 = f_t^{-1}(y_0)$, then $d f_t(x_0)/dt = 0$ and y_0 is called a center of instantaneous rotation. We shall also require that $S_t \neq 0$ to avoid an instantaneous standstill.

In the case where $m = 3$, an instantaneous rotation has an axis, namely, the line consisting of all points y such that $(X_t)_y = 0$. Suppose $(X_t)_y = (X_t)_y = 0$. Then from (4) we obtain $S_t(y - y_0) = 0$. Since the null space of the skew-symmetric transformation $S_t \neq 0$ is a 1-dimensional subspace, the set of y with $(X_t)_y = 0$ forms a straight line. Indeed, for $S_t \neq 0$, there is a uniquely determined vector ω_t such that $S_t(U)$ is equal to the cross product $\omega_t \times U$ for every vector U. The vector ω_t is called the angular velocity at instant t.

If x is an arbitrary point, the velocity $d f_t(x)/dt$ in (4) can be expressed by
\[
d f_t(x)/dt = \omega_t \times f_t(0) f_t(x) + d f_t(0)/dt
\]

since $c_t = f_t(0)$ and $C_\i x$ is equal to the vector $\overrightarrow{f_t(0)f_t(x)}$ from $f_t(0)$ to $f_t(x)$.

We shall now define rolling of a surface M on another surface N. Consider a 1-parametric motion $\{f_t\}$ with the property that for each instant t the image $f_t(M)$ is tangent to N at a certain point y_t. If $(d f_t/dt) f_t^{-1}$ is an instantaneous translation, we have skidding at instant t. Suppose $(d f_t/dt) f_t^{-1}$ is an instantaneous rotation with y_t as center and $S_t \neq 0$. If the angular velocity ω_t is normal to N at y_t, then we have spinning at instant t. If ω_t is tangent to N at y_t, then we say that $(d f_t/dt) f_t^{-1}$ is a rolling. Thus the 1-parametric motion $\{f_t\}$ is a rolling of M on N (without skidding or spinning) if, for each instant t, $(d f_t/dt) f_t^{-1}$ is a rolling in the above sense. See [1], pp. 78-79; section called Roulement et pivotment d'une surface mobile sur une surface fixe.
Remark. If \(\{ f_t \} \) is a rolling of \(M \) on \(N \), then \(\{ f_t^{-1} \} \) is a rolling of \(N \) on \(M \).

2. Rolling a ball on a plane. Let us consider the unit sphere \(S^2 \) and the tangent plane \(\Sigma \) of \(S^2 \) at \(x_p \). We shall take a rectangular coordinate system in \(E^3 \) such that \(S^2 \) is given by \((x^1)^2 + (x^2)^2 + (x^3)^2 = 1 \), \(x_3 = (0, 0, -1) \) and \(\Sigma \) is given by \(x^3 = -1 \). Let \(e_1, e_2, e_3 \) be the unit vectors \((1, 0, 0), (0, 1, 0), (0, 0, 1) \), respectively.

Suppose \(x_t \) is a smooth curve (with non-vanishing tangent vector \(dx/dt \)) on \(S^2 \) starting at \(x_0 \). We wish to roll \(S^2 \) on \(\Sigma \) in such a way that at instant \(t \) the point \(x_t \) becomes a point of contact with \(\Sigma \). Let the rolling \(\{ f_t \} \) be given by (2) and let \(y_t = f_t(x_t) \).

Since \(f_t(S^2) \) is tangent to \(\Sigma \) at \(y_t \), we have

\[
C_t x_t = - e_3 .
\]

Thus

\[
y_t = C_t x_t + c_t = c_t - e_3
\]

that is,

\[
c_t = y_t + e_3 .
\]

Since \(y_t \) is a center of instantaneous rotation, we have from (4), (6), and (7)

\[
S_i(e_i) = dy/dt .
\]

Since the angular velocity \(\omega_t \) lies on \(\Sigma \) (by definition of rolling) and since

\[
\omega_t \times e_3 = S_i(e_i) = dy/dt ,
\]

it follows that \(\omega_t \) is perpendicular to the tangent vector \(dy/dt \) of the curve \(y_t \) and \(\{ dy/dt, \omega_t \} \) have the same orientation as \(\{ e_1, e_2 \} \).

We shall now proceed to prove that the curve \(y_t \) is the development of the curve \(x_t \) into the tangent plane \(\Sigma \). First we observe

\[
C_t(dx/dt) = dy/dt .
\]

This can be seen as follows. From \(y_t = C_t x_t + c_t \), we have

\[
dy/dt = (dC/dt)x_t + C_t(dx/dt) + dc/dt .
\]

Since \(y_t \) is a center of instantaneous rotation, (4) gives

\[
(dC/dt)x_t + dc/dt = 0 .
\]

These two equations give rise to (9).

We define vector fields \(b_1 = b_1(t) \) and \(b_3 = b_3(t) \) along the curve \(x_t \) by
\[b_1(t) = C_t^{-1}(e_1) \quad \text{and} \quad b_2(t) = C_t^{-1}(e_2) . \]

Then
\[b_1(0) = e_1 , \quad b_2(0) = e_2 \]
\[\langle b_1(t), -x_t \rangle = \langle C_t^{-1}(e_1), C_t^{-1}(e_2) \rangle = \langle e_1, e_2 \rangle = 0 \]
\[\langle b_2(t), -x_t \rangle = \langle C_t^{-1}(e_2), C_t^{-1}(e_3) \rangle = \langle e_2, e_3 \rangle = 0 , \]
since \(C_t \) preserves the inner product \(\langle , \rangle \). Thus \(b_1(t) \) and \(b_2(t) \) are tangent to \(S^2 \) at \(x_t \) for each \(t \).

We shall show

(i) \(b_1(t) \) and \(b_2(t) \) are parallel along the curve \(x_t \) on \(S^2 \) (relative to the Levi-Civita connection of \(S^2 \));

(ii) if we write \(dx/dt = k_1(t)b_1 + k_2(t)b_2 \), then we have \(dy/dt = k_1(t)e_1 + k_2(t)e_2 \).

To show (i), we differentiate the relation \(C_t b_1(t) = e_1 \) and obtain
\[db_1/dt = -C_t^{-1}(dC_t/dt)b_1 = -C_t^{-1}(dC_t/dt)C_t^{-1}(C_t b_1) \]
\[= -C_t^{-1}S_1(e_1) = -C_t^{-1}(\omega_t \times e_1) . \]

Here \(\omega_t \times e_1 \) is in the direction of \(e_2 \) and hence \(C_t^{-1}(\omega_t \times e_1) \) is in the direction of \(x_t \). This means that \(db_1/dt \) is normal to \(S^2 \) at \(x_t \) and hence \(\nabla b_1 = 0 \). Thus \(b_1(t) \) is parallel along the curve \(x_t \) relative to the Levi-Civita connection \(\nabla \) of \(S^2 \). The proof for \(b_2(t) \) is similar. The assertion (ii) is obvious, because \(C_t \) maps \(dx/dt, b_1(t) \) and \(b_2(t) \) upon \(dy/dt, e_1 \) and \(e_2 \), respectively. Since \(b_1(t) \) and \(b_2(t) \) are parallel along the curve \(x_t \), it follows that the curve \(y_t \) is the development of the curve \(x_t \) into the tangent plane \(\Sigma \) (see [2, Vol. I, Proposition 4.1]).

What we have shown is that if we roll \(S^2 \) on \(\Sigma \) in such a way that the point \(x_t \) becomes a point of contact at instant \(t \), then \(y_t = f_t(x_t) \) is the development of \(x_t \). We shall now prove that indeed such a rolling \(\{f_t\} \) exists uniquely.

Let \(b_1(t) \) and \(b_2(t) \) be the vector fields which are parallel along the curve \(x_t \) such that \(b_1(0) = e_1 \) and \(b_2(0) = e_2 \). They are uniquely determined. Let \(C_t \) be the unique matrix in \(SO(3) \) such that
\[C_t b_1(t) = e_1 , \quad C_t b_2(t) = e_2 , \quad \text{and} \quad C_t x_t = -e_3 . \]

Let \(y_t \) be the development of the curve \(x_t \) in \(\Sigma \). It is, of course, uniquely determined by \(x_t \). We have
\[C_t(dx/dt) = dy/dt . \]

We set
\[c_t = y_t + e_3 \]
and

\[f_t = \begin{bmatrix} C_t & c_t \\ 0 & 1 \end{bmatrix}. \]

It is now easy to verify that \(\{f_t\} \) is a rolling for which \(y_t = f_t(x_t) \) is the center of instantaneous rotation.

Summarizing the discussions we have

Theorem 1. Let \(x_t \) be a smooth curve on the unit sphere \(S^2 \). There exists a unique rolling \(\{f_t\} \) of \(S^2 \) on the tangent plane \(\Sigma \) at \(x_0 \) such that \(y_t = f_t(x_t) \) is the locus of points of contact on \(\Sigma \). The curve \(y_t \) is the development of the curve \(x_t \) into \(\Sigma \) in the sense of E. Cartan.

3. **Rolling an \(n \)-dimensional sphere.** We extend the result in 2 to higher dimensions. Let \(S^n \) be the unit sphere in \((n + 1)\)-dimensional Euclidean space \(E^{n+1} \), say, \((x_1)^2 + \cdots + (x^{n+1})^2 = 1\). Let \(x_t \) be a smooth curve on \(S^n \) starting at \(x_0 = (0, \cdots, 0, -1) \). Let \(\Sigma \) be the tangent hyperplane \(x^{n+1} = -1 \). We shall write \(e_1, \cdots, e_n, e_{n+1} \) for the standard basis in the vector space \(E^{n+1} \).

We consider a 1-parametric motion \(f_t \) as in (2) with \(C_t \in SO(n + 1) \) such that \(y_t = f_t(x_t) \) is a point of contact with \(\Sigma \) at time instant \(t \). We have

\[(6') \quad C_t x_t = -e_{n+1} \]

\[(7') \quad c_t = y_t + e_{n+1}. \]

Assuming that \(y_t \) is a center of instantaneous rotation we obtain \(S_t y_t + dc/dt = 0 \) and thus

\[(8') \quad S_t(e_{n+1}) = dy/dt. \]

For \(n > 2 \), we cannot speak of the angular velocity \(\omega_t \). In order to define \(f_t \) as rolling on \(\Sigma \) we require that \(S_t \) maps every vector on \(\Sigma \) into \(\text{Span} \ e_{n+1} \). Under this condition, \((8') \) determines \(S_t \) uniquely.

In order to prove that the curve \(y_t \) is the development of the curve \(x_t \), we define \(b_i(t) = C_t^{-1} e_i, 1 \leq i \leq n \). They are vector fields tangent to \(S^n \) along the curve \(x_t \). To show that they are parallel along \(x_t \) with respect to the Levi-Civita connection \(\nabla \) on \(S^n \), we obtain, as before,

\[db_i/dt = -C_t^{-1}(S_t e_i). \]

Since \(S_t e_i \) is a scalar multiple of \(e_{n+1} \), we see that \(db_i/dt \) is normal to \(S^n \). Thus \(\nabla b_i = 0 \). From \(C_i(b_i) = e_i, 1 \leq i \leq n \), and \(C_i(dx/dt) = dy/dt \), it follows that \(y_t \) is the development of \(x_t \).
It is now clear that Theorem 1 extends to higher dimensions.

4. Rolling a surface on a plane. Let \(M \) be an arbitrary surface in \(E^3 \) and let \(\Sigma \) be the tangent plane to \(M \) at a point \(x_0 \). Let \(x_t \) be a smooth curve on \(M \). We wish to find a rolling \(\{ f_t \} \) of \(M \) on \(\Sigma \) such that \(y_t = f_t(x_t) \) is the locus of points of contact (and centers of instantaneous rotation). We choose a rectangular coordinate system with origin \(x_0 \) such that \(\Sigma \) is given by \(x^3 = 0 \). Let \(e_1, e_2, e_3 \) be the natural basis. Let \(\xi_t \) be the field of unit normal vectors along \(x_t \) such that \(\xi_0 = e_3 \).

For \(f_t \) given as in (2), we obtain as before
\[
C_t(dx/dt) = dy/dt.
\]
Since \(f_t(M) \) is tangent to \(\Sigma \) at \(y_t \), we have
\[
C_t(\xi_t) = e_3.
\]
We define
\[
b_1(t) = C_t^{-1}(e_1) \quad \text{and} \quad b_2(t) = C_t^{-1}(e_2)
\]
as before. They are tangent to \(M \) along the curve \(x_t \).

We may write
\[
d\xi/dt = \lambda_1(t)b_1 + \lambda_2(t)b_2.
\]
Differentiating (10) we obtain
\[(dC/dt)\xi + C_t(d\xi/dt) = 0\]
and hence
\[(dC/dt)\xi = -C_t(\lambda_1b_1 + \lambda_2b_2) = -\lambda_1e_1 - \lambda_2e_2.
\]
Thus we obtain by using (10) again
\[
S_t(e_3) = -\lambda_1e_1 - \lambda_2e_2.
\]
Since \(S_t \) is not to be 0, \(\lambda_1(t) \) and \(\lambda_2(t) \) should not vanish simultaneously.

Let \(\omega_t \) be the angular velocity so that \(S_t(U) = \omega_t \times U \) for every vector \(U \). Since \(\omega_t \) lies on \(\Sigma \) (for \(\{ f_t \} \) is a rolling), we see that both \(S_t(e_1) = \omega_t \times e_1 \) and \(S_t(e_2) = \omega_t \times e_2 \) are in the direction of \(e_3 \). Actually, we have \(\omega_t = \lambda_1e_1 - \lambda_2e_2 \).

From
\[
\frac{db_1}{dt} = -C_t^{-1}(S_t e_1) \quad \text{and} \quad \frac{db_2}{dt} = -C_t^{-1}(S_t e_2),
\]
we see that \(\frac{db_1}{dt} \) and \(\frac{db_2}{dt} \) are in the direction of \(\xi_t \). This means that \(b_1(t) \) and \(b_2(t) \) are parallel along the curve \(x_t \) with respect to the
Levi-Civita connection of M. Now the equation (9) implies that the curve y_t is the development of the curve x_t.

As we stated, $\lambda_1(t)$ and $\lambda_2(t)$ are not 0 simultaneously. We can interpret this fact as follows. The equation (11) actually defines the second fundamental form A on the vector dx/dt, that is,

$$\frac{d\xi}{dt} = -A(dx/dt).$$

So our condition $S_t \neq 0$ is equivalent to $A(dx/dt) \neq 0$ for each t.

Conversely, suppose this condition $A(dx/dt) \neq 0$ is satisfied for each t. Then we may take parallel vector fields $b_1(t)$ and $b_2(t)$ along the curve x_t such that $b_1(0) = e_1$, $b_2(0) = e_2$ and define C_t as the matrix in $SO(3)$ such that $C_t b_1(t) = e_1$, $C_t b_2(t) = e_2$ and $C_t \xi = e_3$. Then define c_t by

$$c_t = y_t - C_t x_t,$$

where the curve y_t is the development of the curve x_t in Σ. It is then easy to check that

$$f_t = \begin{bmatrix} C_t & e_t \\ 0 & 1 \end{bmatrix}$$

is the rolling with the locus of contact $y_t = f_t(x_t)$.

The condition $A(dx/dt) \neq 0$ is satisfied if the second fundamental form A does not admit 0 as an eigenvalue, namely, if 0 is not a principal curvature at x_t. This is certainly the case if the curve x_t does not go through a flat point of M.

THEOREM 2. Let x_t be a smooth curve on a surface M which does not go through a flat point of M. There exists a unique rolling $\{f_t\}$ of M on the tangent plane Σ at x_0 such that $y_t = f_t(x_t)$ is the locus of points of contact. The curve y_t is the development of the curve x_t into Σ.

The extreme opposite of the assumption $A(dx/dt) \neq 0$ is the case where M is locally flat and $A(dx/dt) = 0$ for all t, for example, when the curve x_t is a generator on a cone or a cylinder M. One can easily see that there is no rolling of the kind in Theorem 2.

We also remark that, in the situation of Theorem 2, a vector field $U(t)$ along the curve x_t is parallel with respect to the Levi-Civita connection of M if and only if $C_t(U(t))$ is a constant vector for all t. This is the kinematic interpretation of the Levi-Civita connection for the surface M.

5. Rolling a surface on another surface. Let M and N be two orientable surfaces tangent to each other at x_0. For a given smooth curve x_t on M, we shall find a rolling $\{f_t\}$ of M on N such that $y_t =$
$f_t(x_t) \in N$ is the locus of contact.

We choose a field of unit normal vectors ξ for M and η for N such that they coincide at x_0. (For example, if two spheres M and N are tangent and outside of each other, then when we choose ξ as an inward unit normal for M, η will be an outward unit normal for N.) We write ξ_t and η_t for ξ at x_t and η at y_t, respectively.

If $\{f_t\}$ is given by (2), then

\begin{equation}
\eta_t = C_t \xi_t .
\end{equation}

Let $a_1 = a_1(t)$ and $a_2 = a_2(t)$ be orthonormal vector fields which are parallel along x_t on M. We let

\begin{equation}
b_1(t) = C_t(a_1(t)), \ b_2(t) = C_t(a_2(t)) .
\end{equation}

We have

\begin{equation}
d a_1/dt = \lambda_1 \xi, \ d a_2/dt = \lambda_2 \xi
\end{equation}

\begin{equation}
d \xi/dt = -\lambda_1 a_1 - \lambda_2 a_2
\end{equation}

where $\lambda_1 = \lambda_1(t)$ and $\lambda_2 = \lambda_2(t)$ are suitable functions. On the other hand, we have

\begin{equation}
d b_1/dt = \mu_1 \eta + \kappa b_2
\end{equation}

\begin{equation}
d b_2/dt = \mu_2 \eta - \kappa b_1
\end{equation}

\begin{equation}
d \eta/dt = -\mu_1 b_1 - \mu_2 b_2
\end{equation}

where $\mu_1 = \mu_1(t)$, $\mu_2 = \mu_2(t)$, and $\kappa = \kappa(t)$ are suitable functions. Differentiating (14) and using (15), (16) we obtain for $S_t = (dC/dt)C_t^{-1}$ the following:

\begin{equation}
S_t(b_1) = \kappa b_2 + (\mu_1 - \lambda_1)\eta
\end{equation}

\begin{equation}
S_t(b_2) = -\kappa b_1 + (\mu_2 - \lambda_2)\eta .
\end{equation}

From (13) we obtain

\begin{equation}
S_t(\eta_t) = (\lambda_1 - \mu_1)b_1 + (\lambda_2 - \mu_2)b_2 .
\end{equation}

If $S_t \neq 0$, the angular velocity ω_t is given by

\begin{equation}
\omega_t = (\mu_2 - \lambda_2)b_1 - (\mu_1 - \lambda_1)b_2 + \kappa \eta .
\end{equation}

Since $\{f_t\}$ is a rolling, ω_t is tangent to N at y_t. Thus κ must be 0. This means that b_1 and b_2 are parallel along the curve y_t. We should also require that $S_t \neq 0$, that is,

\begin{equation}(\mu_1 - \lambda_1)^2 + (\mu_2 - \lambda_2)^2 \neq 0 \text{ for any } t .
\end{equation}

To discuss this condition, we introduce the following concept. Let M, N be two oriented surfaces with unit normal vectors ξ and η, respec-
tively. Let \(x \in M, y \in N, X \in T_x(M), \) and \(Y \in T_y(N). \) We say that \(M \) and \(N \) have the same shape along \(X \) and \(Y \) if there is a linear isometry \(F \) of \(T_x(E^m) \) onto \(T_y(E^m) \) such that

\[
F(\xi) = \eta, \quad F(X) = Y \quad \text{and} \quad F(AX) = B(Y),
\]

where \(A \) and \(B \) are the shape operators of \(M \) and \(N \) relative to \(\xi \) and \(\eta, \) respectively.

Now the third equations of (15) and (16) can be written as

\[
A(dx/dt) = \lambda_1 a_1 + \lambda_2 a_2 \\
B(dy/dt) = \mu_1 b_1 + \mu_2 b_2.
\]

Since \(C_t \) maps \(dx/dt, a_1, a_2 \) upon \(dy/dt, b_1, b_2, \) respectively, the equalities \(\mu_1 = \lambda_1 \) and \(\mu_2 = \lambda_2 \) will mean that \(M \) and \(N \) have the same shape along the vectors \(dx/dt \) and \(dy/dt. \)

In order to find a rolling \(\{ f_t \} \) from the given curve \(x_t \) on \(M, \) we must know how to determine the curve \(y_t \) on \(N. \) This can be done by making use of the development \(z_t \) of \(x_t \) into the tangent plane \(T_{x_0}(M). \)

If we write

(19) \[
dx/dt = k_1 a_1 + k_2 a_2
\]

with suitable functions \(k_1 = k_1(t) \) and \(k_2 = k_2(t), \) then

(20) \[
dy/dt = k_1 b_1 + k_2 b_2
\]

because of (14) and \(C_t(dx/dt) = dy/dt. \)

Let \(e_1 = a_1(0) \) and \(e_2 = a_2(0). \) Since \(a_1(t) \) and \(a_2(t) \) are parallel along the curve \(x_t, \) the development \(z_t \) of \(x_t \) is given by integrating

(21) \[
dx/dt = k_1 e_1 + k_2 e_2.
\]

Similarly, the development of the curve \(y_t \) into the tangent plane \(T_{y_0}(N) = T_{x_0}(M) \) is also given by (21), namely, \(z_t \) is the development of \(y_t. \) This means that \(y_t \) is determined as the unique curve in \(N \) with \(y_0 = x_0 \) whose development into \(T_{y_0}(N) \) is equal to \(z_t. \)

Summarizing the discussions we can state

Theorem 3. Let \(M \) and \(N \) be two orientable surfaces which are tangent to each other at \(x_0. \) Let \(x_t \) be a smooth curve on \(M. \) Then we can find a unique rolling \(\{ f_t \} \) of \(M \) onto \(N \) such that \(y_t = f_t(x_t) \) is the locus of centers of instantaneous rotation provided the following condition is satisfied. Let \(z_t \) be the development of the curve \(x_t \) into the tangent plane \(T_{x_0}(M). \) Let \(y_t \) be the unique curve on \(N \) such that its development into \(T_{y_0}(N) = T_{x_0}(M) \) is \(z_t. \) Take the fields of unit normals \(\xi \) and \(\eta \) for \(M \) and \(N \) such that they coincide at \(x_0 = y_0. \) The condition
to be satisfied is that, for each t, M and N do not have the same shape along the vectors dx/dt and dy/dt (for the chosen normals ξ and η).

We remark that in the case of two spheres tangent to, and outside of, each other, the condition in question is satisfied for an arbitrary curve x_t for the choice of inward normals ξ for one sphere M and outward normals η for the other sphere N.

It is possible to find a number of sufficient conditions under which a rolling (with $S_t \neq 0$) is possible for a given curve x_t. For example,

(i) $A(dx/dt) = 0$ for every t and N has no flat point; for example, x_t is a generator of a cylinder and N is a sphere.

(ii) $A(dx/dt) \neq 0$ for each t and N is a plane.

(iii) dx/dt is not a principal vector at any point and N is umbilical (a plane or a sphere).

A rolling is possible for an arbitrary curve on M if M and N satisfy the following condition:

(iv) the principal curvatures of M are greater than those of N; here we assume that ξ and η are chosen so that $\xi_n = \eta_n$.

If M and N have the same shape along unit vectors X and Y, then we have $\langle AX, X \rangle = \langle BY, Y \rangle$. But $\langle AX, X \rangle$ is greater than or equal to the smaller principal curvature of M at the point and $\langle BY, Y \rangle$ is smaller than or equal to the larger principal curvature of N at the corresponding point. Thus condition (iv) is sufficient.

6. The case of submanifolds. Now let M and N be two n-dimensional submanifolds in an m-dimensional Euclidean space E^m which are tangent to each other at a point x_0. We shall first define the notion of rolling $\{f_t\}$ of M and N.

Let $\{f_t\}$ be a 1-parametric motion of E^m given by (2). Assume that $f_t(M)$ is tangent to N at a point y_t at each instant t. We assume that the instantaneous motion X_t vanishes at y_t (that is, y_t is a center of instantaneous rotation) and that $S_t \neq 0$. We say that $\{f_t\}$ is a rolling if the skew-symmetric transformation S_t maps the tangent space $T_{y_t}(N)$ into the normal space $T_{y_t}^\perp(N)$ and maps $T_{y_t}^\perp(N)$ into $T_{y_t}(N)$, thus,

\[
\langle S_t(X), Y \rangle = 0 \text{ for all } X, Y \in T_{y_t}(N)
\]
\[
\langle S_t(U), V \rangle = 0 \text{ for all } U, V \in T_{y_t}^\perp(N).
\]

This is clearly a generalization of the definition in the case where $n = 2$ and $m = 3$ as well as the case of S^* and its tangent plane.

Suppose that a smooth curve x_t is given on M. We wish to find a rolling $\{f_t\}$ of M on N such that $y_t = f_t(x_t)$ is the locus of centers of
instantaneous rotation. Let \(\{a_i(0), \cdots, a_n(0)\} \) be an orthonormal basis in \(T_{x_0}(M) \) and let \(\{a_{n+1}(0), \cdots, a_m(0)\} \) be an orthonormal basis in the normal space \(T_{x_0}^*(M) \). Let \(a_i(t), 1 \leq i \leq n \), be the tangent vector parallel along \(x_t \) on \(M \) with initial condition \(a_i(0) \); thus

\[
F_t a_i = 0
\]

\[
da_i/dt = \alpha(dx/dt, a_i)
\]

for \(1 \leq i \leq n \), where \(F \) is the Levi-Civita connection of \(M \) and \(\alpha \) denotes the second fundamental form as a bilinear mapping \(T_{x_0}(M) \times T_{x_0}(M) \to T_{x_0}^*(M) \) for each \(x \in M \).

For each \(j, n + 1 \leq j \leq m \), let \(a_j(t) \) be the normal vector field parallel along \(x_t \), with respect to the normal connection of \(M \) with initial vector \(a_j(0) \). Thus

\[
F^\perp_t a_j = 0
\]

\[
da_j/dt = -A_{a_j}(dx/dt)
\]

for \(n + 1 \leq j \leq m \), where \(F^\perp \) denotes covariant differentiation for the normal connection and \(A_{a_j} \) denotes the shape operator corresponding to the normal vector \(a_j \).

Now suppose \(\{f_i\} \) is a rolling given by (2). We define

\[
b_k(t) = C_t(a_k(t))
\]

for \(1 \leq k \leq m \). Since \(f_i(M) \) is tangent to \(N \) at \(y_t \), it follows that \(b_1(t), \cdots, b_n(t) \) are tangent to \(N \) at \(y_t \) and \(b_{n+1}(t), \cdots, b_m(t) \) are normal to \(N \) at \(y_t \).

Let \(1 \leq i \leq n \). Differentiating (25) and using (23) we obtain

\[
db_i/dt = (dC/dt)a_i + C_t(da_i/dt)
\]

\[
= (dC/dt)C_t^{-1}b_i + C_t(\alpha(dx/dt, a_i))
\]

On the other hand, we have

\[
db_i/dt = F_t b_i + \beta(dy/dt, b_i)
\]

where \(F \) is the Levi-Civita connection for \(N \) and \(\beta \) is the second fundamental form \(T_y(N) \times T_y(N) \to T_y^*(N) \) for \(N \). Thus we obtain

\[
S_t(b_i) = F_t b_i + \beta(dy/dt, b_i) - C_t(\alpha(dx/dt, a_i))
\]

By definition of a rolling, \(S_t(b_i) \) is normal to \(N \). Since \(\beta(dy/dt, b_i) \) and \(C_t(\alpha(dx/dt, a_i)) \) are normal to \(N \), we must have

\[
F_t b_i = 0
\]

namely, \(b_i \) is parallel along \(y_t \), and
\(S_t(b_i) = \beta(dy/dt, b_i) - C_t(\alpha(dx/dt, a_i)) \).

Now let \(n + 1 \leq j \leq m \). Differentiating (25) and using (24) we obtain

\[
\frac{db_j}{dt} = (dC/dt)a_j + C_t(da_j/dt) = (dC/dt)C_i^i b_j + C_t(-A_s_j(dx/dt)) .
\]

On the other hand, we have

\[
\frac{db_j}{dt} = -B_{xj}(dy/dt) + V^i b_j ,
\]

where \(B_{xj} \) is the shape operator for \(N \) corresponding to the normal vector \(b_j \) and \(V^i \) is covariant differentiation along \(y_t \) for the normal connection of \(N \). Thus we obtain

\[
S_t(b_j) = C_t(A_{a_j}(dx/dt)) - B_{xj}(dy/dt) + V^i b_j .
\]

Since \(S_t(b_j) \) must be tangent to \(N \) at \(y_t \), we conclude that \(V^i b_j = 0 \), namely, \(b_j \) is \(V^i \)-parallel along the curve \(y_t \). We have also

\[
S_t(b_j) = C_t(A_{a_j}(dx/dt)) - B_{xj}(dy/dt) .
\]

The skew-symmetric transformation \(S_t \) given in the form (26) and (27) can be expressed more conveniently if we adopt the following operators \(\rho \) for \(M \) and \(\tau \) for \(N \).

For each point \(x \) of \(M \), define for each \(X \in T_x(M) \) a linear endomorphism of \(T_x(E^m) = T_x(M) + T_x^t(M) \) by

\[
\rho_x(Y) = \alpha(X, Y) \quad \text{for} \quad Y \in T_x(M) \quad \rho_x(U) = -A_v(X) \quad \text{for} \quad U \in T_x^t(M) .
\]

Then \(\rho_x \) is a skew-symmetric endomorphism of \(T_x(E^m) \). Similarly, for each point \(y \) of \(N \), we define \(\tau_x \), \(X \in T_y(N) \), by

\[
\tau_x(Y) = \beta(X, Y) \quad \text{for} \quad Y \in T_y(N) \quad \tau_x(U) = -B_v(X) \quad \text{for} \quad U \in T_y^t(N) .
\]

With these operators we may write (26) in the form

\[
S_t(b_i) = \tau_t(b_i) - C_t(\rho_t(a_i)) = \tau_t(b_i) - C_t\rho_tC_t^{-1}(b_i) ,
\]

where we write \(\rho_t \) for \(\rho_{dx/dt} \) and \(\tau_t \) for \(\tau_{dy/dt} \) for brevity. From (27) we have

\[
S_t(b_j) = -C_t\rho_t(a_j) + \tau_t(b_j) = \tau_t(b_j) - C_t\rho_tC_t^{-1} .
\]

Thus we may simply write
In order to discuss conditions under which $S_t \neq 0$, we extend the notion of same shape to n-dimensional submanifolds M and N in E^m. Let $X \in T_x(M)$ and $Y \in T_y(N)$. We say that M and N have the same shape along X and Y if there is a linear isometry F of $T_x(E^m)$ onto $T_y(E^m)$ such that

$$F(T_x(M)) = T_y(N), \quad F(T_y(M)) = T_x(N)$$

$$F(X) = Y \quad \text{and} \quad F \circ \rho_x = \tau_y \circ F.$$

From (28) we see that if $S_t = 0$, then $F = C_t$ satisfies these conditions for $X = dx/dt$ and $Y = dy/dt$, namely, M and N have the same shape along X and Y.

We may find a number of sufficient conditions under which a rolling (with $S_t \neq 0$) exists. Recall that the relative nullity space of a submanifold M at x is the subspace of $T_x(M)$ consisting of all $X \in T_x(M)$ with $\rho_x = 0$. Its dimension is called the index of relative nullity. For example, a rolling exists for a curve x_t if

1. dx/dt is in the relative nullity space for every t and N has index of relative nullity 0,
2. dx/dt is not in the relative nullity space for any t and N is a Euclidean n-plane,
3. the sectional curvature of any plane containing the tangent vector dx/dt never vanishes and N is a Euclidean n-plane.

The last case follows from the second because the sectional curvature of any plane containing a vector X with $\rho_x = 0$ must vanish. We also remark that the so-called Veronese variety (the image of S^n by a certain isometric imbedding into E^m, where $m = n(n+3)/2$ has index of relative nullity 0.

We also recall that a non-zero vector $X \in T_x(M)$ is called a principal vector if there is $\xi_t \in T^t_x(M)$ such that $A_t(X) = \langle \xi_t, \xi_t \rangle X$ for all $\xi \in T^t_x(M)$. A rolling exists for a curve x_t on M if

4. dx/dt is not a principal vector for each t and N is an n-plane or an n-sphere.

Let us remark that the Veronese variety mentioned above has no principal vector.

In any case, the relationship between the curve x_t on M and the curve y_t on N is as before. Their developments into $T_{x_0}(M) = T_{y_0}(N)$ coincide.

We now consider the following special case.

Let M be an n-dimensional submanifold in E^m and x_0 a point of M.

As the second submanifold N we take the n-plane $T_{x_0}(M)$. We are going to obtain a kinematic interpretation of the second fundamental form and the normal connection of M.

Let $X \in T_{x_0}(M)$ and take any curve x_t with initial tangent vector X. If we have a rolling $\{f_t\}$ of M onto N determined by x_t, then (28) implies

$$S_0 = -\rho_X.$$

This gives the kinematic interpretation of the second fundamental form α of M at x_0, because ρ determines α completely.

If ξ_t is a field of normal vectors along x_t, we may write

$$\xi_t = \sum_{j=n+1}^{m} q_j(t)a_j,$$

where $a_{n+1}(t), \ldots, a_m(t)$ are F^1-parallel normal vector fields along x_t as before. Then

$$C_1(\xi_t) = \sum_{j=n+1}^{m} q_j(t)b_j$$

and, as we have seen before, each $b_j = C_1(a_j)$ is F^1-parallel along the curve $y_t = f_t(x_t)$. Since N is an n-plane, this means that each b_j is a constant vector in E^n. It follows that ξ_t is F^1-parallel along the curve x_t if and only if $C_1(\xi_t)$ is a constant vector in E^n (that is, each $q_j(t)$ is constant). This is the kinematic interpretation of the normal connection of M.

REFERENCES

DEPARTMENT OF MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, RHODE ISLAND
02912 U.S.A.