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Abstract. An odd dimensional real submanifold of a complex analytic
manifold which is an embedded submanifold locally defined by some fixed
number of analytic equations and one differentiable equation is called a quasi-
analytic submanifold. We show that, whenever the ambient manifold is
Kahler and with exact fundamental form, the quasi-analytic submanifolds
have a contact structure which, under some supplementary conditions is
Sasakian. The application of this result to the Brieskorn manifolds gives
the contact structure of Sasaki and Hsu [5].

In [5], S. Sasaki and C. J. Hsu constructed a differential 1-form on the
so-called Brieskorn manifolds and proved, by a laborious computation, that
this form defines a contact structure. In the present note, we shall give
a simpler proof of this fact. Moreover, our proof holds for a larger class
of manifolds. Also, we shall see that, for some of the Brieskorn manifolds,
the respective structure is metric and normal [1]. This is in accordance
with the last remark of [5].

1. Contact structure on some quasi-analytic submanifolds. Let X
be a complex analytic manifold and V an embedded real submanifold.
Suppose that the real dimensions of X and V are respectively 2n and
2/& + 1 (h <̂  n — 1). We shall say that V is a quasi-analytic submanifold
if every point xeV has an open neighborhood U in X, endowed with
local complex cordinates z* (i — 1, ••, n), such that ?7n V is the subset
of U, characterized by a system of independent equations of the form

(1.1) Ftf) - 0, , *V-ι-i(*4) = 0 , F(z\ T) = 0 ,

where Fίf , Fn^h^ are complex analytic functions and F is a real valued
differentiable function on U.

It is easy to see that such a submanifold is a Cauchy-Rieman (C-R)-
manifold (see, for instance, [1]), whence, by a theorem of S. Ianus ([4]
or [1, p. 63]) it carries an induced /-structure (/3 + / = 0), where
rank / = 2h. Moreover, if V is orientable, it is simple to construct
almost contact metric structures on it, related to /.

Next, suppose that X is a (necessarily non-compact) Kahler manifold,
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with metric g, complex structure J (J2 = — Id. = — I) and with the exact
fundamental form

(1.2) Ω = dω ,

where ω is some 1-form on X.
It is known that rank Ω = 2n at every point of X, and using this

fact, we are able to derive

THEOREM 1.1. Let V be a quasi-analytic submanifold of a Kdhler
manifold X which satisfies (1.2), and denote by c: V £ X the canonical
embedding. Then, if either dim V = 1 or dim V ^ 5, and ζ = c*ω Φ 0
at every "point of V, ζ defines a contact structure on V.

PROOF. Consider an arbitrary point xe V and its open neighborhood
U such that Uf]V be defined by (1.1). Next, consider on U the 2-form

(1.3) A = Ω\v (mod. dF, = = dFn_h_t = dF = 0) .

Let us remark that dFlf , dFn-h-lf dF are complex linearly inde-
pendent. In fact, if we had a relation

μλdF, + + μ.^dF*-^ + μdF = 0 ,

where μi and μ are not all zero complex numbers, then we must have
μ Φ 0 and some μiΦ 0 since the contrary assumptions lead to a contradic-
tion. But then, the real form dF is a linear combination of forms of
the type (1, 0), which is impossible.

In this case, we know, by a classical theorem of exterior algebra [3,
I §IV. 17], that

(1.4) Ω\u = A + dF, A Θ, + .. + dFn^t A 0.-*-i + dF A θ ,

valid at every point of U, and where θlf •••, 0n_fc-i, 0 are some complex
valued 1-forms on U.

It is now obvious that rank Ω — 2n implies rank A ^ 2h at every
point of U and, particularly,

rank (c*Ω) = rank (c*dω) = rank idζ) ^ 2h

Sit every point of VΠU. On the other hand, because dim V = 2h + 1,
we must have rank (dζ) ^ 2λ.

Hence, rank (dζ) = 2fe at the arbitrary point x of V.
Next, since ζ ^ 0 on F the theorem is proved for dim V = 1.
Generally, ζ Λ dζΛ - 0 would imply dζ = 0(mod. ζ - 0), i.e., dζ - ζ Λ r,

whence rank(dζ) <; 2, which is impossible if dim V ^ 5, i.e., fe ^ 2.
This ends the proof of the theorem.
Also we can prove
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THEOREM 1.2. Let V be a quasi-analytic submanifold of a Kahler
manifold X which satisfies (1.2). Suppose that at every point of V the
following conditions hold:

(a) ||α>|| = 1 with respect to the metric g; (b) the contravariant vector
field v associated to a) by g is analytic and tangent to the submanifold
V; (c) the vector field Jv is normal to V. Then ζ of Theorem 1.1 is the
contact form of a well defined Sasakian structure on V.

PROOF. We recall that a Sasakian structure on V [1] is a system
(Φ, £, ζ, 7), where ζ defines a contact structure on V, 7 is a Riemann
metric, £ is a vector field, φ is a field of endomorphisms of the tangent
spaces, and the following relations hold

ζ(£) = l , Φ2= - I + ζ ( g > £ ,

(1.5) Ύ(φa, φb) = 7(α, b) - ζ(α)ζ(6) ,

dζ(a, b) = 7(α, φb) ,

-N, + dζ <g> £ = 0 ,

where α, & are arbitrary vector fields on V and

(1.6) Nφ(a, b) = ^2[α, 6] + [0α, 0&] - ^ α , b] - φ[a, φb]

is the Nijenhuis tensor of φ.
In our case, we shall define ζ = c*ω, 7 = c*g, and £ = v\v. The last

definition is possible by hypothesis (b), and we also recall that v is
defined by

(1.7) g(v, u) = ω(u)

for every vector field u on X.
As for φ, we shall take the tensor of the previously mentioned f-

structure of S. Ianus, which may be obtained as follows (in the sequel,
we shall generally identify the tangent vectors to V with their images

by O '
Let 6 be a tangent vector field on V and suppose that Jb is also

tangent to V. Then we shall call 6 a distinguished field. In view of
(1.1), b is then characterized by the relations

(1.8) bFx - = 6F.-*-! = 0 , bF = 0 , (Jb)F = 0 ,

which can be easily seen to define a 2/ι-dimensional distribution D on V,
called the distinguished distribution.

By hypothesis (c), £ is normal to D with respect to 7, because, for
every beD, we have 7(ί, 6) = g(v, b) = ^(/v, J&) = 0.

Hence, every vector field c o n 7 may be uniquely decomposed as



556 I. VAISMAN

(1.9) c = b + Xζ , beD ,

and we define

(1.10) φc = Jb.

Now, we must verify that the relations (1.5) hold on V.
First, ζ(£) = ω(v) = 1 because of the hypothesis a). This also implies

ζ Φ 0, and by Theorem 1.1, ζ defines a contact structure on V with the
eventual exception of the case dim V = 3.

Next, for an arbitrary vector field c on V, we have

ζ(c) - α>(**e) - flr(**£, <*c) = τ(£, c) ,

whence we see that the distinguished vector fields 6 are characterized
by ζ(6) = 0 and it follows that λ of (1.9) is given by λ = ζ(c). By this
remark, and using (1.9) and (1.10) we get

φ*c = - c + ζ(e)ξ ,

which is just the second relation (1.5).
The third and fourth of the relations (1.5) follow by a straight-

forward computation, based on the previous formulas and on the known
relations

g(Ja, Jb) = g{a, b) , Ω(a, b) = g(a, Jb) .

Here we can also note that ζ defines a contact structure in the case
dim V = 3, too. In fact, since ζ vanishes on the distinguished vector
fields only, we have (ζ Λ dζ)(f, b, Jb) Φ 0 for every unit distinguished
vector δ, i.e., ζ Λ dζ Φ 0, which is just the contact condition if dim V = 3.

The verification of the last relation (1.5) is a bit more complicated.
Namely, let us consider two vector fields α, 6 on V and let

<1.11) a = α' + ζ(α)ί , & = 6' + ζ(b)ξ

be the corresponding decomposition (1.9). Then, we must evaluate the
terms of the right-hand side of (1.6) by using (1.11).

The only complication comes from [Φa, b], whose decomposition (1.9)
lias to be calculated. (For [α, Φb] it will be similar.) We have

[φa, b] = [Ja'f b] - [Ja', V] + ζ(&)[Jα', ξ] + (Jα')(ζ(&))f .

Then, dζ(Ja', ξ) = g(Ja', Jζ) = 0 by hypothesis (c) and, by evaluating the
exterior differential, we get ζ([Jα', £]) = 0.

Hence, ζ([0α, 6]) = ζ([Jα', 6']) + (Ja')ζ(b) and the necessary decomposi-
tion is given by

[φa, b] = ([φa, b] - ζ([φa, b])ξ) + ζ([φa, b])ζ .
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Now, a technical calculation, which uses Nj = 0, gives

(1.12) (Nφ + dζ <g> £)(α, 6) = -ζ(a)J(LvJ)(b')

+ ζ(b)J(LυJ)(af) + ζ([Jα', 6'] + [α', Jb'])(Jξ) .

Here, Lυ denotes the Lie derivative, and the first two terms of the
right-hand side vanish because v is analytic (i.e., LVJ = 0). To show that
the last term vanishes too, we have to show that c = [Ja'f &'] + [a', Jb']
is distinguished whenever α', V are such. But, α', V e D clearly imply
that c is tangent to V. Next, from Nj{a\ b') = 0 w e get

Jc - [a', V] - [Jaf, Jb'] ,

which implies that Jc is tangent to V. Hence ceD.
The proof of Theorem 1.2 is thus finished.

2. Application to the Brieskorn manifolds. Let us begin with the
remark that Theorems 1.1 and 1.2 can be applied for X = Cn+ί (we take
n + 1 instead of n for later convenience) with the natural Kahler metric
g defined by

(2.1) ds2 - Σ dz* g) dz* .

Actually, in this case we have

(2.2) Ω = -V^Ί Σ dzι A dzl ,

which is an exact form because Ω = do) with

(2.3) ω = -(V^β) Σ Wdz* - Tdz*) .

It is simple to see that we have

(2.4) INΓ = Σ ^ 4 ,
i=0

and that the contravariant vector field associated to ω is

(2.5) v = — (V^=T/2) Σ [zW/dz') -
i0

which is obviously the real expression of a complex analytic vector field

on Cn+1.

Clearly, Theorems 1.1 and 1.2 now give

COROLLARY 2.1. Let c: V —> Cn+1 be the natural embedding of a quasi-
analytic submanifold V in Cn+1. Then, if V does not contain the origin
and dim V = 1 or dim V ^ 5, the form ζ = c*ω, with ω of (2.3), defines
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a contact structure on V.

COROLLARY 2.2. Let V be a quasi-analytic submanifold of Cn+1, of
an arbitrary odd dimension. If V is contained in the unit sphere
S2n+1czCn+1 and is tangent to the vector field v of (2,5), then ζ above is
the contact structure of a well defined Sasakian structure on V.

In fact, we have ||α>|| = 1 on V, the hypotheses of the corollary are
meaningful because, as it follows easily, v is tangent to S2w+1, and Jv
is normal to S2n+1, hence to V as well. The conclusion follows then by
Theorem 2.

Note that in the particular case V — S2n+1 we get just the standard
Sasakian structure on this sphere.

Now [2, 5], the Brieskorn manifold Σ 2 % - 1 (α), where a = (α0, •••, an)
is a sequence of positive integers, is the real (2n — l)-dimensional sub-
manifold of Cn+1 defined by

(2.6) (z°)α° + + (zn)a* = 0 ,

Σ zΨ = 1
ΐ=0

The importance of this class of manifolds comes from the fact that
it contains all the (2n — l)-dimensional (n ^ 2) homotopy spheres which
are boundaries of compact orientable parallelizable manifolds and which,
generally, are exotic spheres.

We see from (2.6) that every Σ2*1"1 (α) is a quasi-analytic submanifold
of Cn+1, which is contained in the unit sphere S2n+ί, whence it does not
contain the origin. Moreover, if a0 = = αn, Σ271"1 (a) is tangent to
the vector field v of (2.5).

Hence, from corollaries 2.1 and 2.2, we get

PROPOSITION 2.3. The form ζ defines a contact structure on every
Brieskorn manifold Σ274"1 (α). If, moreover, a0 = = an, this is the
contact structure of a well defined Sasakian structure on ^2n~1 (a).

PROOF. For n = 1 or n ^ 3, the first assertion follows from Corollary
2.1 above. For n = 2, we proceed as follows:

Suppose that (with the notation already used) ζ Λ dζ = 0 on X3 (α).
Then dζ = ζ Λ τ and, if we extend τ to a form τ' on Sδ by asking τ' to
be 0 on vectors orthogonal to Σ3(α)> this means that, at every point of
Σ 3 (α), Ω = ω Λ τ' for arguments tangent to Σ 3 (α)

Hence, Ω = ω A τ' + Ψ for arguments tangent to S5, where Ψ is a
quadratic exterior form which vanishes on the three-dimensional tangent
space of Σ 3 (α). It follows that rank Ψ — 2 on S5 and we must have
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Ψ — θx A θ2 for some independent 1-forms θίf θ2. Moreover, since, clearly,
rank Ω = 4 on S5, the forms ω, τ\ θlf θ2 must be linearly independent
on S5.

On the other hand, it follows from (2.2) and (2.5) that Ω(v, x) = 0
for every vector x tangent to S5 and, since ω{v) φ 0, this contradicts
the established relation

(2.7) Ω = ω A τ' + θx A θ2 (on S5) .

Indeed, taking x such that τ'(x) Φ 0 while ω(x) = θx{x) = Θ2(x) — 0, we
get

(2.8) Ω(y, x) = ω(y)τ\x) Φ 0 .

The contradiction proves ζ Λ dζ Φ 0, whence our assertion.
Finally, the last assertion of Proposition 2.3 follows by Corollary 2.2.
The contact form ζ is, up to the sign, just the contact form of

Sasaki and Hsu [5], which proves the assertions of our introduction.

FINAL REMARKS. K. Abe and J. Erbacher (Non-regular contact
structures on Brieskorn manifolds, Bull. Amer. Math. Soc, 81 (1975),
407-409) gave the result of Theorem 1.1 for a particular class of
manifolds, which are submanifolds of S2n+1 and which include the
Brieskorn manifolds. We also note that, as a matter of fact, Theorem
1.1 is easily seen to hold for the more general case of the quasi-analytic
submanifolds of the Hermitian manifolds whose fundamental form is of
the type Ω = dω — τf A (*), where ω and TET are some 1-forms on the
manifold (ω will play the same role as in Theorem 1.1). Such are, for
instance the Hopf manifolds as well as all the locally conformal Kahler
manifolds which are compact and have vanishing second Betti number.
(See our papers, On locally conformal almost Kahler manifolds, Israel J.
of Math., 24 (1976), 338-351 and Remarkable operators and commutation
formulas on locally conformal Kahler manifolds—to appear—for the
corresponding definitions.)
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