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1. Introduction. Consider the Wiener measure space (C[0, t], B*, m,,)
where CJ0, t] is the Wiener space consisting of all real valued continuous
functions x on the interval [0, ¢] in R' with 2(0) = 0 for fixed ¢t e (0, «);
W is the algebra of Borel cylinders in C[0, t], i.e., the collection of all
subsets W of C[0, t] of the type

(L.1) W = {x e C[0, t]; [(s), - -+, @(s.)] € B}

where n is an arbitrary positive integer, 0 =s, <s, < -+ <8, < ¢, and
B is an arbitrary member of the c-algebra B of the Borel sets in the
n-dimensional Euclidean space R*; m, is a probability measure on the
algebra W defined for W as in (1.1) by

(1.2) m, (W)
=@ [T 6s=s,0} | exp {273 =800 5507 matde)

where & = (&, -+, &,)eR", & =0 and m, is the Lebesgue measure on
(R*, B™); W* is the o-algebra of Carathéodory measurable subsets of
C[0, t] with respect to the outer measure derived from the measure m,
on the algebra. Needless to say B* contains the o-algebra o(TW) generated
by ® and the Wiener measure space is a complete measure space. The
B*-measurability and m,-integrability of a functional on C[0, ] will be
referred to as the Wiener measurability and Wiener integrability.

By a conditional Wiener integral we mean specifically the conditional
expectation E*(Y|X) of a real or complex valued Wiener integrable
functional Y conditioned by the functional X on the Wiener space defined
by

1.3) X[o] = 2(t) for xeC[o0, ¢]

where the conditional expectation E*(Y|X) is not given as an equivalence
class of random variables on the probability space (C|0, t], T*, m,) but
as an equivalence class of random variables on the probability space
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(R, B!, Py) where P, is the probability distribution of X defined by
(1.4) Px(B) = m,(X(B)) = (27tt)‘”2§3 exp {—@t)*&}m (dE) for BePB'.

We shall use the same notation E*(Y|X) to mean also the individual
representatives of the equivalence class i.e., the versions of the conditional
expectation.

In [6] and [7] we derived several Fourier inversion formulae for
conditional Wiener integrals and applied one of these to give an alternate
proof of the Kac-Feynman Formula. Evaluations of conditional Wiener
integrals for certain types of functionals were also included there. In
this paper we present an analogue of the Cameron-Martin Translation
Theorem for the conditional Wiener integral. Our main result (see
Theorem 2 in §3) is the following: Let Y be a Wiener integrable
functional and let X be as in (1.3). Let x,€CJ[0, t{] be absolutely con-

tinuous on [0, ¢] with S [wo(s)Pm(ds) < c=. Then for arbitrary versions
of the conditional Wlener integrals E*(Y|X) and E“[Y[: + «,]J| X] w
have
(1.5) E*(Y|X)(©®)

= EY[Y[+ + x]J| X1 — 2y(t)) exp {—(28) [, ()]} exp {t"&a,(t)}

for a.e. & in (R', B', m;) where

(1.6) J(x) = exp { —271 S[M] [xé(s)]sz(ds)} exp { — S: oc(’,(s)dx(s)}

for a.e. x in (C[0, t], B*, m,,).

The proof of this translation theorem is based on the Cameron-Martin
Translation Theorem and a transformation theorem for conditional ex-
pectation in general which we present as Theorem 1 in §2. An example
of evaluation of conditional Wiener integral by means of the translation
theorem is given in §3.

2. Transformation of conditional expectations.

DEFINITION. Let (2, B, P) be a probability space and let X be a
measurable transformation of (£, B) into a measurable space (S, F). The
conditional expectation of a real valued integrable random variable Z on
(2,8, P) given X, written E(Z|X), is defined to be any real valued -
measurable and P, integrable function ¥ on S such that

2.1) sX_lm Z(@)P(dw) = L T(E)Pyds) for Fe
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where P, is the probability distribution of X defined by
(2.2) Py(F) = P(X"'(F)) for Fe$

By the Radon-Nikodym Theorem, such a function ¥ always exists
and is determined uniquely up to a null set in (S, %, Py). We write
E(Z|X) to mean either the class of all such functions ¥ or a particular
member of the class. It should be clear from the context which one of
the two is meant. Thus we have

€3 | z@raw =| BZIDOP.@ tor Feg.

The conditional Wiener integral E*(Y|X) introduced in §1 is a particular
case of the conditional expectation E(Z|X) for which the probability
space (2, B, P) is the Wiener measure space (C[0, t], B*, m,) and X is
given by (1.3).

LeEMMA 1. Given a real valued integrable random variable Z on a
probability space (2, B, P) and a measurable transformation X of (2, B)
into a measurable space (S, F). Let T be a measurable transformation
of (2,B) into itself. If there exists a one-to-one transformation h of
S onto itself such that both h and h™ are measurable transformations
of (S, %) into itself and if furthermore h satisfies the condition

2.4) (XeT)@) = (he X)) for a.e. @ in (2,3, P)

then for arbditrary versions of the conditional expectations E(Z|XoT)
and E(Z|X) we have

(2.5)  E(Z|X-T)(§) = E(Z|X)(h™(&) for a.e. & in (S, Pra) -

PrROOF. Since XoT is a measurable transformation of (2, ®B) into
(S, %), the conditional expectation E(Z|Xo- T) exists and for an arbitrary
version of it we have by (2.3)

@6 | BZIXeT)OPwu@) = |

By (2.4) there exists a null set 2, in (2, B, P) such that XoT = hoX on
2. Now

Z(@)Pdw) for Fef.

(XoT) Y

(XoT)(F) ={(X-T)"(F) N 2} U{(XeT)'(F) N 2}
and similarly
(he X)'(F) = {(he X)™'(F) N 25} U {(ho X)T'(F) N 2o} .

The second set in the union on the right side of each of the above two
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equalities is a null set in (2,3, P). On the other hand since X T =

hoX on 2 the first set in the union on the right side of the first

equality is equal to that of the second equality. Thus for the symmetric

difference of the two sets on the left side of the two equalities we have
P{(X o T)™(F)} A{(h X)7(F)}] = 0.

From this we have

2.7) Z(w)P(dw) = S . Z(w)P(dw)

S(xm—l(m (hoX)—1(

Z@Pdo) = | | E(Z|X)OP:d) for Fe

Sx—l(h—lw))

where the last equality holds for an arbitrary version of E(Z|X) by
(2.3) since h'(F') e for our Fe.

Next consider the measurable transformation & of the probability
space (S, &, Py) into the measurable space (S, ). In terms of the proba-
bility measure P, on (S, %) induced by h we have

o, B X)@Pe@0) = | B2 X)W (@)

= | Bz X)0-@)Pudn) for Feg.
But

Py(F') = Px(h™'(F)) = PIX7'(h7'(F))]
= P[(ho X)7(F)] = Ppx(F) for Feg

i.e., the probability distributions on (S, &) of the measurable transforma-
tions & and ko X on the probability spaces (S, &, Px) and (2, B, P) respec-
tively are identical. Therefore

@8 | BZIX)OP@) = BZIX)0@)P.d9) for FeF.

From (2.6). (2.7), and (2.8) we have for arbitrary versions of E(Z|X-T)
and E(Z|X)

@9 | BZI1X D)OP.@e) = | BZIX)0@Pae) tfor FeF.
Now (2.4) implies

(2.10) P,y =Py, on (S,%).

From (2.9) and (2.10) we have (2.5).

LEMMA 2. Let (2,8, ) be a finite measure space and let T be a
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measurable transformation of (2, B) into ttself. If there exists a real
valued B-measuradble function J on 2 such that

@2.11) pmay =\

then for every real valued B-measurable function Z on 2 we have

)J(a))y(da)) for Ae®®B

-1

(2.12) |, Z@pdo) = | (Z° D@I)pEo)

in the sense that the existence of ome side implies that of the other and
the equality of the two.

PrOOF. Consider first the case where Z is a simple function on
(2,3, p), ie.,

Zzicijj where ¢c;e R* and A;e®B for j =1,2, -+, m.
7=1

In this case we have

|, Z@ndo) = Semay = Sie; | | T@pdo)
= |, Setrup@r@pde = | 3 ea(T@)I@pdo
= |z D@ I@nde

so that (2.12) holds in this case.

When Z is a nonnegative valued B-measurable function on 2, there
exists a monotone increasing sequence of nonnegative simple functions
{(Z,yn=1,2, .-} on (2,9, 1) such that Z,17Z on 2. By the above
result and by the Monotone Convergence Theorem, (2.12) holds for this
case too. Finally for a real valued B-measurable function Z on Q2 we
apply the above result to the positive and negative parts of Z.

THEOREM 1. Given a real valued integrable random variable Z on
a probadbility space (2,B, P) and a measurable transformation X of
(2, B) into a measurable space (S, F). Let T be a measuradble transforma-
tion of (2, B) into itself which satisfies the following two conditions:

1° There exists a real valued B-measurable function J on 2 such

that
PU4) = _ J@Pde) for AesB.

2° There exists a one-to-one transformation h of S onto itself such
that both h and h™ are measurable transformations of (S, F) into itself



510 J. YEH
and furthermore

XoTY(w) = (ho X)w) for a.e. w in (2,B, P).
Then for every measurable transformation g of (S, F) into (R, B') we
have

@13) | sOBZIX)OP.@) = | g©F(Ze )T XI@)Prrlde)

in the sense that the existence of ome side implies that of the other and

the equality of the two. If im addition to 1° and 2°, T satisfies the
condition ‘

3° Pry K< Py on (S
then for arbitrary versions of E(Z|X) and E[(Z- T)J|X] we have

(2.14) E(Z|X)(¢) = E[(Z T)J| X](h7(&))(dPx./dPx) (&)
for a.e. £in (S, 5, Pyx) .

PrROOF. Assume 1° and 2°. Let g be a measurable transformation

of (S, %) into (R', BY). According to Proposition 3 on p. 635 of [6] we
have

(2.15) El(g-X)Z] = Ss 9 E(Z| X)(§) Px(df)

in the sense that the existence of one side implies that of the other and
the equality of the two. In the rest of the proof whenever an equality

holds in the above sense we shall say for brevity that the equality holds
in the restricted sense. Now by Lemma 2,

(2.16) El(g-X)Z] = E[(ge X T)(Z-T)J]

in the restricted sense. Applying (2.15) to the right side of (2.16) where

XoT and (Z-T) J correspond respectively to X and Z on the left side
of (2.15), we obtain

(2.17) E[(g-X)Z] = Ss gEE[(Z T)J| X o T)(&)Px.r(d)

in the restricted sense. According to Lemma 1,

(2.18) E[(Z-T)J|XoT)¢) = E[(Z- T)J| X](R7*())
for a.e. £ in (S, B, Px.r)

for arbitrary versions of the two conditional expectations involved.
Using (2.18) in (2.17) we have
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@19 BlgoXZ] = | g@BI(Z> DI XN ©)Prrd)

in the restricted sense. Combining (2.15) and (2.19) we have (2.13).
To prove (2.14) note that under the assumption of 3°, the equality
(2.13) becomes

|, 9Bz )P
= Ssg(E)E'[(Z o T)J| X](h7(&)(APx.r/d Py)(5) Px(dé)
in the restricted sense. By letting g = x, for arbitrary Fe® we have

|, BZ1 06 P

= | BlZo TI XN ) @Per/dPI@Pds) for Fef.
From this we have (2.14).

3. Translation of conditional Wiener integrals. Consider the Wiener
measure space (C[0, t], W*, m,). With a fixed element z, in C[0, t]
consider the transformation T of C[0, t] into itself defined by

3.1) Tlx] =« + z, for xeCJ[0,t].

According to the Cameron-Martin Translation Theorem [2], if x; exists
on [0, t] and ;€ B.V. [0, t] then

(3.2) ), T(I'e®W* for I eW*

and furthermore

(3.3) my(I') = ST_I(” J(@)m.(dz)

where

(3.4) J(x) = exp { _g- SM [x;(s)]sz(ds)} exp { — St 21(s)da(s) }
for 2¢eCJo0, t]

the integral in the second exponential factor above being a Riemann-
Stieltjes integral. G. Sunouchi [5] and I. E. Segal [4] showed that (3.2)
and (8.3) still hold when x, is absolutely continuous on [0,¢] and

][xé(s)]’mL(ds) < oo provided that the integral in the second exponential

factor in (8.4) is a Paley-Wiener-Zygmund-Riemann-Stieltjes integral (see
[3]). The P.W.Z.R.S integral exists for a.e. « in (C[0, t], ®*, m,). On
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the exceptional null set of the Wiener measure space J may be defined
arbitrarily since our measure space is a complete measure space. It is
also known that when «; exists on [0, {] and «;€B.V. [0, ¢], the P.W.Z.R.S.
integral is equal to the R.S. integral for a.e. # in the Wiener measure

space.

THEOREM 2. Let Y be a real valued integrable fumctional on the
Wiener measure space (C[0, t], B*, m,) and let X[x] = x(t) for x € C[0, t].
Let x, be an element in C[0, t] which is absolutely continuwous on [0, t]

with S[ ][x{,(s)]sz(ds) < oo, Then for arbitrary versions of the condi-
0,%
tional Wiener integrals E*(Y|X) and E*[Y[: + x,]J| X] we have

(3.5  E"(Y|X)(®
= B'[Y[- + 2)J| X[ — x,(2)) exp {— (2¢)'[x,()]*} exp {¢7'&xy(8)}
for a.e. & in (R, B, m;)

where

@8  Jw =exp|-2"| [el@ln.ds)}exp|-| sle)dats)]
for a.e. x in (C[0, t], W*, m,,) .
ProOOF. Let T be the transformation of C[0, ¢] into itself defined by
Tzl =2+, for xeC[0,¢{].
Then
(XoTH[x] = X[x + ] = 2(t) + 2,(t) = (he X)[xz] for xze€C]O0,t]
where h is the one-to-one transformation of R!' onto R' defined by
h(E) =& + x,(t) for feR
for which we have
hY(&) = & — xy(t) for EeR'.

Clearly both % and A™' are measurable transformations of (R', ®B') into
itself. Thus our T satisfies the condition 2° in Theorem 1 where (S, &)
is now (R', B'). The condition 1° in Theorem 1 is also satisfied by our
T according to the Cameron-Martin Translation Theorem.

To verify condition 3° of Theorem 1 for our T, recall that the
random variables X[z] = x(t) and (Xo T)[x] = =(t) + x.(t) for xeC[0, ]
are normally distributed and in fact

Py = N(,t) and Py, = N(z,(t),t) on (R, B').
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Thus Py, € Py on (R, ®B'") and as a version of the Radon-Nikodym
derivative of Py., with respect to Py we have
(APx.r/dPx) (&) = (dPxor/dm.)(E)[(dPx/dm)(§)]™
= exp {—(2t)7'[§ — x, )]} exp {(2¢)7'6%}
= exp {— @t) [z, (t) ]} exp {t*&x,(t)} for EeR'.
With this, (3.5) follows from (2.14).

COROLLARY. Consider the Wiener measure space (C[O0, t], B*, m,,).
Let X[x] = 2@) for xeC[0,t] and let x, be an element in C[0, t] which
1s absolutely comtinuous on [0, t] with S [x:(8)Pm (ds) < oo. Then one
version of the conditional Wiener mteg'ral E’”[exp{ S xo(s)dx(s) iX:I

which 18 an equivalence class of real valued random variables on (R, 23‘ Py)
where Py = N(0, t) is given by

t
@7 Exlexp {-| wiaao}|x @

=exp {2 | [#6)Pm.ds)] exp (— @0 [z ) exp (—ten0)
for &eR':
Proor. Let Y be the functional which is identically equal to 1 on

C|0, t]. Then one version of the conditional Wiener integral E*(Y|X)
is given by

(3.8) E*(Y|X)© =1 for &cR'.

Let J be as given by (3.6). Since Y[x + z,] =1 for every e C[0, t] we
have

(3.9  E'[Y[: + x)J| X](&)
= exp { —-27 SM [xS(S)]sz(dS)}E;"[exp { — S: xé(S)dx(S)} ]X J(E)

for a.e. & in (R, B', Py) for arbitrary versions of the two conditional
Wiener integrals involved. Since P, and m, are equivalent on (R!, B'),
(3.9) holds for a.e. & in (R', B', m;). Since a translate of a null set in
(R, B, m;) is again a null set in (R', B!, m;), if we replace ¢ in both
sides of (3.9) by » — =x,(t) then the equality holds for a.e. 7 in (R, B, m.).
Using this equality and (3.8) in (3.5) we have

(3.10) 1 = E:[exp{ | #i@)dats)] |X]<77 s exp {27 | [ai(e)Pmu(ds)}
X exp {—(2t)'[x,(t)]*} exp {t x,(t)} for a.e. » in (R, B, m,)
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for an arbitrary version of the conditional Wiener integral involved.
Writing n = & + ,(t) and recalling that a translate of a null set in
(R, B', m;) is again a null set in (B!, B!, m.), we have from (3.10)

E:’[exp { - S: wS(S)dx(S)} ‘ X](E)
= exp {2“1 SM [xé(S)PmL(dS)} exp {(2¢) [z, ()]} exp {—t7'm, ()& + 24(B)]}

—exp{2 | [m)Fmds)] exp (— (20 (O] exp (—t ez (t)

for a.e. & in (R, ®B", m,) for an arbitrary version of the conditional
Wiener integral. Therefore there exists a version as given by (3.7) by
the equivalence of P, and m, on (R!, B).

The following is an example of application of Theorem 2 in evaluating
a conditional Wiener integral.

ExAMPLE. Let
@.11)  X[z] = o) and Yl[a] = exp {x S’p(s)dx(s)} for zeCl0, t]

where L€ R' and p is a real valued function which is continuous and of
bounded variation on [0, £].
Define an element x, in C[0, t] by

Zo(8) = —\ S:p('r)dr for sel0,t] .
Then x, exists on [0, {] and
2, = —Ap€B.V.[0, ] .
With 2, our Y can be written as
Y[x] = exp {—S: x{,(s)dx(s)} for xeCJo0,¢t].
Thus, by (3.7) a version of E“(Y|X) is given by
(3.12)  EX(Y|X)()
= exp {2“7\.2 S:[p(s)]zds} exp { —(2t)“V[S: p(s)ds]z} exp {t“k&[s:p(s)ds]}
for feR'.

Therefore for every Be B!

S{z(t)eB) exp {7\' S:p(S)dx(s)}mw(dx)
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= SBE:<X| Y)(&)Px(ds)

t
0

— exp {z-mz S:[p(s)]zds}@ﬂ:t)'”z SB exp {—(Zt)-l[s — xS p(s)ds:lz}mL(dS)
by (8.12) and by the fact that P, = N(0, t) on (R!, BY).
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