Tôhoku Math. Journ. 30 (1978), 575-581.

ON ABSTRACT MEAN ERGODIC THEOREMS

RYOTARO SATO

(Received May 23, 1977)

1. Introduction. In [8] Sine showed an interesting mean ergodic theorem. His theorem states that the ergodic averages $(1/n) \sum_{i=0}^{n-1} T^i$ converge in the strong operator topology if and only if the fixed points of T separate the fixed points of the adjoint operator T^* , T being any linear contraction on a Banach space. Later, this theorem was generalized and extended by Nagel [5] to a bounded right amenable operator semigroup in a Banach space. Another generalization was also done by Lloyd [4]. In the present paper we intend to apply the notion of "ergodicity", given for an operator semigroup in a locally convex topological vector space and originally introduced by Eberlein [3], and obtain abstract mean ergodic theorems which generalize Sine's, Nagel's and Lloyd's ergodic theorems.

2. Definitions and examples. Throughout this paper, E will denote a *complete* locally convex topological vector space (t.v.s.) and \mathfrak{S} a semigroup of continuous linear operators on E. For $x \in E$ we denote by A(x) the affine subspace of E determined by the set $\{Tx: T \in \mathfrak{S}\}$, i.e.,

$$A(x)=\left\{y\colon y=\sum\limits_{i=1}^{n}a_{i}T_{i}x, \ \sum\limits_{i=1}^{n}a_{i}=1, \ T_{i}\in \mathfrak{S}, \ 1\leq n<\infty
ight\}$$
 ,

and by $\overline{A}(x)$ the closure of A(x) in E. Let $(T_{\alpha}, \alpha \in \Lambda)$ be a net of linear operators on E. $(T_{\alpha}, \alpha \in \Lambda)$ is said to be a (weakly) right [resp. (weakly) left] \mathfrak{S} -ergodic net if it satisfies:

(I) For every $x \in E$ and all $\alpha \in \Lambda$, $T_{\alpha}x \in \overline{A}(x)$.

- (II) The transformations T_{α} are equicontinuous.
- (III) For every $x \in E$ and all $T \in \mathfrak{S}$,

(weak-)
$$\lim_{\alpha} T_{\alpha}Tx - T_{\alpha}x = 0$$
 [resp. (weak-) $\lim_{\alpha} TT_{\alpha}x - T_{\alpha}x = 0$].

 \mathfrak{S} is said to be a (weakly) right [resp. (weakly) left] ergodic semigroup (in the sense of Eberlein [3]) if it possesses at least one (weakly) right [resp. (weakly) left] \mathfrak{S} -ergodic net ($T_{\alpha}, \alpha \in \Lambda$). Whenever ($T_{\alpha}, \alpha \in \Lambda$) is a (weakly) right and left both \mathfrak{S} -ergodic net, we call it simply a (weakly) \mathfrak{S} -ergodic net. And if \mathfrak{S} possesses at least one (weakly) \mathfrak{S} -ergodic net $(T_{\alpha}, \alpha \in \Lambda)$, \mathfrak{S} is said to be a *(weakly) ergodic semigroup.* (See also Day [1].) Here we note that our definition of ergodicity is somewhat different from that of Eberlein [3]. Instead of our condition (I), he used the following stronger condition:

(S-I) For every $x \in E$ and all $\alpha \in \Lambda$, $T_{\alpha}x \in \overline{\operatorname{co}} \mathfrak{S}x$, where $\overline{\operatorname{co}} \mathfrak{S}x$ denotes the closed convex hull of the set $\{Tx: T \in \mathfrak{S}\}$.

EXAMPLES. (1) Suppose either (i) $0 \in \mathfrak{S}$ or (ii) $\lambda_i I \in \mathfrak{S}$ (i = 1, 2) with $\lambda_1 \neq \lambda_2$, I being the identity operator. It follows, in either case, that $0 \in \overline{A}(x)$ for every $x \in E$. Thus the sequence $(T_n, n \ge 1)$, defined by $T_n = 0$ for all $n \ge 1$, is an \mathfrak{S} -ergodic net.

(2) Suppose T is a bounded linear operator of spectral radius $r(T) \leq 1$ on a Banach space. If $\sup_{0 < r < 1} ||(1-r) \sum_{n=0}^{\infty} r^n T^n|| < \infty$, then $\mathfrak{S} = \{T^n: n \geq 0\}$ is an ergodic semigroup. In fact, putting $T_r = (1-r) \sum_{n=0}^{\infty} r^n T^n$ (0 < r < 1), we have an \mathfrak{S} -ergodic net $(T_r, 0 < r < 1)$.

(3) Let $C(\mathfrak{S})$ denote the space of all bounded continuous functions on \mathfrak{S} , \mathfrak{S} being equipped with the weak operator topology. It is then easily seen that, for each f in $C(\mathfrak{S})$ and each S in \mathfrak{S} , ${}_{s}f$ and f_{s} are again in $C(\mathfrak{S})$, where ${}_{s}f$ and f_{s} are defined by

$$_{s}f(T) = f(ST)$$
 and $f_{s}(T) = f(TS)$ $(T \in \mathfrak{S})$.

A linear functional μ on $C(\mathfrak{S})$ is said to be a right [resp. left] invariant mean if μ satisfies $||\mu|| = 1 = \langle 1, \mu \rangle$ and $\langle f_s, \mu \rangle = \langle f, \mu \rangle$ [resp. $\langle sf, \mu \rangle = \langle f, \mu \rangle$] for every $S \in \mathfrak{S}$ and all $f \in C(\mathfrak{S})$.

PROPOSITION 1. Suppose \mathfrak{S} is an equicontinuous semigroup of linear operators on E. If there exists a right [resp. left] invariant mean on $C(\mathfrak{S})$, then \mathfrak{S} is a weakly right [resp. weakly left] ergodic semigroup.

PROOF. Let $l_1(\mathfrak{S})$ denote the space of all functions ξ defined on \mathfrak{S} for which the norm is given by

$$\|\xi\|_1 = \sum_{S \in \mathfrak{S}} |\xi(S)| < \infty$$
 .

From Section 10 of Day [2] it follows that if $C(\mathfrak{S})$ has a right [resp. left] invariant mean, then there exists a net $(\xi_{\alpha}, \alpha \in \Lambda)$ of elements in $l_1(\mathfrak{S})$ such that

(i) for every $\alpha \in \Lambda$, $\xi_{\alpha} \ge 0$ on \mathfrak{S} , $\sum_{S \in \mathfrak{T}} \xi_{\alpha}(S) = 1$ and $\{S \in \mathfrak{S} : \xi_{\alpha}(S) > 0\}$ is a finite set,

(ii) for every $f \in C(\mathfrak{S})$ and all $T \in \mathfrak{S}$,

$$\lim_{\alpha}\sum_{S\in\mathfrak{S}}f(S)(\xi_{\alpha}\ast\delta_{T}(S)-\xi_{\alpha}(S))=0 \ [\text{resp.}\lim_{\alpha}\sum_{S\in\mathfrak{S}}f(S)(\delta_{T}\ast\xi_{\alpha}(S)-\xi_{\alpha}(S))=0] \ ,$$

MEAN ERGODIC THEOREMS

where $\xi_{\alpha} * \delta_T$ and $\delta_T * \xi_{\alpha} (\in l_1(\mathfrak{S}))$ are defined by

$$\xi_{\alpha} * \delta_T(S) = \sum_{RT=S} \xi_{\alpha}(R)$$
 and $\delta_T * \xi_{\alpha}(S) = \sum_{TR=S} \xi_{\alpha}(R)$

for all $S \in \mathfrak{S}$.

Let us put $T_{\alpha} = \sum_{S \in \mathfrak{S}} \xi_{\alpha}(S)S$. We shall prove that the net $(T_{\alpha}, \alpha \in \Lambda)$ is a weakly right [resp. weakly left] \mathfrak{S} -ergodic net.

To do this, fix an $x \in E$ and an $x^* \in E^*$ arbitrarily, E^* being the dual space of E, and define a function f on \mathfrak{S} by the relation: $f(S) = \langle Sx, x^* \rangle$ for all $S \in \mathfrak{S}$. Since \mathfrak{S} is equicontinuous, f is a bounded function on \mathfrak{S} , and hence f is in $C(\mathfrak{S})$. It follows that for all $T \in \mathfrak{S}$,

$$\lim_{\alpha} \langle T_{\alpha}Tx - T_{\alpha}x, x^* \rangle = \lim_{\alpha} \sum_{S \in \mathfrak{S}} f(S)(\xi_{\alpha} * \delta_T(S) - \xi_{\alpha}(S))$$

= 0 [resp. $\lim_{\alpha} \langle TT_{\alpha}x - T_{\alpha}x, x^* \rangle = 0$],

and therefore we have weak- $\lim_{\alpha} T_{\alpha}Tx - T_{\alpha}x = 0$ [resp. weak- $\lim_{\alpha} TT_{\alpha}x - T_{\alpha}x = 0$]. Clearly, $(T_{\alpha}, \alpha \in \Lambda)$ satisfies conditions (S-I) and (II). The proof is complete.

3. Abstract mean ergodic theorems.

THEOREM 1. Let E be a complete locally convex t.v.s. and \mathfrak{S} a semigroup of continuous linear operators on E. Suppose $(T_{\alpha}, \alpha \in \Lambda)$ is a weakly right \mathfrak{S} -ergodic net, and define

$$D = \{x \in E: \text{weak-lim}_{\alpha} T_{\alpha}x \text{ exists}\}$$

and

 $T_{\infty}x =$ weak-lim $T_{\alpha}x \qquad (x \in D)$.

Then we have:

(a) D is a closed linear subspace of E such that $TD \subset D$ for all $T \in \mathfrak{S}$.

(b) $T_{\infty}D \subset D$ and T_{∞} is linear and continuous on D.

(c) $T_{\infty}T = T_{\infty}$ on D for all $T \in \mathfrak{S}$.

PROOF. It is easily seen that D is a linear subspace of E. Since $(T_{\alpha}, \alpha \in \Lambda)$ is a weakly right \mathfrak{S} -ergodic net, it follows that $TD \subset D$ and $T_{\infty}T = T_{\infty}$ for all $T \in \mathfrak{S}$. Thus (c) is proved. To see that D is closed, we show that D is complete. Let (x_{β}) be a Cauchy net in D. Since the transformations T_{α} are equicontinuous, $(T_{\infty}x_{\beta})$ is also a Cauchy net in E. Thus if we let

577

R. SATO

$$x=\lim_{eta}x_{eta}$$
 and $y=\lim_{eta}T_{{\scriptscriptstyle \infty}}x_{eta}$,

then, given a weak convex neighborhood U of $0 \in E$, there exists a β_0 such that

$$T_{\infty}x_{\beta_0} - y \in (1/3)U$$
 and $T_{\alpha}(x - x_{\beta_0}) \in (1/3)U$

for all $\alpha \in \Lambda$. Since $T_{\infty}x_{\beta_0} = \text{weak-lim}_{\alpha} T_{\alpha}x_{\beta_0}$, there exists an α_0 such that

$$T_{\alpha} x_{\beta_0} - T_{\infty} x_{\beta_0} \in (1/3) U$$

for all $\alpha \in \Lambda$ with $\alpha > \alpha_0$. Then, for all $\alpha \in \Lambda$ with $\alpha > \alpha_0$, we have

$$egin{array}{ll} T_{lpha}x-y\,=\,T_{lpha}(x-x_{eta_0})\,+\,T_{lpha}x_{eta_0}\,-\,T_{{\scriptscriptstyle \infty}}x_{eta_0}\,+\,T_{{\scriptscriptstyle \infty}}x_{eta_0}\,-\,y\ \in\,(1/3)\,U\,+\,(1/3)\,U\,+\,(1/3)\,U\,=\,U$$
 ,

so that $y = \text{weak-lim}_{\alpha} T_{\alpha}x$ and $x \in D$. Thus (a) is proved. By (a), $T_{\alpha}x \in \overline{A}(x) \subset D$ for all $x \in D$ and all $\alpha \in A$, and this implies that $T_{\infty}D \subset D$. It is easily seen that T_{∞} is linear and continuous on D. The proof is complete.

From now on we shall always assume that $(T_{\alpha}, \alpha \in \Lambda)$ is a weakly right \mathfrak{S} -ergodic net, unless the contrary is explicitly specified. Let $\mathfrak{S}^* = \{T^*: T \in \mathfrak{S}\}$ denote the adjoint semigroup of \mathfrak{S} . Define

$$F = \{x \in E: Tx = x \text{ for all } T \in \mathfrak{S}\}$$
,
 $D(F) = \{x \in D: T_{\infty}x \in F\}$,
 $D(0) = \{x \in D: T_{\infty}x = 0\}$,

and

$$F^* = \{x^* \in E^* : T^*x^* = x^* \text{ for all } T^* \in \mathfrak{S}^*\}$$
.

Then we have

THEOREM 2.

(a) F and D(F) are closed linear subspaces of E such that $F \subset D(F) \subset D$.

(b) $T_{\infty}D(F) \subset D(F)$ and $TD(F) \subset D(F)$ for all $T \in \mathfrak{S}$.

(c) $TT_{\infty} = T_{\infty}T = T_{\infty}$ on D(F) for all $T \in \mathfrak{S}$.

(d) D(0) is the closed linear subspace of E determined by the set $\{x - Tx: x \in E \text{ and } T \in \mathfrak{S}\}.$

(e) $y \in A(x) \cap F$ if and only if $x \in D(F)$ and $y = T_{\infty}x$.

PROOF. Since (a), (b), and (c) are direct from Theorem 1, we omit the details.

To prove (d), we first notice that D(0) is a closed linear subspace

578

MEAN ERGODIC THEOREMS

of *E*. If we denote by *N* the closed linear subspace of *E* determined by the set $\{x - Tx: x \in E \text{ and } T \in \mathfrak{S}\}$, then $N \subset D(0)$, since weak-lim_{α} $T_{\alpha}Tx - T_{\alpha}x = 0$ for every $x \in E$ and all $T \in \mathfrak{S}$. Now suppose $x_0 \in D(0)$. If $x^* \in E^*$ satisfies $\langle y, x^* \rangle = 0$ for all $y \in N$, then $x^* \in F^*$, because $\langle x - Tx, x^* \rangle = 0$ for every $x \in E$ and all $T \in S$. Thus

$$\langle x_{\scriptscriptstyle 0},\,x^*
angle=\langle T_{\scriptscriptstyle \infty}x_{\scriptscriptstyle 0},\,x^*
angle=\langle 0,\,x^*
angle=0$$
 ,

because $T_{\infty}x_0 \in \overline{A}(x_0)$. Hence, by the separation theorem (see, for example, Theorem 3.5 of [6]), $x_0 \in N$. This proves (d).

To prove (e), let $y \in \overline{A}(x) \cap F$. Given a weak convex and balanced neighborhood U of $0 \in E$, there exists a neighborhood V of $0 \in E$ (in the topology originally given in E) such that

$$T_{\alpha}V \subset (1/2)U$$

for all $\alpha \in \Lambda$, since the transformations T_{α} are equicontinuous. Choose $\sum_{i=1}^{n} a_i T_i x \in A(x)$ so that

$$y - \sum_{i=1}^n a_i T_i x \in V$$
.

Since $(T_{\alpha}, \alpha \in \Lambda)$ is a weakly right \mathfrak{S} -ergodic net, then there exists an α_0 such that

$$T_{\alpha}T_{i}x - T_{\alpha}x \in \left(1/2\sum_{i=1}^{n}|a_{i}|\right)U$$

for all $i = 1, \dots, n$ and all $\alpha \in \Lambda$ with $\alpha > \alpha_0$. Then, for all $\alpha \in \Lambda$ with $\alpha > \alpha_0$,

$$egin{array}{lll} y \,-\, T_{lpha} x \,=\, T_{lpha} y \,-\, T_{lpha} x \,\in\, T_{lpha} \Big(\sum\limits_{i=1}^n \,a_i (T_i x \,-\, x) \,\Big) \ &+\, T_{lpha} \,V \,\in\, \sum\limits_{i=1}^n \,a_i \Big(1/2 \sum\limits_{i=1}^n \,|\, a_i \,| \Big) U \,+\, (1/2) \,U \,=\, U \;, \end{array}$$

thus $y = \text{weak-lim}_{\alpha} T_{\alpha} x$ and $x \in D(F)$. The converse implication is obvious. The proof is complete.

THEOREM 3. C is a closed linear subspace of $T_{\infty}D$ and separates F^* if and only if $T_{\infty}D = C$ and D = E.

PROOF. First suppose that C is a closed linear subspace of $T_{\infty}D$ and separates F^* . Write

$$D(C) = \{x \in D: T_{\infty}x \in C\}$$
.

D(C) is a closed linear subspace of D, and thus it is also a closed linear subspace of E. Let $x^* \in E^*$ be such that $\langle x, x^* \rangle = 0$ for all $x \in D(C)$.

Since, by Theorem 2, $x - Tx \in D(0) \subset D(C)$ for every $x \in E$ and all $T \in S$, it follows that $x^* \in F^*$ and hence

$$\langle T_{\infty}x, x^* \rangle = \langle x, x^* \rangle = 0 \qquad (x \in D(C)).$$

Thus $x^* = 0$, because $C = T_{\infty}D(C)$ separates F^* . This and the separation theorem imply that D(C) = E.

Conversely, suppose $T_{\infty}D = C$ and D = E. For an $x^* \in F^*$ with $x^* \neq 0$, choose an $x \in E$ so that $\langle x, x^* \rangle \neq 0$. Then we have

$$\langle T_{\scriptscriptstyle \infty} x$$
, $x^*
angle = \langle x,\, x^*
angle
eq 0$,

which proves that $C = T_{\infty}D$ separates F^* . The proof is complete.

COROLLARY 1. Let E be a complete locally convex t.v.s. and \mathfrak{S} a weakly right ergodic semigroup. Then the following conditions are equivalent:

(a) There exists a (unique) continuous linear operator P on E such that, for every $x \in E$ and all $T \in \mathfrak{S}$,

$$Px \in \overline{A}(x)$$
 and $PT = TP = P^2 = P$.

(b) E is the direct sum of F and N, where N is the closed linear subspace of E determined by the set $\{x - Tx: x \in E \text{ and } T \in \mathfrak{S}\}$.

(c) F separates F^* .

(d) The set $\{x \in E: A(x) \cap F \neq \emptyset\}$ is weakly dense in E.

PROOF. (a) \Rightarrow (d): Obvious.

(d) \Rightarrow (c): For an $x^* \in E^*$ with $x^* \neq 0$, take an $x \in E$ such that $\langle x, x^* \rangle \neq 0$. If $y \in \overline{A}(x) \cap F$ then we have

$$\langle y, x^*
angle = \langle x, x^*
angle
eq 0$$
 .

Hence the implication $(d) \rightarrow (c)$ follows.

(c) \Rightarrow (b): Let $(T_{\alpha}, \alpha \in \Lambda)$ be a weakly right \mathfrak{S} -ergodic net, and define D and T_{∞} as in Theorem 1. It is then clear that $F = T_{\infty}F \subset T_{\infty}D$, therefore if F separates F^* then Theorem 3 implies that $T_{\infty}D = F$ and D = E. Now Theorem 2 implies that $TT_{\infty} = T_{\infty}T = T_{\infty}$ (on E) for all $T \in \mathfrak{S}$. Therefore any $x \in E$ can be written as $x = T_{\infty}x + (x - T_{\infty}x)$, where $T_{\infty}x \in F$ and $x - T_{\infty}x \in D(0) = N$. Clearly $F \cap N = \{0\}$.

(b) \Rightarrow (a): Suppose E is the direct sum of F and N. Then, by Theorem 2, we have D = E. Hence, letting $P = T_{\infty}$ (on E), (a) follows. This completes the proof.

COROLLARY 2. Let E and \mathfrak{S} be as in Corollary 1. Then the following conditions are equivalent:

(a) For every $x \in E$, $0 \in \overline{A}(x)$.

580

- (b) E = N.
- (c) $F^* = \{0\}.$

(d) The set $\{x \in E: 0 \in \overline{A}(x)\}$ is weakly dense in E.

We omit the proof of Corollary 2.

PROPOSITION 2. Let E be a complete locally convex t.v.s. and \mathfrak{S} a semigroup of continuous linear operators on E. Suppose that \mathfrak{S} possesses a weakly left \mathfrak{S} -ergodic net $(T_{\alpha}, \alpha \in \Lambda)$ satisfying condition (S-I). If the set $\{Tx: T \in \mathfrak{S}\}$ is relatively weakly compact in E, then $\overline{A}(x) \cap F \neq \emptyset$.

PROOF. Since E is a complete locally convex t.v.s., Krein's theorem (cf. Theorem IV. 11.4 of [7]) implies that $\overline{\operatorname{co}} \mathfrak{S}x$ is again weakly compact. On the other hand, we have $T(\overline{\operatorname{co}} \mathfrak{S}x) \subset \overline{\operatorname{co}} \mathfrak{S}x$ and weak- $\lim_{\alpha} TT_{\alpha}x - T_{\alpha}x = 0$ for every $T \in \mathfrak{S}$. Thus, it follows from an easy compactness argument that there exists an x in $\overline{\operatorname{co}} \mathfrak{S}x$ which is a fixed point of \mathfrak{S} . This completes the proof.

References

- [1] M. M. DAY, Amenable semigroups, Illinois J. Math., 1 (1957), 509-544.
- M. M. DAY, Semigroups and amenability, Semigroups, (Proc. Symp., Wayne State Univ., Detroit, Mich., 1968), 5-53, Academic Press, Inc., New York, 1969.
- [3] W. F. EBERLEIN, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc., 67 (1949), 217-240.
- [4] S. P. LLOYD, On the mean ergodic theorem of Sine, Proc. Amer. Math. Soc., 56 (1976), 121-126.
- [5] R. J. NAGEL, Mittelergodische Halbgruppen linearer Operatoren, Ann. Inst. Fourier (Grenoble), 23-4 (1973), 75-87.
- [6] W. RUDIN, Functional Analysis, McGraw-Hill Book Co., New York, 1973.
- [7] H. H. SCHAEFER, Topological Vector Spaces, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
- [8] R. SINE, A mean ergodic theorem, Proc. Amer. Math. Soc., 24 (1970), 438-439.

DEPARTMENT OF MATHEMATICS JOSAI UNIVERSITY SAKADO, SAITAMA 350-02 JAPAN