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1. Introduction. There is a well known theorem of Chevalley [1]
describing the ring of polynomial invariants of the Weyl group W of a
complex simple Lie algebra g. Briefly the situation is this: Let the
rank of g be I and let A be the root system of g with respect to some
Car tan subalgebra. Then Δ spans an I dimensional real vector space RΔ
on which W acts as a finite linear group. By extension of the transpose
action, W acts on the symmetric algebra £f of the dual space RΔ*.
Chevalley's theorem says that the ring of ΫF-invariant elements of £f
is generated by I algebraically independent homogeneous polynomials.
The unique one of degree 2 is the quadratic form ψ on RΔ which is
due to the Killing form on g.

Initially we began to consider how the situation would change when
A was an infinite root system defined by a non-singular symmetrizable
Car tan matrix of non-finite type. The set-up is much the same, with ψ
an indefinite quadratic form and W an infinite group acting in RΔ. The
conclusions, however, are quite different, being of the form that Ϋ by
itself generates the entire ring of invariants. Moreover it became clear
that this type of result held in a considerably more general situation.
If we recall that the integral span ZΔ of Δ is a lattice in RΔ, then W is
a subgroup of the group O(ZΔ) of all isometries of ZΔ with respect to ψ.

Suppose now that L is a lattice in a rational vector space V equipped
with a non-degenerate indefinite quadratic form ψ. The type of result
we obtain is that for all suitable subgroups G of the isometry group
O(L) of L, the ring of G-invariant polynomials on V is precisely Q[ψ].
For example, this is true if dim V ^ 3 and G is any subgroup of finite
index in O(L) (Theorem 4.1). It is also true for a wide class of Weyl
groups of infinite root systems, including all the hyperbolic root systems
(Theorems 5.1 and 5.2) and we conjecture that it is in fact true for all
Weyl groups arising from non-singular Cartan matrices of non-finite
type.

At the center of the argument lies the celebrated theorem of Thue

This work has been assisted by the support of the National Research Council of Canada.



526 R. V. MOODY

that if f(x, y) is an irreducible integral binary form of degree ^ 3 then
for any meZ the Diophantine equation f(x, y) = m has at most a finite
number of solutions [4]. This explains why the results are statements
about rational invariants, though it is clear this is not a restriction:
that is, if K is any extension of Q and Vκ = K<&Q V then any subgroup
G of O(L) is canonically a subgroup of isometries on Vκ with respect to
the canonical extension of ψ to Vκ, and if the rational invariants of G
on V are Q[ψ] then the ring of G-invariant polynomials on Vκ is K[ψ].

The main theorem from which everything else follows is Theorem
3.1. Its statement is full of the inductive hypotheses necessary to
increase the dimension beyond 2 which is the domain of Thue's theorem.
The essential content of sections 4 and 5, which are devoted to applying
Theorem 3.1 to orthogonal and Weyl groups, is the establishment of
suitable chains of subspaces satisfying these inductive hypotheses.

As usual it is my pleasure to thank Professor Stephen Berman for
the valuable and pleasant conversations which contributed to this work.

2. Background and Notation. Let V be a finite-dimensional vector
space over the rational numbers Q. By a lattice in V we shall mean a
free abelian subgroup L of (V, +) whose rank is the dimension of V.
If X is a subset of V, [X] denotes its rational span. If ψ:V->Q is a
quadratic form on V we shall also denote by ψ the corresponding
bilinear form (so that ψ(v, w) = (ψ(v + w) — ψ(v) — ψ(w))/2) and all the
restrictions of ψ to various subsets of V. We say that the signature
of ψ is (p, q, ri) if there is an orthogonal basis vl9 -—,vι of R®QV
such that p + q + n = I and ψ(vt) = 1 if i ^ p, ψ(vt) = — 1 if p < i ^
p + q and ψ(Vi) = 0 if i > p + q. ψ is indefinite if pg ^ 0 . If ex, , ^
is a base for L over Z then the discriminant of L is disc L = det (ψ(eif e, )).
For a subset X of V, O(X) denotes the group of isometries g of V with
respect to ψ for which Xg = X. Thus O(F) is the entire orthogonal
group. If L is a lattice in V then O(L) = {# eO(V)\Lg - L} =
{̂  e O(V) \Lg £ L} since det g = ± 1 .

Let L be a lattice in V and set 6^{V) and £^(L) to be the symmetric
algebras of F and L over Q and Z respectively. Then £f(V) = Q ®z Sf(L).
fe£f(L) is primitive if for all meZ with m > 1, f <£m<9*(L). If / e
£f(L) permits a factorization over S^(V) then it permits one over *9*(L)>
and if / = gh with #, h e S^(L) then / is primitive if and only if g and
h are primitive.

With V and L as above, let F* and L* be the rational and Z dual
spaces of V and L respectively. Then L* is a lattice in V*. Let 6^ =

and £fL = ^ ( L * ) which we may view as Q and Z valued func-
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tions on V and L respectively. £f is the ring of rational polynomial
functions on V. If gsql(V) is any endomorphism of V, then its
transpose on F* permits an extension to an algebra homomorphism of
S< We use the symbol g throughout, though we will use right action
on V and left action on Sf. If g stabilizes L then g will stabilize &*L.
If G is a subgroup of GL(V) then feS^ is a G-invariant if for all
geG, g-f=f. Let ψ be a quadratic form on V. Then ψ* is an O(V)-
invariant in £fm We say that a subgroup F of a group G is cofinite in
G if the index [(?: î 7] of F in G is finite.

For background on infinite root systems and their Weyl groups one
may refer to [2]. In order to establish the notation and context we will
provide the barest outlines here.

Let (AiS) be an I x I indecomposable symmetrizable Cartain matrix
with symmetrizing matrix diagfo, •• ,ε j , where the eteN. The root
system Δ (which is said to have rank V) corresponding to (Atί) lies in a
free abelian group ZΔ of rank I generated by I fundamental roots
a19 ••-,«!. The Weyl group W is the subgroup of GL(ZΔ) generated
by the involutions rά j = 1, , I defined through α tr5 = at — Atias i =
1, •••, I. W acts as a group of isometries with respect to the bilinear
form ψ defined by ψ(au aά) — Aίόεό. W and ψ naturally extend to actions
on the rational space Q (g)z ZΔ.

(Aiά) is of finite type if (Aίά) is the Cartan matrix of a finite dimen-
sional semi-simple Lie algebra g over C. {Aiβ) is Euclidean if it is
singular and for all non-empty proper subsets S of {1, , 1} the sub-
matrix As = (Ai^tjes is of finite type. (Aiά) is hyperbolic if it is non-
singular and all the submatrices As are of finite or Euclidean type.

3. The Main Theorem. Let Y be a rational vector space of finite
dimension m and let f be a quadratic form on Y. Let K be a lattice in
Y and H a subgroup of the lattice-preserving elements of the orthogonal
group of Y. The quadruple (Y, K, ψ, H) satisfies the hypotheses (H) if

(a) ψ is non-degenerate and indefinite;
(b) H is infinite and acts irreducibly on Y.

THEOREM 1. Let (V, L, ψ, G) be a quadruple as above with dim V —
I ^ 2. Suppose that there is a chain of quadruples (Vi9 Lίf ψίf G<) i = I,
I — 1, , 2 such that

(i) γι = F D F ^ D O ^ , dimF, = i;
( ϋ ) ψt = ψ and ψi = φ\Vi, Lx = L and LtQLi+1 Π Vif Gt = G and

Gt is a subgroup of {g e G ΐ + 1 | L ^ £ Lt} for i < I;
(iii) βαcfe quadruple (Vif Li9 ψif Gt) satisfies the hypotheses (H).
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Then for every subgroup F of finite index in G the complete ring
of F-invariant polynomials on V is the ring Q[ψ] generated by ψ.

We will precede the proof of this result with two partial results
which do not involve the inductive hypotheses of the statement of the
theorem. The second of these results is in fact the crux of the whole
matter.

With the notation of the theorem, what we have to prove is that
if fe£f and / is F-invariant, then feQ[ψ\. Now it is clear that we
only have to deal with homogeneous / and we may scale / to be primi-
tive in S^. Write / as a product of irreducible factors each of which
is primitive in ,ζfL — say / = pγ pr. Then F must permute the set
{±plf •••, ±pr} and so the stabilizer of each pt is a subgroup Ft which
is cofinite in F, hence G. This shows that it is enough to establish that
for F a cofinite subgroup of G and / an irreducible primitive homogene-
ous F-invariant polynomial of S^L, feQ[ψ],

THEOREM 2. Let (V, L, ψ, G) be a quadruple satisfying (H). Then
for F a cofinite subgroup of G there are no F-invariant homogeneous
polynomials of degree 1 on V.

PROOF. Let / e SfL be an F-invariant homogeneous polynomial of
degree 1. The hyperplane X = [v e V\f(v) = 0} is F-invariant and hence
so is the line XL. Since [G: F] < oo, (Xλ)G is a finite set of lines
Xl9 , Xs and it generates a G-invariant subspace of V, and hence V
itself. Let Fo be the subgroup of F fixing each of these lines
([F: Fo] < oo), and let the notation be chosen so that V = Xγ 0 0 Xx.
Let Xt = [Xi] and let f(xt) = ateQ. Fix an i for which at Φ 0. The
equation f(xtg) = f(xx) together with Xtg = Xt for all g e Fo implies xi is
fixed by Fo. Then xtG is a finite G-stable set spanning V, and so G is
finite, contrary to hypothesis.

THEOREM 3. Let (V, L, φ, G) be a quadruple satisfying (H) and
suppose dim V = 2. Then for F any cofinite subgroup of G the ring
of F-invariant polynomials on V is Q[ψ].

PROOF. Let / be an irreducible F-invariant polynomial of degree 2
in S^L and let vίf v2 be a basis of V. Then for x = xxvλ + x2v2, f(x) =
Ax\ + Bxxx2 + Cxi and ψ(x) = ax\ + bxtx2 + cx\. The coefficient a is not 0
for otherwise ψ would be reducible and its linear factors would contradict
Theorem 2. However / — (Afa)ψ is F-invariant and reducible and so by
Theorem 2 is 0. Thus feQ[ψ].

If / is irreducible of degree 3 or higher, then let veL, v Φ 0, and
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let f{v) = meZ. The set vG is infinite and hence so is vF. But for all
g 6 F f{vg) = (gf)(v) = /(v) = m, contradicting Thue's theorem.

PROOF OF THEOREM 1. We may assume that dim V = I ^ 3. Let /
be an irreducible homogeneous ^-invariant polynomial of degree N. We
use induction on I and N.

Using the subspace V^ of the hypotheses of the theorem, V =
Vi-i ± [v]. Let eί9 •••, ex-x be a basis for Vx^ and let the general point
x e V be Σί"ί &,*, + zv. Then /(a?) = ΣJUfi{X)zN~i where /,(X) is a poly-
nomial of degree i in xlf •• ,# z_ 1. Let JF7,^ = JP1 Π GΪ-I Then
[Gί-ji JPJ-J < oo and stabilizes Vι-1 and hence [v]. Since (v, v) ^ 0,
vg = ±v for all geF^, and so the stabilizer of v in J F ^ is jPJ_l of
index at most 2 in F^. For geF[_ίf g-f(x) = ^gfi{X)zN~\ implying
9ft = Λ and so /< 6 Qtψi-J and is of even degree. Thus f(X, z) =
Σ^i 2 ] <Ljψ ί-i(X )zN~2j, dj eQ. UN is odd or aίN/iΊ = 0, » is a factor and
/ is reducible. Thus N = 2M and aM Φ 0.

Now ψ((X, »)) = ^_1(X) + (v, v)^2. Consequently, f(X, z)-aMψ{{X, z))M

is i^-invariant and has a factor of z2 throughout. It then lies in Q[ψ]
and this proves the theorem.

4. Orthogonal Groups of Lattices.

THEOREM 1. Let V be a finite dimensional vector space over Q, L
a lattice in V, and ψ a non-degenerate indefinite quadratic form on
V. If dim V ^ 3 or dim V = 2 and |disc L\ is not a rational square,
then for all cofinite subgroups F of O(L) the ring of F-invariant
rational polynomial functions on V is precisely Q[ψ\.

To prove this it is sufficient to find a descending chain of quadruples
as in Theorem 3.1 with (V, L, ψ, O(L)) at the top. We achieve this
through the sequence of lemmas below. The essential feature is to show
that O(L) is rich enough, and it is the two dimensional case once again
which lies at the bottom of the argument. Throughout, V is a finite
dimensional rational space, L is a lattice in Vf and ψ is a non-degenerate
quadratic form on V.

LEMMA 1. Let L° denote {xe V\for all y eL, ψ(x, y)eZ}. Then L°
is a lattice in V and (L°)° = L. If f(L, L) £ Z then L° 2 L and [L°: L]
is finite.

P R O O F . If {xlf •••,&»} is a base for L then the dual {x°lf •••,»!}

defined by ψ(x°ίf xj) = δi3- is a base for L°.

LEMMA 2. Let L', L be lattices in V with U £ L and ψ{Lf L) Q Z.
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Then L ' ° 2 L 2 L\ O(L') = O(L'°), and the stabilizer of L in 0{Π) is
cofinite in O(L').

PROOF. For geO(L'), for yeL'°, and for all xeL', we have
ΉXf yg) = ΨiΦ1, V) e Z, so yg 6 L'°. Thus O(L') S O(Z/°). Similarly
O(L'°) S O(L'). It is clear that L ' ° 2 L 2 ZΛ Since O(L') stabilizes L'°
and 2/ it must permute the finite number of subgroups lying between
them, and so the stabilizer of L in O(U) is cofinite.

LEMMA 3. Let L = Zx + Zy be a lattice in V — Qxξ&Qy and
suppose that ψ{x, x) = A, ψ(y, y) = —B, ψ(x, y) = 0, where A, BeN and
AB is not a square. Then 0{L) is infinite and contains a cyclic group
(a) such that for all keZ, k Φ 0, xσk = ckx + dky, yσk = ckx + d'ky, where
ck, dk, ck, d[ e Z and ckdk Φ 0, ckd'k Φ 0.

PROOF. The set (BIA)QX2 n N has a least element D. Let D = Bk2/Al2

where k,leN, (fc, ί) = 1. Let iΓ_= Z + Zi/27 and let Lx = Zlx + Z&j/ C L.
K is a quadratic lattice in Q(i/D) with respect to the norm N of this
field, and the mapping Φ\K-*LY defined by I n t o , Λ/D \-^ky is an
isometry from (K, N) onto (L19 (Aί2)"1^). It is well known that the
group of units of the ring / of integers of Q(i/D) possesses an infinite
cyclic subgroup and this is a group of isometries of the ring of integers
treated as a quadratic lattice with respect to N. Since 2I(zKaI, the
stabilizer of K in this cyclic group is cofinite and so again is infinite
cyclic. From this we see that in turn (K, N), (Llf (Al2)~ιψ), (Llf ψ) and
(L, ψ) (last lemma) have isometries of infinite order.

The last statement is obvious since an isometry of V cannot stabilize
[x] or [y] without being of finite order.

LEMMA 4. Let a, b, c eZ with abc Φ 0. Then there are arbitrarily
large deN such that d2a + b and c lie in different square classes in Z.

PROOF. Suppose the lemma is false and that for all large d, d2a +
b = (p(d)/q(d))2c where p(d),q(d)eN and (p(d), q(d)) = 1. Then q{d)\c.
Let P be the product of all the positive divisors of c. Then P2d2a/c +
P2b/c = p(d)2P2/q(d)2. Let a' = P2a/cf V = P2b/cf and s(d) = p(d)P/q(d)f all

of which are integers. We have d2a' + b' = s(d)2 for all large d. Choose
an odd prime p so that p \ b' and a' is a quadratic residue modulo p [3,
p. 55]. Then as d runs through Z, d2af + pZ runs through the squares
of ZjpZ, as does {d2af + b') + pZ. Thus the squares of Z\pZ are closed
by addition of V + pZ, which is impossible since p \ b'.

LEMMA 5. Let U be a subspace of V such that ψ is non-degenerate
on U. Let ψ(L, L) Q Z and let Lσ be a lattice of U lying in L Π U.
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Let Gu be a subgroup of O(Lσ). Then there is a cofinite subgroup G'σ
of Gπ which consists of restrictions of elements of O(L) to Lσ.

PROOF. Write 1/ = Lσ l (Lσ ΠL). L' is a lattice in V and U £
L £ Z/°. For σ e GUf let σ = σ _l_ 1 be its extension an element of 0{Lf)
according to the orthogonal splitting above. We know that [O(L')ι 0{U) n
O(L)] is finite and so the preimage S of O(V) Π O(L) in Gσ under ~ is
a cofinite subgroup of G .̂ This is the group we want.

LEMMA 6. Let Ux c U2 c c Uk = V be a chain of non-degenerate
ψ subspaces of V and suppose L1 c L2 c c Lk are lattices in these
spaces. Suppose ψ(Lkf Lk) £ Z. Let τ e 0{L^) have infinite order. Then
there is an meN such that for all i = 1, 2, , k, τm is the restriction
to Lx of an element of

PROOF. Use Lemma 5 k — 1 times.

LEMMA 7. Let dim V — I > 2 and let L be a lattice in V. Let ψ
be a non-degenerate indefinite quadratic form on V such that
<f(L, L) Q Z. Then there is a subspace U of V with dim U = I — 1
such that ψ on U is non-degenerate and indefinite; and a lattice Lσ of
U such that Lσ Q L Π U and if I — 1 = 2, [disc Lσ\ is not a square.

PROOF. Let {v19 •••, vt] be an orthogonal basis of V with vteL for
each i. Let ψ{vx) = ateZ and choose the indexing so that α* > 0 if
i <: m and at < 0 if i > m. By assumption 1 <; m < I. Either m > 1 or
I — m > 1. We may assume without loss of generality that m > 1.
Then there is a c e N such that c2aι + a2 is not in the square class of
|α,| and c2a1 + α2 > 0. The quadratic space ([c^ + v2, ^ ] , ψ) is indefinite
and contains L1 = Z ^ ^ + v2) + ίΓ^ c L whose discriminant has absolute
value (c2αx + <x2) l<xz[, which is not a square. Set L^ = Z(cvί + v2) +
Zvd + + Zv,.

LEMMA 8. Lei (U, ψ*) 6e α non-degenerate indefinite quadratic space
and L a lattice in U. Suppose that if dim U = 2 £/&ew |disc L| is woί α
square. Let X be any subspace of U such that X^(0), U. Then there
is an element of infinite order in O(L) none of whose positive powers
leave X-invariant.

PROOF. If dim U = 2 then U has no non-zero isotropic vectors. No
isometry can stabilize a non-isotropic line in a plane without being of
finite order. By Lemma 3 there is an isometry of U which has infinite
order, and this will do.

If dim U > 2 we consider two cases.
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X is non-singular. Replacing X by X1 if necessary, we may have
dim X = m ^ 2. Let {uίf , um) be an orthogonal basis of X in X Π L
and let {t6m+1, •• ,iej be an orthogonal basis for X1 in X1 Π L. Let

.) = αf. There is an i <, m and a j > m for which α ^ < 0, say
< 0. Choose c e N so that c2αx + α2 has the same sign as aι and

\(c2a1 + α2)αi| is not a square. Then with Lx = Z(c2at + α2) + Zalf 0^^
has an element σ of infinite order. Then after Lemma 5, for some
fceiV, σk is the restriction to Lx of some element τ of O(L). None of
the powers of τ can leave Lx Π X = Zζc8^ + α2) invariant.

X is singular. X (Ί X1 is non-trivial and evidently is invariant by
any isometry leaving X invariant. Thus it suffices to assume that X is
totally isotropic. Let ueXΠ L and choose v eL so that ψ(v) = 0 and
[u, v] is a hyperbolic plane. Let ψ(u, v) = α, which we can assume to
be in N. Let w be chosen in [u, v]1 f] L with ψ(w) = b Φ 0. Let a? =
u + v, y — u — v and choose c € JV so that 2αc2 + 6 is positive and in a
different square class than 2α. Let Lx = Z(cx + w) + Zy and L̂  = [LJ.
i/r is non-degenerate on Ux and |discLJ = (2αc2 + 6)|— 2α| which is not a
square. Thus OfX^ contains an element τ of infinite order. Let L2 =
Zcx + Z ^ + Ẑ / and U2 = [L2]. ψ is non-degenerate on U2 and U2 Π
X = [u] since dim U2 = 3 and Jf is totally isotropic. By Lemma 6, for
suitable meN, τm is the restriction to Ux of isometries in O(L2) and

Now write u •= uι Λ- u2 where u± e Z7X and w2 e ί72 Π Ut Then if X
were invariant by some power σ of τm, <7 would leave invariant the lines
[u] and [u2] (=U2f]Ut) and so [%J. This is impossible by the same
argument that began the proof of the lemma.

PROOF OF THEOREM 4.1. Using Lemma 7 we can construct a descend-
ing chain of subspaces Vt = Vz> Fz_! Z) z> V2 with dim Vt = i and
lattices Li Z)Lι-XZ) IDL2 in the Vt with Lx = mL for some meN,
such that ^(1^, -̂ i) C ^ for each i, α/r is non-degenerate and indefinite
on each Lt and [disc L2| is not a square. Let Gz = O(Lt) = O(L) and set

G, = {geGt+ί\(Li)gQLt] f o r ΐ = Z — 1, Z — 2, -- , 2 .

Then using Lemmas 8 and 6 we see that for each i, Ĝ  is infinite and
acts irreducibly on Vt. The hypotheses of Theorem 3.1 now apply to
the chain (Vif Lίf ψ, Gt) thus proving our theorem.

REMARKS. The conclusions of this theorem are not true if ψ is de-
finite or if dim V = 2 and [disc L\ is a square, even if we restrict our-
selves to O(L)-invariants. For example if L is the lattice generated by
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a root system of type Bt (I ^ 2) then 0{L) is the corresponding Weyl
group and Chevalley's theorem shows that there are I algebraically in-
dependent invariants. If dim V = 2 and |disc L\ is a square then L has
two isotropic lines and O(L) in an elementary 2-group of order 4. The
ring of O(L)-invariants may be identified with the ring of symmetric
polynomials whose homogeneous components have even degree, which is
a polynomial ring in two variables.

5. Applications to Weyl Groups. The notation in this section is
the same as that in [2], All the basic results to which we refer are
also to be found there.

THEOREM 1. Let (AiS) be an indecomposable symmetrizable I x I
Cartan matrix whose associated quadratic form ψ is of signature
(I — 1, 1, 0). Let Δ be the associated root system with a base alf •••, ax

spanning the rational space QΔ. Let W be the associated Weyl group
with its natural action on QΔ. Let F be a subgroup of finite index in
W. Then the ring of F-invariant polynomial functions on QΔ is Q[ψ].

The whole thing depends on the construction of a suitable chain of
the sort hypothesized in Theorem 3.1. We carry this out by constructing
symmetrizable indefinite root systems of decreasing rank.

Let Δ be a root system of rank I, with Weyl group W, and associated
quadratic form ψ. Suppose that ylf ---,ykeΔB with ψ(yίf y5) <: 0 for all
i Φ j . Then the kxk m a t r i x B defined by Bu = 2ψ(yif Ύj)/ψ(Ύjf 7S) is a

Cartan matrix. If B is non-singular then the root system ΔB defined by
B is actually embedded in Δ with ylf •••, Ύk playing the role of a base.
Furthermore the embedding is isometric in the sense that the form on
the rational span QΔB of ΔB is precisely that induced on it from QΔ by
restriction. The subgroup of W generated by {rr.\i = 1, , k} is
isomorphic in the obvious way to the Weyl group WB of ΔB.

Now suppose that k = I — 1 and B is non-degenerate and indefinite.
Let ZΔB = ZTi + + Zyk and let <fB be the quadratic form for ΔB.
Then the quadruple (QΔB, ZΔB9 ψB, WB) satisfies the hypotheses (H) (see
Lemma 1 below). In addition ZΔB £ ZΔ Π QΔBf fB = ψ\ZjB, and WB £
{weW\(ZΔB)w £ ZΔB], which is the requirement of Theorem 3.1. The
Lemmas 2 and 3 show that if I ^ 3 it is always possible to construct
such a set {ylf •••, T ^ J .

LEMMA 1. Let (Aί5) be any indecomposable symmetrizable Cartan
matrix and let the notation be as in Theorem 5.1. Then W acts
irreducibly on QΔ.

PROOF. Suppose (0)aU(zQΔ were a TΓ-invariant subspace of QΔ.
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Then for all u e U and base elements at we have urt = u —
2(ψ(u, a^lψiau cct))at e U and so either ψ(u, a%) = 0 or at e U. Thus each
root at lies in U or in UL and since neither is QΔ, neither contains the
entire base. This contradicts the indecomposability of (AiS) and proves
the lemma.

REMARK. Let V be a real quadratic space with signature (Z — 1, 1, 0).

Then any subspace of V is of signature (k — 1, 1, 0), (fc, 0, 0) or

(fc - 1, 0,1).

LEMMA 2. Let {Ai5) be an indecomposable symmetrizable Cartan
matrix of signature (I — 1, 1, 0). Then either there is an indecomposable
subset of fundamental roots which is of type (I — 2, 1, 0) or (A£J ) is
hyperbolic.

PROOF. Suppose (Aίό) is not hyperbolic. Then there is a subset of
I — 1 base roots, at least one of whose indecomposable components is
neither finite nor Euclidean. Let such a component be alf , ak. Then
by the remark above, it spans a space of signature (k — 1, 1, 0). Build
a19 "-,cck up step by step to an indecomposable system of rank I — 1.
At each step it remains indefinite and so the final result has signature
(Z — 2, 1, 0). This proves the lemma.

LEMMA 3. Let (AiS) be hyperbolic of rank I > 2. Then there is a
subroot system of rank I — 1 and signature (I — 2, 1, 0).

P R O O F . Suppose w e can find a r o o t βeJf a n d a n i e { l , •••, 1} s u c h
t h a t

( 1 ) ψ(βfβ)<0,
(2) the αΓroot string β — kaiy , β, , β + mat terminates in

real roots.

Then let λ = β — kat and let S be a subset of I — 2 elements of {1, , 1}
such that ieS and {a^jeS} is indecomposable. Let Ws be the Weyl
group (r3'\jeS). Ws is finite because (Atί) is hyperbolic, and so XWS

has an element a0 of least height with respect to «„•••,«,. Then
ψ(a0, a;) ^ 0 for all j e S and {a0} U {cc, \ j e S} forms a base for a sub-
system of roots of rank I — 1. Indeed the system of roots so generated
includes the elements of a0Ws and so λ, Xrt and hence β. This shows
that it is indecomposable and indefinite.

We need to show that we can always find such a β. First suppose
there is a Euclidean subset, say aly •• , ^ _ 1 , of the fundamental roots
(it is necessarily of rank I — 1). Let ξ be the canonical null root. It
involves all of a19 , αz_x and so ψ(ξ, at) < 0. Then for some real root
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λ of the form at + nζ, neN, i < I, we have d = 2ψ(X, a{)lψ{au at) <;
— (21 + 2). The αΓstring through λ is then of the form λ, λ + au , λ —
(toz, and since there are at most 2 roots of any given length in a root
string and at most I lengths for real roots, there must be a root β in
the string which satisfies ψ(β, β) < 0. This is what we need. Now
suppose there is no Euclidean subset of fundamental roots. Then choose
β e Jf of minimal height. There is an i e {1, , 1} such that β — at e A%.
The minimality assumption guarantees that (β — ajr* = β + kat with
k > 0. In particular /5 is in the αΓstring through the real root β — at.
Finally ψ(β, β) < 0 for otherwise β is null and so writing β — Σ ^ i *
{^Icj =£ 0} forms a Euclidean subset contrary to assumption. This com-
pletes the lemma.

This sequence of lemmas proves Theorem 5.1.

THEOREM 2. Let (Aiό) be an indecomposable symmetrizable I x I
Cartan matrix. Suppose {Aίά) is non-singular and not of finite type.
For each non-empty subset S of {1, •••, 1} let As = (A^Oi.ie^ Suppose
there is a chain of subsets St — {1, , 1} Z) S^ 3 ID Sk such that

( i ) \St\ =i i = h,> ,l;
(ii) each As. is indecomposable and non-singular;
(iii) AS]c has associated quadratic form of signature (k — 1, 1, 0).

Then in the notation of Theorem 3.1, the ring of F-invariant polynomial
functions on QΔ is Q[ψ].

In particular such a chain exists if for each non-empty subset S
of {1, , 1} for which As is indecomposable, either As is Euclidean or
non-singular.
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