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Introduction. As is well-known, the Gauss map is an excellent
device in classical differential geometry where curves and surfaces in a
Euclidean three-space are studied. The same is true when the Gauss
map is applied to an m-dimensional submanifold in a Euclidean n-space.
In this case the image lies in the Grassmann manifold G(m, n — m) which
is not a sphere nor a projective space if m satisfies 1 <m <n — 1.

Let M be an m-dimensional compact orientable C® submanifold in a
Euclidean n-space E* such that the Gauss map I': M — G(m, n — m) is
regular. We consider only the case 1 <m <n — 1, for, if m =n — 1,
then I' maps every closed hypersurface onto the (» — 1)-sphere, whereas,
if m =1, a simpler method may be available. Nevertheless, one of the
motives of the present study lies in the fact:

Let C be a closed curve with positive curvature in a Euclidean three-
space. Then the Gauss image of C in the standard sphere has the least
length when and only when C lies in a plane.

Assuming the standard Riemannian metric on G(m, n — m), we get
a volume form on I'(M). From the pull back of this volume form to
M we get an integral Vol*(I'(M)). As the Gauss image I'(M) is immersed
in the Grassmann manifold, Vol*(I'(M)) is not always the volume of
I'(M). When M moves smoothly in E*, Vol*(I"(M)) moves in R. Thus we
can consider a submanifold M, which is a critical point of Vol*(I"(M)).
M, is called a Gauss-critical submanifold and is denoted by GCS. As it
is always the case with critical points, there arises the problem of finding
the index. The purpose of the present paper is to prove that a submanifold
M which lies in a linear subspace E™'' as a closed hypersurface with
positive second fundamental form is a GCS whose index is zero.

A theorem related to this result has been obtained by Chern and
Lashof [1], namely,

THEOREM OF CHERN AND LASHOF. Let i: M — E" be an immersion
of an m-dimensional compact manifold M into a Euclidean n-space E".
Then the total absolute curvature t(M, i, E™) is equal to 2 if and only
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if the immersion 1 is an imbedding and tM is a convex hypersurface
wn a linear subspace E™ of E™.

See also N. H. Kuiper [2] for related topics.

In the integral Vol*(/"(M)) and also in the total absolute curvature
the second fundamental form plays an essential role, but the relation
between them is difficult to find. An obvious difference is that Vol*(I"(M))
is defined only when the Gauss map I" is regular in the present study.

In §1 we recall the Gauss map together with some symbols used in
the present paper. Vol*(I'(M)) is defined. In §2 a general formula of
the second variation of Vol*(I'(M)) is given. In §3 we consider an
infinitesimal deformation of a submanifold of E" starting from a closed
hypersurface M, of E™". In §4 the formula of the second variation is
obtained. In §5 an integral inequality on a closed hypersurface of E™*
with positive second fundamental form is obtained and with the use of
this inequality the Main Theorem (Theorem 5.6) is proved.

1. Gauss map and Gauss-critical submanifolds. Let (M, g) be an
m-dimensional closed C* submanifold of E", where ¢ is the Riemannian
metric induced by immersion. Let %, 4, 7, --- =1, ---, n) be the
rectangular coordinates in E* and y*(x, N\, g, --- =1, -+, m) the local
coordinates in any coordinate neighborhood of M such that the immersion
M — E™ is given locally by C* functions

ot =ty e Y

M is assumed to be covered by a set of such coordinate neighborhoods.
We define

(1.1) B* = B} = 0x"/oy*, g.u = 3. BB; .

h

Then g., are the covariant components of the Riemannian metric g. The
contravariant components are g** which satisfy ¢**¢,, =04 (@, B, 7, ++-=
1, ---,m). We use them for lowering and raising the indices in Greek

letters. Let { ;f)\.} be the Christoffel symbols derived from g,; and V, the
symbol of Van der Waerden-Bortolotti’s covariant differentiation. Then

K
1.2) Hg* = V,B! = d,0.0" — { M}am ,

where o0,x" = ox"/oy?, is the second fundamental tensor.
We define

(1.3) Gu = ; H, H™ .
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Then G,; is non-negative and we can define an m-form ® on M whose
local expression is

(1.4) ® = [det (G)]'"dY* A --+ N dy™.

From ®w we define
(L.5) y = S .
M

Now the Grassmann manifold G(m, n — m) is the space of m-planes
IT of E* passing the origin and the Gauss map I" carries a point p of
M into an element I of G(m,n — m) which is an m-plane parallel to M,.
On the other hand the Grassmann manifold bears the standard Riemannian
metric § of K. Leichtweiss [3], [6] and the ratio of any line element in
(M, g) to its Gauss image is given by

[9.udy dy’]'*: [Gudy“dy’]'” .

Thus, if I' is regular, namely det(G.;) >0, @ is the volume form of the
Gauss image [4]. But, as I' is an immersion, v differs in general from
Vol(I'(M)) and is denoted by Vol*(I'(M)).

Let M, be one of such submanifolds and {M(t), t € R} a set of m-
dimensional closed submanifolds such that M(0) = M,. Moreover, we
assume that, if I =[—¢, ¢] for some ¢ > 0, there exists a C* map ¢: M, X
I— E* where o(M,t) = M(t) for tcl. For sufficiently small ¢, I' is
regular for all M(t), —e =<t <¢, and we put v(f) = Vol*(I'(M(¢))). If
t = 0 is a critical point of 7(¢t) for every such set {M(t),tc I}, we say
that M, is a Gauss-critical submanifold and denote it by GCS.

The equation of GCS was obtained in [4]. A submanifold of E*
which lies in a subspace E™™* of E™ as a closed hypersurface with positive
second fundamental form is a GCS. The purpose of the present paper
is to prove that the index is zero for such a submanifold.

2. Second variation of Vol*(I'(M)). If v is the volume form of
(M, g), we get from (1.4) and (1.5)

@.1) v(t) = | [det(G/det(g, )]

for Vol*(I'(M(t))). As, in the second member, G,;, g1, and v depend on
t, in order to get the derivatives dv/dt and d*v/dt* we prefer for the
present the following expression,

2.2) ¥(t) = Sm[det (G.D]dy
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where dy = [det(g,;)]"/*v does not depend on ¢. Notice that we take
coordinate neighborhoods such that p e M, and @(p, t) € M(t) have always
the same local coordinates and the immersion M(t) — E” is expressed
locally by

2.3) =2ty ., Y™ )
From (2.2) we get

a4y _ 0 12
(2.4) L~ SM(” 2 [det (G dy ,

d2’Y . az 1/2
2.5) L .. 2 [det (G,)]dy -
Let us define (G™)* by

(G—l)pana = 51{ .
Then we have
a 1/2 1/2 —1\pa a

(2.6) 2 {det (@)1 = Ldet(GI (G LGy

—az— 12 — i 1/2 -1 ﬁai 5
@7 —det(G]" = ldet(G.)] (@26 ]
1/2 —1\po —1\a, a a
— L{det Gl (GG )2 Grul Gy
+ Lldet (GG YL G
2 ’ ot
If we use vector fields &, " defined by

ox" N

h: ———
¢ at’77 otr '

we get from (1.1) and (1.2)

—‘;’t—Bf = 5,8 = V&, Fat—gm = SBIVE + S BIVE,
i A — __ no Zp__a_ — nh7ALsh AR T 1 Eh
atg“— 9" G = ZhlB Vi ;B veeh,

i{ i } = Z Brhvﬁvash + Z HﬁahVTEh ’
ot Ba 7 r
%Hﬁ“h = Y,V — B S BV, — B S HVE
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where B* = g**B!. We also obtain from (1.3)

(2.8) aitGpa - (; Hy/'VV8 + 5 H V980

- zZ Hﬁai apig”ﬂgpx (zhl BZVZEh + Zh BgV/AEh> ’

62 h h h h )0

(2-9) %Gﬁa = (% Hﬁp Vavav + ; HaP Vﬁvaﬁ >g ?
~ 3\ Hy'H'9"g"(S BV + 3BV,
4 { v

pmeve {7 sl

‘_87 Bo Qaog) h
+s g v e + 32 H v, ng
L% ot % ot

+ | SHMVIE S Ha,,'*vﬁv.,s"]—gt—g"ﬁ

- Z '_a—HﬁoiHaPi + ; Hﬂai_a—HaPi:'g”‘ugpl [% Bl}ivléh

LT ot ot
| 0 0
Bizv h:l . H ”iHa 1,[ an oA o ple
+ 2BV 3 Hy'Hy'| =070 Ay

X [Z BV, &* + ; BE‘V;:E"}
h
— 23 H;,'H,'g"'9" ; V,.EMVEN .

3. A submanifold M, of E™ which lies in E™" as a closed hyper-
surface with positive second fundamental form. Now let us consider
the case where M(0) = M, is imbedded in E" as a closed hypersurface
with positive second fundamental form in a subspace E™™ of E". As
M(t), t # 0, need not be confined to that E™*', the vector fields & and
" are arbitrary for ¢ =0. Let g (X=m+ 2, ---,n) be orthonormal
normal vectors of E™*' which are constant vectors. Let us take a rec-
tangular coordinate system of E™ such that the E™*' under consideration
is given by am™*?* = ... =2 =0 and the components g” of p satisfy .

Ct=... =0"" =0. We also obtain
P X
(3.1) H,* = h,N"

for M, where N* is the unit normal vector field lying in E™*' and h,,
the second fundamental form of M, as a hypersurface of E™*.
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We also get
(3.2) V.N* = —h,*B",
(3.3) Vb = Vb,
and the equation of Gauss,
(3.4) K" = huh, — huh," .

With the use of these equations we want to get formulas for dv/dt and
d*y/dt* at ¢t =0. In the following calculation all quantities are to be
evaluated at ¢ = 0.

Then we get

_a_ v j— h h h ch
(3.5) ~ {Ba} = 3BV, VoEt + o 3NV

(3.6) O H,' = V,V,5" — B S, BIV,V,& — hy B S, NV, .

ot :
We also get from (1.3) and (3.1)
3.7 G = huh®, (G = k4,

where & are defined by k**h;, = 64.
In order to apply Green’s theorem in the subsequent calculation we

rewrite (2.4) and (2.5) in the following form where v is the volume form
of M,

dv
3. 27 -\ Av,
( 8) dt SMo v
d*y
(3.9) L |, Bo.

From (3.7) we get
[det (G,»)/det (g,2)]V* = det (h,7) .

Hence, in view of (2.6), (2.8), and (3.1), we can calculate the integrand
A of (3.8) as follows,

0

_G“
at "

A= % det (b AP,k
— det (h/)k",lcf“[ha” SNV — btk S, B;’V,,E":'
h h

— det (h#‘)[lcf"’ SNV - S BﬁV"S":|
h
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— Vﬁ[det (A S th.,s'*]
~ 3V)ldet (b, )R N'IVE — det (h,2) 3 BV'E' .

But the first term in the last member vanishes on integration by Green’s
theorem. We use the symbol = if two members are equal except such
a divergence term, hence

A = — 3V, [det (h,HkFN*|V " — det (k) >, B*V°E: .
h h
On the other hand we have

V,[det (h.)k*N*|
= det (hA[(kVsh P — BPEVh,ON* + kV,N*] .

Hence we get A = 0 because of (3.2) and (3.3). This proves dv/dt =0
at ¢ = 0 and the following theorem [4].

THEOREM 3.1. A C~ submanifold M, of E™ which lies in a linear
subspace E™*' as a closed hypersurface with positive second fundamental
form is a Gauss-critical submanifold.

REMARK. Our assumption is that the Gauss map of M is regular.
Then it is an inevitable consequence that we consider only the case of
positive second fundamental form. As a consequence there exists the
matrix (k..

4. The second derivative (d*v/dt*), when M, is a hypersurface of an
E™" with positive second fundamental form. We have proved in §3
that (dv/dt), vanishes for the submanifold M, under consideration, and
this implies that the terms of B involving %* do not contribute to the
integral (d*y/dt*),. In order to get an expression for (d*v/dt?), which is
convenient for us in finding the index, we need some lengthy calculation
as is predictable from (2.7), (2.8), (2.9).

We first obtain after some straightforward calculation

(G‘l)“%(;,,a — 2k S NPV, V.2 — 2 3 Bivesh
13 h
T I
1\Bo N\ap
(GG 3 Gﬁa—‘at G,p

S LA A SN LA L
+ K S NV, V.6 S, NV, 8
1 h
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— 2k« 3, NV, Ve S, (BiV,E" + BLV,EY)
i h

+ 3BV S (BEVLE" + BZVsS")J ’
0’ i h
ot?
= [terms involving 7]
U A A

— 2k k' 3 BiB VY £4V, Vo8

— b 3 B,V 3 N

— 4k g Niv,veg %‘, (BiV,&" + ByV,£")

— 2m 3, N'V,§ 3 N'voeh

+ 2 3 (BHVE! + BV 3 (BiV.E" + BVt
~ 23 VEVE

(G =5 Ga

Substituting these formulas into (2.7) we obtain

4.1) B = det (hu‘)|:<kﬁ“ ) thpvagh)z
AW R AT WA
— B 5NV, S NI
R AR A T AL
— I 5 BB,V AV,
— 2 5NV, V.6 S BV
— 2t Zi‘, BiV,V £ ; N*vrgh
.
+(gBve)
+ ; BFivegt %‘. (BiVE" + BiVEh)
—m I NVE SNV — 5 v,,shv«gh] .
If we put
4.2) f=5C8¢ X=m+2-n,
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where XC are as defined in §3, we get
kP k™ D) VRV 64V, VoEr
h
— WS V,,V,,E‘VaV"S"(NiN” + S.CC + B‘"’Bz)
h,% Y X X
= Wl 5 N'V, V8 5 NPT, 9ot
+ K SV VL VN f
X X X
+ kP ™ >, BEB*V,V &V, VEr |
h,i

hence B is reduced to

(4.3) B = det (b )W J* 3, V,V,fV.V'f + B, + B, + B,,
X X
where
(4.4) B, = det (hﬁ)[(kf“" s thﬂvash)‘
I3

— W SNV, S, thov,,eh] ,
(4.5) B, = det (h,f)[—zkﬁ“ 5NV S BV
PN AALDY thrsh} ,
(4.6) B, = det (h,,l)[(; Biveghy
+ 3BV S (BIV.E + BAV)
—m SNV SN S vashv«sh] .
Now in order to prove
(4.7) B, + B, + B, = —det (b)) T V.fVf
we first prove
(4.8) B, =det (h,,‘)[kﬁf S (BUN + BUN(VaEV,V:é" — ViV, ,8)
+(m - DS NVES, N"V"S":I .

The next calculation resembles that carried out in §3, but is a little
more complicated: We get
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—det (b, Dk"k* 3, N°V,V,& %‘, N'V V&
= % V.&ildet (b 2)kPk* N'N"V,V V&
+ Vy(det (b )kPk* N N*)V,V,£*]
and into the second member we.substitute
V:V, V& = V,V,V, &
- VPVpVaEh - (hpathr - hpahpT)VrEh

which is the result of the Ricei identity and the Gauss equation. Again
we get

S V£ det (b, ek N'N*V,V,V
= — 3 det (RAOIFKNN'Y,VEV,7 8
— 33 V,(det (B AR R NNYVEV,V.6

hence
B, = >, V,[det (b (kK= — krk**)N*N*|V £V ,V &

h,i

+ (m — 1) det (b, Z NV &t %‘, Niyeeh |
As we have

Vi[det (h)(kk* — ke k**)NN*™]
= det (b )[(k*kk** — EP°k*k*)V ho,N'N*
— (ke — k*k**)h (B:N* + B!N*)]

in view of (3.2), (3.3), we get (4.8).
Now we can reduce B,+ B, to a formula where only the first derivatives
of &" are contained: We get from (4.5) and (4.8)

B, + B, = det (h;z*)[— >, k(B N* + B*N*)V(V,£V4E")
+n— DS NVES NhVﬂsh]
= 5, V)| det (B OBABN® + BONITEV 8"
+ (m — 1) det (h,}) 3 NV,&' 3, NMV#gh

= det (h,})[(m +1) 5N S NV
- (pEvs)

-5 ngsthvaef] .
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Substituting this result and (4.6) into B, + B, + B, we get
B, + B, + B,

= det (h,})[z NV, 5 N*O
+ S BBV — 3 V.8V |
h,i

and this is equivalent to (4.7).
From (4.3) and (4.7) we get the following lemma.

LEMMA 4.1. Let M, be a C* submanifold of E™ lying in a linear
subspace E™ as a closed hypersurface with positive second fundamental
form. It we consider an infinitesimal deformation of such a submanifold
M, in E", we get for the second derivative of v defined in §1

< >y ) _ S det (h,})l:kﬁ,.k"’ S VY VY — S V. Ve f]v ,
dat® /e My X X X ¥ x X
where v 18 the volume form of (M, 9), h,; is the second fundamental form
of M, as a hypersurface of E™", k** is given by k"*h;, = 64,
f:ZChEh X:m+2;°";n,

h X

C being orthonormal normal vectors of E™ which are constant vectors
X
and & is the vector field of deformation.

5. Index of a Gauss-critical submanifold M,, We first prove the
following theorem.

THEOREM b.1. If (M, g) is a C* closed hypersurface of E™ with
the positive second fundamental form h,,, then the following inequality
holds for any C* function f:

(5.1) | det b9, .79 5F = VfViflv 20,

where v 1s the volume form of (M, g) and k** satisfies k"*h,, = 0.
To prove Theorem 5.1 we need some lemmas.
LEMMA 5.2. Kfk*a;,a., t8 mom-negative for any tensor a,.

PROOF. As h,; is positive, k** is also positive and, if we fix any
point, we can put k** = k6’ where k* > 0 for 8 =1, ---, m. Hence we
get kPkfas,a,, = D, KK (as,) = 0.

LEMMA 5.3.
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|, det AImB LY, £9.5,f — (9,9, o 2 0.
M
Proor. We have in view of Lemma 5.2

k”“k””(VpV,, f— %h,,,,kwv,v,, f)

% (vav,, f— ;nl—ha,,k“vxv,f> >0,

namely,
MoV Y, VYV, f — (kYY) =0 .
Then this lemma is immediately obtained.
LEMMA 5.4.

|, [det (b DRV, V. k09,9, f 10
= | det (b A9, 9009,V + (m — DVSVS o .

Proor. Applying Green’s theorem we get

S,, [det (b )k, V., fkoV,V,f]v
= — | [det (b AIIrV.9,9,9, 10

— | [Videt (b DTV f ¥,V f 10

i

_ g det (R TV o f (Vo VoV, f — Kpps Vi )0
M

— | [Vi(det (D)9 V.9, f 10

|, [det (R V V. f V9. f o
+ | [Vodet 1 AII) V. 9,9 f o
— | [Vs(det (k) V.SV, V. F 1o

+(m—1) Sﬂ[det (V. FVS o .

As we have
V.(det (b AkPke)V,V,f — Vi(det (b k*k?)V,V,f
= V,(det (b, )(k*k** — k**k°?))V,V,f =0,
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we get Lemma 5.4.

As we assume m > 1, hence m — 1 >0, we get from Lemma 5.3
and Lemma 5.4

(5.2) S det (BP0, Vo f Y,V f — VofVef)o = 0 .
M
LEMMA 5.5.
S det (h AV, V. fVVf — oV N, fV, V. f)o = 0 .

Proor. If S* = grig*S,, we have
(Sse — Sap)(S?* — 8¥) = 0,
hence
SpeSi* — SpS¥ = 0.
Lemma 5.5 is proved if we put S;, = k%, V,V,f.

From Lemma 5.5 and inequality (5.2) we get (5.1), hence Theorem
5.1 is proved.

The following Main Theorem is a direct consequence of Theorem 5.1
together with Lemma 4.1.

THEOREM 5.6. If an m-dimensional C* submanifold M of E™ lies
m a linear subspace E™ as a closed hypersurface with the positive
second fundamental form, then the index of M as a critical point of
the integral Vol*(I'(M)) is zero.
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