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1. Introduction. Consider the Wiener measure space (C[0, ί], 3B*, mw)
where C[0, t] is the Wiener space consisting of all real valued continuous
functions x on the interval [0, t] in R1 with x(0) = 0 for fixed t e (0, °o);
2B is the algebra of Borel cylinders in C[0, t], i.e., the collection of all
subsets W of C[0, t] of the type

(1.1) W = {x e C[0, t]; [xfr), • , &(*.)] e 5}

where n is an arbitrary positive integer, 0 = s0 < s1 < < sΛ <; £, and
2? is an arbitrary member of the tf-algebra 33* of the Borel sets in the
^-dimensional Euclidean space Rn; mw is a probability measure on the
algebra SB defined for W as in (1.1) by

(1.2) mw{W)

= {(2τrΓ Π (βy-β^p'

where f = (ξw •••, ξn)eRn, ξ0 = 0 and mL is the Lebesgue measure on
(Rn, 35Λ); 333* is the σ-algebra of Caratheodory measurable subsets of
C[0, t] with respect to the outer measure derived from the measure mw

on the algebra. Needless to say 335* contains the ^-algebra tf(3B) generated
by SS and the Wiener measure space is a complete measure space. The
3K*-measurability and mw-integrability of a functional on C[0, ί] will be
referred to as the Wiener measurability and Wiener integrability.

By a conditional Wiener integral we mean specifically the conditional
expectation EW(Y\X) of a real or complex valued Wiener integr able
functional Y conditioned by the functional X on the Wiener space defined
by

(1.3) X[x] = x{t) for x e C[0, t]

where the conditional expectation EW{Y\X) is not given as an equivalence
class of random variables on the probability space (C[0, t], SB*, m j but
as an equivalence class of random variables on the probability space
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(R\ S31, Px) where Px is the probability distribution of X defined by

(1.4) PX{B) = mw{X'\B)) = (2πtyi/2\ exp{-(2t)-1ξ2}mL(dξ) for Be®1.

We shall use the same notation EW{Y\X) to mean also the individual
representatives of the equivalence class i.e., the versions of the conditional
expectation.

In [6] and [7] we derived several Fourier inversion formulae for
conditional Wiener integrals and applied one of these to give an alternate
proof of the Kac-Feynman Formula. Evaluations of conditional Wiener
integrals for certain types of functionals were also included there. In
this paper we present an analogue of the Cameron-Martin Translation
Theorem for the conditional Wiener integral. Our main result (see
Theorem 2 in §3) is the following: Let 7 be a Wiener integrable
functional and let X be as in (1.3). Let x0eC[0, t] be absolutely con-
tinuous on [0, t] with 1 [xf

0(s)]2mL(ds) < <>o. Then for arbitrary versions

of the conditional Wiener integrals EW(Y\X) and EW[Y[ + xo]J\X] we
have

(1.5) E"(Y\X)(ξ)

= E"[Y[. + xQ]J\X](ξ - a?o(«)) exp {-(2tΓ[xo(t)Y} exp {t~^xo(t)}

for a.e. ξ in (R\ S31, mL) where

(1.6) J(x) = exp j - 2 - 1 ( [x'0(s)YmL(ds)\ exp ( - [ x'Q(s)dx(s)
I J[0,ί] ) { Jo

for a.e. x in (C[0, ί], 2B*, mw).
The proof of this translation theorem is based on the Cameron-Martin

Translation Theorem and a transformation theorem for conditional ex-
pectation in general which we present as Theorem 1 in §2. An example
of evaluation of conditional Wiener integral by means of the translation
theorem is given in §3.

2. Transformation of conditional expectations.

DEFINITION. Let (Ω, S3, P) be a probability space and let X be a
measurable transformation of (Ω, 33) into a measurable space (S, g). The
conditional expectation of a real valued integrable random variable Z on
(β, 33, P) given X, written E(Z\X), is defined to be any real valued g-
measurable and Px integrable function Ψ on S such that

(2.1) \ Z{ώ)P{dω) = \ Ψ(ξ)Px{dξ) for
JX~HF) JF
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where Px is the probability distribution of X defined by

(2.2) PX(F) = P(X~ι(F)) for

By the Radon-Nikodym Theorem, such a function Ψ always exists
and is determined uniquely up to a null set in (S, g, Px). We write
E{Z\X) to mean either the class of all such functions f o r a particular
member of the class. It should be clear from the context which one of
the two is meant. Thus we have

(2.3) ( Z(ω)P(dω) = [ E(Z\X)(ξ)Px(dξ) for Fe%.
JX-HF) JF

The conditional Wiener integral EW(Y\X) introduced in §1 is a particular
case of the conditional expectation E{Z\X) for which the probability
space (Ω, 33, P) is the Wiener measure space (C[0, ί], 2δ*, mw) and X is
given by (1.3).

LEMMA 1. Given a real valued ίntegrable random variable Z on a
probability space (Ω, 33, P) and a measurable transformation X of (Ω, 33)
into a measurable space (S, £$). Let T be a measurable transformation
of (Ω, 33) into itself. If there exists a one-to-one transformation h of
S onto itself such that both h and h~ι are measurable transformations
°f (S, S) into itself and if furthermore h satisfies the condition

(2.4) (Xo T){ω) = (hoX)(ω) for a.e. ω in {Ω, 33, P)

then for arbitrary versions of the conditional expectations E(Z\XoT)
and E(Z\X) we have

(2.5) E{Z\Xo T)(ί) = E(Z\X)(h-\ξ)) for a.e. ξ in (S, & PXoT) .

PROOF. Since Xo T is a measurable transformation of (Ω, 33) into
(S, g), the conditional expectation E(Z\X<> T) exists and for an arbitrary
version of it we have by (2.3)

(2.6) S E{Z\XoT)(ξ)PXaT{dξ) = \ Z(ω)P(dω) for Fe%.
JF J(X°T)—1(F)

By (2.4) there exists a null set Ωo in {Ω, 33, P) such that X<>T = h<>X on

Ωl. Now

(Xo T)~\F) = {(Xo T)-\F) n Ωc

0) U {(Xo T)-\F) n Ωo}

and similarly

(h o X)-\F) = {(h o XΓ(F) n Ωl) U {(h o X)~ι(F) n Ωo) .

The second set in the union on the right side of each of the above two
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equalities is a null set in (Ω9 35, P). On the other hand since 1 ° T =
hoX on Ωc

0 the first set in the union on the right side of the first
equality is equal to that of the second equality. Thus for the symmetric
difference of the two sets on the left side of the two equalities we have

P[{(Xo TΓ(F)} A {(hoX)-i(F)}] = 0 .

From this we have

(2.7) \ Z(ω)P(dω) = \ Z(ω)P(dω)

Z(ω)P(dω) = \ E(Z\X)(ξ)Px(dζ) for F e g
J h h )

where the last equality holds for an arbitrary version of E{Z\X) by
(2.3) since h~\F)e% for our F e%.

Next consider the measurable transformation h of the probability
space (S, g, Px) into the measurable space (S, %). In terms of the proba-
bility measure Ph on (S, %) induced by h we have

( E(Z\X)(ξ)Pz(dξ) = \ E(Z\X)[h-\h(ξ))]Pz(tlξ)
Jh-iίF) Jh~HF)

= \ E{Z\X)(h-\y))Ph{dV) for
JF

But

Pk(F) = Px{h-\F))

for

i.e., the probability distributions on (S, %) of the measurable transforma-
tions h and W o n the probability spaces (S, g, Px) and (Ω, S3, P) respec-
tively are identical. Therefore

(2.8) \ E(Z\X)(ξ)Px(dξ) = \ E{Z\X){h-\ξ))Ph,x{dξ) for

From (2.6). (2.7), and (2.8) we have for arbitrary versions of E(Z\X° T)
and E{Z\X)

(2.9) ( E(Z\XoT)(ξ)Px.τ(dξ) = \ E(Z\X)(h-\ξ))Ph,x(dξ) for
JF JF

Now (2.4) implies

(2.10) Ph*x = Pχ.τ on (S,g).

From (2.9) and (2.10) we have (2.5).

LEMMA 2. Let (Ω, 35, μ) be a finite measure space and let T be a
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measurable transformation of (Ω, 33) into itself. If there exists a real
valued ^-measurable function J on Ω such that

(2.11) μ(A) = \ J(ω)μ(dω) for A e 33

then for every real valued ^-measurable function Z on Ω we have

(2.12) ( Z(ω)μ(dω) = [ (Z<> T){ω)J{ω)μ(dω)
JΩ JΩ

in the sense that the existence of one side implies that of the other and
the equality of the two.

PROOF. Consider first the case where Z is a simple function on
(Ω, 33, μ), i.e.,

Z = Σ CJXAJ where cά e Rι and As e 33 for j = 1, 2, , n .

In this case we have

Z(ω)μ(dω) = Σ ^ W = Σ ^ ί J(ω)μ(dω)

= \ Σcjχτ-lu.)(ω)J(ω)μ(dω) = \ Σ1cjχ
JΩ j=l J JΩ 3=1

= ( (ZoT)(ω)J(ω)μ(dω)
JΩ

so that (2.12) holds in this case.
When Z is a nonnegative valued S-measurable function on Ω, there

exists a monotone increasing sequence of nonnegative simple functions
{Zn, n = 1, 2, •} on (Ω, SB, μ) such that Zn\ Z on β. By the above
result and by the Monotone Convergence Theorem, (2.12) holds for this
case too. Finally for a real valued 33-measurable function Z on Ω we
apply the above result to the positive and negative parts of Z.

THEOREM 1. Given a real valued integrable random variable Z on
a probability space (Ω, 33, P) and a measurable transformation X of
(Ω, S3) into a measurable space (S, g). Let T be a measurable transforma-
tion of {Ω, 33) into itself which satisfies the following two conditions:

1° There exists a real valued ^-measurable function J on Ω such
that

P{A) = \
JT~

J(ω)P(dω) for A e 33 .
HA)

2° There exists a one-to-one transformation h of S onto itself such
that both h and h~ι are measurable transformations of (S, %) into itself
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and furthermore

(Xo T)(ω) = (hoX)(ω) for a.e. ω in (Ω, 93, P) .

Then for every measurable transformation g of (S, g) into (R\ S31) we
have

(2.13) \ g(ξ)E(Z\X)(ξ)Px(dξ) = \ g(ξ)E[(ZoT)J\Σ](h"ί(ξ))PM(dξ)
JS JS

in the sense that the existence of one side implies that of the other and
the equality of the two. If in addition to 1° and 2°, T satisfies the
condition

3° PXΰT<Px on (S,g)

then for arbitrary versions of E(Z\X) and E[(Z<> T)J\X] we have

(2.14) E{Z\X){ξ) = E[{Zo T)J\X\{h-\ξ))(dPXoTldPx)(ξ)

for a.e. ξ in (S, g, Px) .

PROOF. Assume 1° and 2°. Let g be a measurable transformation
of (S, g) into (R\ 351). According to Proposition 3 on p. 635 of [6] we
have

(2.15) E[(goX)Z] = \ g(ξ)E(Z\X)(ξ)Px(dξ)

in the sense that the existence of one side implies that of the other and
the equality of the two. In the rest of the proof whenever an equality
holds in the above sense we shall say for brevity that the equality holds
in the restricted sense. Now by Lemma 2,

(2.16) E[(goX)Z] = E[(goXo T)(Z<> T)J]

in the restricted sense. Applying (2.15) to the right side of (2.16) where
Xo T and (Z<>T) J correspond respectively to X and Z on the left side
of (2.15), we obtain

(2.17) E[(goX)Z] = ^g(ξ)E[(Zo T)J\Xo T]{ξ)PXoT{dζ)

in the restricted sense. According to Lemma 1,

(2.18) E[(Zo T)J\Xo T](ξ) = E[(Zo T)J\X](h~\£))

for a.e. ξ in (S, g, PXoT)

for arbitrary versions of the two conditional expectations involved.
Using (2.18) in (2.17) we have
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(2.19) E[(g o X)Z] = \s g(ξ)E[(Z o T)J\ X](h-\ξ))PXoT(dξ)

in the restricted sense. Combining (2.15) and (2.19) we have (2.13).
To prove (2.14) note that under the assumption of 3°, the equality

(2.13) becomes

\ g{ξ)E{Z\X){ξ)Px(dζ)
Js

= \ g{ξ)E[{ZoT)J\X]{h-\ξ)){dPx.τldPx){ξ)Pχ{dξ)
JS

in the restricted sense. By letting g = χF for arbitrary f e g we have

\ E(Z\X)(ξ)Px(dξ)
JF

for\
JF

From this we have (2.14).

3. Translation of conditional Wiener integrals. Consider the Wiener
measure space (C[0, t]9 2B*, m j . With a fixed element xQ in C[0, t]
consider the transformation T of C[0, t] into itself defined by

(3.1) T[x] - x + x0 for x e C[0, t] .

According to the Cameron-Martin Translation Theorem [2], if x'o exists
on [0, t] and x[ e B.V. [0, t] then

(3.2) Γ(Γ), T~\Γ) e 2δ* for Γ e 3B*

and furthermore

(3.3) mw(Γ) = ( J(x)mw(dx)
Jτ-i(Γ)

where

(3.4) J(a;) = exp ] - 2 - 1 1 K(s)]2mL(ds)i exp ί - Γ α?;(β)da?(β) I
\ J[0,ί] ) V Jo )

for xeC[Q, t]

the integral in the second exponential factor above being a Riemann-
Stieltjes integral. G. Sunouchi [5] and I. E. Segal [4] showed that (3.2)
and (3.3) still hold when x0 is absolutely continuous on [0, t] and
\ [%Ό(s)]2mL(ds) < ex) provided that the integral in the second exponential
factor in (3.4) is a Paley-Wiener-Zygmund-Riemann-Stieltjes integral (see
[3]). The P.W.Z.R.S integral exists for a.e. x in (C[0, ί], 2B*, m j . On
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the exceptional null set of the Wiener measure space J may be defined
arbitrarily since our measure space is a complete measure space. It is
also known that when x'o exists on [0, t] and x[ e B.V. [0, ί], the P.W.Z.R.S.
integral is equal to the R.S. integral for a.e. x in the Wiener measure
space.

THEOREM 2. Let Y be a real valued integrable functional on the
Wiener measure space (C[0, t], 2B*, mw) and let X[x] = x{t) for x e C[0, ί]
Let x0 be an element in C[0, t] which is absolutely continuous on [0, t]

with \ [xo(s)]2mL(ds) < c>o. Then for arbitrary versions of the condi-
J[0,ί]

tional Wiener integrals EW(Y\X) and EW[Y[ + xo]J\X] we have
(3.5) E*(Y\X)(ξ)

= EW[Y[ + Xo]J\X](ξ - »o(*)) exp {-(2ί)-1[aj0(*)]ί} exp {r^ 0(ί)}
for a.e. ξ in (R\ S31, mL)

where

(3.6) J(x) = exp I - 2 - 1 \ [x'Q(s)]2mL(ds)\ exp j - [ x'0(s)dx(s)\
v J[o,ί] C Jo )

for a.e. x in (C[0, t\ 2B*, mw) .

PROOF. Let T be the transformation of C[0, t] into itself defined by

T[x] = x + x0 for a? 6 C[0, £] .

Then

(Jo T)[x] = X[x + x0] = x(t) + xo(t) = (h o X)[x] for x e C[0, ί]

where h is the one-to-one transformation of R1 onto R1 defined by

h(ξ) = ί + a?0(ί) for ί 6 β 1

for which we have

h'ι(ξ) = ξ - xo(t) for ί e i ? 1 .

Clearly both h and fc"1 are measurable transformations of (R\ S51) into
itself. Thus our T satisfies the condition 2° in Theorem 1 where (S, %)
is now (R\ S31). The condition 1° in Theorem 1 is also satisfied by our
T according to the Cameron-Martin Translation Theorem.

To verify condition 3° of Theorem 1 for our Γ, recall that the
random variables X[x] = x(t) and (X<> T)[x] = x(t) + xo(t) for xeC[0, t\
are normally distributed and in fact

Px = iV(0, ί) and P I o P = N(xo(t), t) on (Λι, 931) .
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Thus PXoT < Px on (R\ S31) and as a version of the Radon-Nikodym
derivative of PXoT with respect to Px we have

(dPxJdPx)(ζ) = (dPXΰT/dmL)(ζ)[(dPχ/dmL)(ξ)Γ

= exp {-(2«ne - XoW]2} exp {(2*)"1?2}

= exp {- (2ί)-1K(ί)]2} exp {r1? zo(£)} for ξ e Rι .

With this, (3.5) follows from (2.14).

COROLLARY. Consider the Wiener measure space (<7[0, t]9 2B*, mw).
Let X[x] = #(£) /or x e C[0, ί] αrai let x0 be an element in C[0, t] which

is absolutely continuous on [0, t] with \ [x'0(s)]2rnL(ds) < ©o. ΪT^w o^e
Jco.t] r ( f* ) I Ί

version of the conditional Wiener integral Eΐ\ exp j — \ xo(s)dx(s) M X \

which is an equivalence class of real valued random variables on (Λ^SS
where Px = iV(0, t) is gri^e^ by

(3.7) JS7?[exp { - j * a?J(8)ίί»(8) J |

= exp J2-1 ( K(s)]2mL(cίs)| exp {-(2t)~1[x0(t)Y} exp {-
tO.ί]

/or

PROOF. Let Y be the functional which is identically equal to 1 on
C[0, t]. Then one version of the conditional Wiener integral EW(Y\X)
is given by

(3.8) E*(Y\X)(ξ) = l for ζeR1.

Let J b e as given by (3.6). Since Y[x + x0] = 1 for every #eC[0, ί] we
have

(3.9) E"[Y[- +xo]J\X](ξ)

= exp j -

for a.e. ξ in (221, S31, P x) for arbitrary versions of the two conditional
Wiener integrals involved. Since Px and mL are equivalent on (R\ S31),
(3.9) holds for a.e. ξ in (R\ S31, mL). Since a translate of a null set in
(R\ S31, Wi) is again a null set in (R\ 331, mz), if we replace ξ in both
sides of (3.9) by η — xo(t) then the equality holds for a.e. rj in (JB1, S31, mL).
Using this equality and (3.8) in (3.5) we have

(3.10) 1 =#?[exp j - J ^ » ^ [x'o(s)]2mL(ds)^

x exp {-(2t)-1[x0(t)]2} exp {t^ηx^t)} for a.e. η in (Λ1, S31, mL)
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for an arbitrary version of the conditional Wiener integral involved.
Writing η = ξ + xo(t) and recalling that a translate of a null set in
(R\ 351, mL) is again a null set in (R\ S31, mL), we have from (3.10)

- exp J2-1 ( K(s)]2mL(ds)l exp {(2*r[zo(£)]2} exp {-r^ 0(ί)[ί + xo(t)]}
\ J[θ,t] )

= exp J2-1 ( K(s)]2mL(ds)l exp {-{2t)-i[x0(t)Y} exp {-*-'fχβ(t)}
V J[θ,ί] )

for a.e. ξ in (R\ S31, mL) for an arbitrary version of the conditional
Wiener integral. Therefore there exists a version as given by (3.7) by
the equivalence of Px and mL on (R\ 331).

The following is an example of application of Theorem 2 in evaluating
a conditional Wiener integral.

EXAMPLE. Let

(3.11) X[x] = x(t) and Y[x] = exp ίλ Γ p(s)dx(s)\ for x e C[0, t]ί
y Jo

where λ e Rι and p is a real valued function which is continuous and of
bounded variation on [0, t].

Define an element xQ in C[0, ί] by

xo(s) = - λ Γ p(r)dr for s e [0, ί] .
Jo

Then α?ί exists on [0, t] and

x'o = -λpeB.V. [0, ί] .

With #o our F can be written as

Y[x] = exp {- Γ a?ί(8)<te(β) J for a? e C[0, ί] .

Thus, by (3.7) a version of JS^FIX) is given by

(3.12) EZ(Y\X)(g)

= exp {2-χλ2 Jjp(s)]2ds| exp {-(2ί)-1λ2ΓΓp(s)dsT} exp

for ξeR1.

Therefore for every JSG331

I exp |λ \ p(s)dx(s)\mw(dx)
J{xit)eB) \ Jo )
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= \ E?(X\Y)(ξ)Px(dξ)

= exp J2~V J\p(s)]2dsγ2πt)-1/2 ^ exp {- (2ί)~1[ί - λ ^ p(s)dsJ^mL(dζ)

by (3.12) and by the fact that P
x
 = i\Γ(0, ί) on (B

1
, S3

1
).
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