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Introduction. Let S,(I"y(IN), X) be the space of integral cusp forms
of Neben-type X and of weight & with respect to I'(N). We associate
with a cusp p of I'(N) a matrix a,(€ SL,(R)) such that a,(c) = p.
Assume that & is an even positive integer. Then every f e S,(I'(N), X)
has the Fourier expansion (f|[a,].)(z) = Do, alPe*i"=/t gt p for some S8 > 0.
The numbers {a{”};-, are called the Fourier coefficients of f at p.

When we apply Rankin’s method to the Dirichlet series corresponding
to an automorphic form in S,(I"y(N), X), certain explicit relations between
the Fourier coefficients at all cusps are needed. In this paper, we deal
with the problem: Given the coefficients at one cusp, can all coefficients
at other cusps be determined? Recently, by using the W matrix in
Atkin-Lehner [2] and Hecke operators, Asai [1] solved the problem posi-
tively in the case where N is square-free. If N is not square-free, we
cannot immediately apply his argument.

In §1, by a different method, we give an affirmative answer to the
above problem in the case N = 4q with ¢ prime. §2 and §3 are prepara-
tory sections, where we describe certain properties of Eisenstein-Epstein
functions and Maass’ theta functions and, in the last section, we give an
application of the result in §1 to the Doi-Naganuma lifting in the case
of Q(V4q) with a prime ¢ = 3 (mod4). The basic references for this
subject are Asai [1], Doi-Naganuma [3], Naganuma [5], Shimura [7] and
Zagier [8].

1. Fourier coefficients at various cusps. Throughout this paper, we
use the following notations. Let N be a positive integer and let X be a
Dirichlet character modulo N. Put

I'(N) = {(: ;’) eSLz(Z),c - OmodN} .

We let § denote the complex upper half plane. Assume that f is a
holomorphic function on 9. Put (f|[o))(?) = (det 0)**(cz + d)7*f (d(z))
for o = (% 3)6GL;‘(R). We denote by S,(I'(N), %) and by SYT(N), %)
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the space of integral cusp forms of Neben-type X and of weight & with
respect to I'y(N) and the subspace of new forms in the sense of Atkin-
Lehner, respectively. For a prime p, we define the Hecke operator

T(p’ X) on Sk(FO(N)y X) bY
p 0 =1 [(1 g
(0 1>k+a§8f'<o p” '

Let ¢ = 3 (mod 4) be a prime and take N to be 4¢9. For a divisor M
of 4q, we define the matrix a, by

£IT(, ) = p"”“{x(p)f

10
( > it M=1,
0 1
4 1
( ) t M=4,
49¢ 4p
q 1
( , ,)’ f qu,
ay = ( \4¢&" qp
(" ‘1> it M= 4
, i = 4q,
4q 0 e
1 0
< ), if M=2q,
2¢ 1
Qg Oy if M=2,

where &, 0,8 and p'€Z,40 — g =1 and qo' —4¢ = 1. Here we note
that «, normalizes I'\(4q).

Let f(z) be a new form of S,(I'y(4q), () with the Fourier expansion
F@) = 32, a6 (a, = 1), so that f|T(p, (3) = a,f for each prime p.
We now determine f|[a,], in an explicit form. First, we recall some
well-known facts (cf. [4]).

Let N be a positive integer and let ¢ be a prime such that ¢|N.
We easily obtain the natural isomorphism (Z/NZ)* = [1,~ (Z/N,Z)*, where
N, is the g-factor of N. We denote by X, the induced character modulo
N,. Define v,(€ SL,(Z)) and v,(€ SL,(Z)) by

0 -1 1 0 2

(1 O) (mod N3), (O 1) (mod N?) ,
(*) v, = 1 o and v, = 0 —1

(0 1) (mod (N/N,)) (1 0) (mod (N/N,))

and we put
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N, 0 , _ _[NIN, 0
( ) 77'1 - 74(0 1) and 7]1 - 74(0 1) .

The following theorem is well-known (cf. [4]).

THEOREM. (i) There exist two isomorphisms
[ qlk 0 -—
W), 05 sy(ra, (1%, )% )
p#q
and
SUTN), 1) 22 SYr (N, (TL T ) ) -

(ii) Let f be an element in S, y(N),X). Then f|[97:]:=
Zfll(Nq)fl(_(z)v —%>kr where X«; = Hp#q Xo+

(iii) Suppose that f 1is a primitive form in the sense of Atkin-
Lehner and X, is a primitive character. Then g, is also a primitive
form and f[7,). = X(—D)a;w®,)g*?g,, where w(X,) = 35" X (@)™,
Nq — qe and gq(z) — Z:=1 b;q)ezﬂnz w’l:th
o {Z(p)a,, if p+aq,
T ma, if p=gq
for every prime p. Moreover |a,]* = ¢* .

Now we can prove the following:

PROPOSITION 1.1. Let f(z) be a primitive form of S.(I'y(4q), () with
the Fourier expamsion f(z) = Do, @, Then

fl[am]k = ddq(zﬁ)—(kﬂnfp s
where f,(2) = Dy @, 65" .

Proor. First we observe that N = 4qand X = (¥). Let 7, 7, 7, and
7, be matrices satisfying the conditions (*), (x*) and let

’ ’ IN/N2 O Iq 0
72:7“772:720 1:720 1 .

Then we see that v; and 7, satisfy the conditions (x), () of the above
theorem again.

By (ii), we see that f|[a,) = fl[77: = f[7:7).. Therefore, it is
sufficient to determine f|[7.], f|[7.L|[7)i. By (iii), we have f[[7,]. =
a,(—21)27%g, where §(z) = S, ale*™"* with
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(‘4)% it p-2,
vy

<%’-)d,, if p=2.

ald =

It should be noted that § is a primitive form. We have

f|[77277q]k = 54("2i)2_kg|[”q]k
and

7l[7.) = a,(Vanyg ™k ,

where b = 32, a®e"* with

(Z)oy it p=a,

a;z) — q
(=Har it p=gq,

P

hence a{? = @,. The proof is complete.

PROPOSITION 1.2. Under the same conditions as in Proposition 1.1,
we have fl[an]k = zl—kdz 2:=1 azn—le"i(zn_”'.

PrROOF. By Proposition 1.1, we see that

f= dwﬂ—é_(k_”fp![au]k

and
Fllal = @V 4% Vf, | [y @y ]r -
Note that
o — (——2q —1)
49 2q 4q 0 *

Then we have f,|[@,Ji(2) = fo(—1/2 — 1/4gz)(4g)**z~*. We put f,(z) =
FP@+SP(@), Whete f(z) = S @@ and f(2) = S T,
Since f is an eigenfunction of T(2, (¥)), we see that

f‘(’z)(z) — gaz“ezzi(?nz) — dz gld"ezxi(znz) — dzfp(zz) .
So we have
fo(—1/2 — 1/4qz)(4q)* 27"

= (£ (—1/2 — 1/4g2) + £(—1/2 — 1/4q2)}(4q) ™2™
= {—fP(—1/4qz) + @,f.(—1/2qz)}(4q)~**z ¥
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= {28,f(—1/2q2) — fo(—1/492)}(4g) 2™
= 270, f, @ u(2/2) — fol[@u]i(2) -

Hence f|[a,)i(2) = a,,@.,(49)"* (2 *a,f(2/2) — f(2)). By (ii}), we have
@@, = (49)** and a,@, = 2¥7'. Therefore we obtain the desired result.

ProrosiTION 1.8. Under the same conditions as in Proposition 1.1,
we have f|[a,], = i@, " 2f P, where f'9(2) = Doy al? € is a primi-
tive form with

(L)e, if Bo=1,
al? = q
? A\ . _
(=%)a, i w2 =1
p
for every prime p.
In order to prove Proposition 1.3, we need the following lemmas.

LemmaA 1.1. T(p, (Dea,=G)e,T(p, (¥)) for every prime p(+q) and
T(p, Da, = G T(p, (D) for every prime p(=+2).

LEMMA 1.2. Let f(z) = Do, a6 be a primitive form of S,(I"((4q),
(D). Then f'2 isalso a primitive form of Su(I',(4q), () and f2|T(p, (¥))=
al? £ for every prime p.

These lemmas can be proved by an argument similar to that of Asai
[1] and we omit the details of the proofs.

PROOF OF PROPOSITION 1.3. By Lemmas 1.1 and 1.2, we have f|[«,].=
Af@, For each heZ/qZ (#1 (mod q)), we can take je Z/qZ such that
J + 4h&) = 1 (mod q). Then we can see

o of=lo 2o

* *
with o;e€I'(4q) and o; = <* g0 — 4§'j) so that

(o 7) = (7)-

If h = 1(mod q), then 6 $>aq = o’a,,(% 2) with ¢’ e I',(4q) and

“=( gl
* qu1_45/
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()= (3)-

Now, by the definition of the Hecke operator 7(g, (%)), we have

£1T@, () lla). = ¢ me Zﬂ [,
o el wolllo g
R R EC L

— qk/z—-l i a, {i“ (%')ekinj/q} e2:mz + qk—l(%‘))\: 200‘4 a;’q)e?xi'nqz .
n=1 3=1 n=1

so that

h=
h#1

ke |
=q ZO f

-

o

— qk/2—1{' 1f

.
Il

On the other hand, we see that

f1T(q, (g))l[aq]k = a,f |[a]. = an gla;‘q)ezzmz .

Comparing two Fourier expansions, we obtain the required result.

2. Maass’ theta function. We consider the real quadratic field F =
Q(V4q) of class number one. Let &, (meZ) be a Grossen character of
F defined by £,(a) = |a/a’|™ /s for an ideal a = (a), where &(>1) is the
fundamental unit in F. Let g¢g(z; &.) be a real analytic automorphic
function attached to the L-function of F, that is,

9(2; &n) = Ce, ¥ + Y X En(@ K, mrjioge,(2TN(Q)y) X (€752 4 ghrtN(z) |
where z = ¢ + 1y € . It is well-known (Maass [6]) that ¢(z; £,) has the
following properties:

(1) g(z; &.)=0(y*)(resp. 0(y~%)) uniformly in x, as y — co(resp. y —0),
where 0,6’ > 0,

(2) g(v(2); &) = (D9(z; &,) for each
7= ( ;)erouq),
and

(3) 9(@,,(2); &n) = 9(2; En) -

Let M be a positive integer with M|4q and M =+ 2, 2¢ and define the
function ¢g‘*(z; &,) by



DOI-NAGANUMA LIFTING 201

9" (%; &n) = ex(CEOY” + y' % V() m(@) K,z /105, (2T N(@)y)
X(eZKiN(a)z + 3Me——2m:1v(a)z)) s
where

1 if M=1 or 4q, 5 _{ 1 if M=1 or 4q,
i if M=4 or gq, Y l=1 if M=4 or g,

Exy =

Py =1if M =1 or 4¢q and

(1\77;)> it py2

(%% if prgq

if M =4 and ¢q for each prime ideal .
By an argument similar to that in §1, we can obtain the following:

"I"M(‘p) =

PROPOSITION 2.

(1) glau(z); &n) = 97(2; 6a) Wf M =1,4,q or 4q,

(2) g(an(?); &n) = V' 2£,.(0)9(2/2; &) — 9(2; &,),
where Pt = (2).

3. Eisenstein-Epstein functions. We define S* and S as follows:
S* ={(a, B € Z*(a, B) =1, 2B+ 0} and S = S*U{(+1, 0)}U{(0, £1)}. Let
k be an even posititive integer and M a positive integer with M|4q. Put

EM(Z, S, k)Aq = (1/2)?/3 ( %S (/12 + ”)klﬂz + ”l“‘(28+k) ,

Hyy
[ (#,4q) | =4q| M

where z =x + ity and seC. The series on the right hand side is
absolutely convergent for Res > 1, and moreover it can be continued
analytically to the whole s-plane. We put

Ey(z, s, k)ylla). = ((cz + d)/|cz + d|) Ex(a(2), 3, k)

for all
b
@ = (“ )eGL;(R).
¢c d

We can prove the following lemma.

LEMMA 3.1.
( 1) Ez(zy 8, k)éq = K2, s, k)m I [azq]k:
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Eﬂ(zy 8, k)m = M"E'l(z, 3: k)!ql[all]k zf M = 1; 4; q or 4q ]
(2) Eyz, s, k)yllagd. = a7 Ey(2, 8, k)i
Proor. We shall prove (2). We put

St = {1, v) e S| |(¢, 49)| = 4q/M} .
Consider the isomorphism ¢: S — S% such that ¢(g, v) = (v, —(1/29)).
Then we have
Ey(z, 8, k)i |[a,]s
= (1/2)(z/lz)"(y/4q|2[*7 3 (p(—1/4q2) + v)*|p(—1/4gz) + p[7**P

(#,v) e 53

= (1/2)(z/|z])"(y/4q|2[) X (2 + v)[22)"| (12 + V')[2]"*Y

@iy e i

= q " Ey(2, s, k)«z ’
which completes the proof. Since we can prove (1) by an argument
similar to the proof of (2), we omit the details of the proof. In order

to get the functional equation of {E,(z, s, k)i}xni We define another
function E*(z, s, k) by

E*(z, 8, k) = 1/2)7*['(s + k/2)C(2s)y”< %s (pz + v)*|pz + p|~=0

where {(s) is the Riemann zeta function. We have the following (cf.
Shimura [7]).

LEMMA 3.2. The function E*(z, s, k) =n*I'(s + k/2)L(28) X Dy Eu(z,
s, k)., can be continued to the whole s-plane as an entire function satisfying
the functional equation

E*(z,8, k) = E*(z,1 — 8, k) .
4. Rankin’s method and the Doi-Naganuma lifting. Let f(z) =

S a(n)e*™"* be a primitive form in S,(I",(49), (¥)) and put
1 if M=1,4,q or 4q,
2 if M=2q or 2.
For each integral ideal a of F, we define C, in the following manner:
For a prime ideal p in F, we put

C, =Gy =a(p) if pp'=(p) and p+y,

C, =a(p) +2p*" if p=(p),

C, =a(p) +a(p) if p= (),

(f llaxl)@) = 3\ aum)efe, , where oy =

and define
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Cn = Cv'Cv""l - N(p)k_lC»‘_z (e=2),
C,=I;[C,;i if a=[‘Ip§‘.
Put D(s; &) = X En(@C,N(0)™* and
D*(s; £,) = 2r) *(4q)* (s + imn/log &) (s — immn/log &,)D(s; &,,) .
We can prove the following theorem.

THEOREM. In the above motations, D*(s; &,) can be continued to the
whole s-plane as an entire fumnction and it satisfies the functional
equation D*(s; &,) = D*(k — s; £€,). Furthermore,

D(s; &) = gla(n)n"g a(n)n* .
Proor. We put
where D,(4q) denotes a fundamental region for I"y(4¢q). Then we can isee
(x%%) D*(s") = n**D*(s; &,) (s=84+ (& —1)/2).

In fact, we have

Y2 f(2)9(z; ERE* (2, 8', k)y *dxdy ,
(49)

0

D*(s") = (49)” %;GIM(s’) .
Here
I,(s") = (4g)'n*I'(s" + k/2)C(2s')SD “q)y"/zf(z)g(z; ENE (2, 8, k) ytdxdy .

First, we compute I(s’). By Lemma 3.1 (1), we have

I,(s") = (49)*' 28"\ n~*'['(s" + K/2) SDO(M):I/”“f (2)9(z; &)

X E,(z, 8, k)4 | [y *dxcdy

= oy @ T kD |y
X g(#; én) @'l X Ey(z, 8, k) y~*dedy .

Since a,, normalizes I'(4q), we have
I,(8") = (49)"C(28"m " I'(s" + k/2) SDW)y"”f | [z Teg (g (2); &)
X E\(2, 8, k), y *dxdy
= U9 @)mTE + kf2) | | £l 0@ @) &)

X y* TR 2dady |
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By Proposition 2, we have the following (cf. [3]):
I(s") = n**(4q)*22r)~*I (s + 1mx/log &) (s — imn/log &,)q~°2~°
XEudE28 = b + 1) Sy aum)( 3 £u@)n .
n=1 N(a)=n

Next, by virtue of Lemma 3.1 (2), we see that

L) = 4@ TE + i2) || v f @) &)
X By, 8, k)| [y *dady
— 4@ T TS + k/2) S
X Ey(z, 8, k), y *dady
= gFr4 V2 2m) 2T (s + imn/log &) (s — immn/log &,)27°¢,.(¥,)
xC@s =k +1) 3 am) (% ca@)n.
By a similar argument, we obtain
I,(s) = w**(4q|M)*V22r)~*I (s + imm[log &) (s — imm/log &,)ex
X (/M) @5 — b + 1) Sy axm)( | 3 en@ria(@ )n

for M =1,4,q or 4q. Moreover, by the propositions in §1, we have
(#++) and we are done. We omit the details of the remainder of the
argument.

))y"”f (2)9(2); &) | [aid]e

@4,(Do(4g

As a corollary we have

COROLLARY. Suppose that f is a primitive form in S,(I",(4q), ().
Then

2,1a(n)n“ 2{ a(m)n

18 the Dirichlet series associated with a Hilbert modular cusp form of
weight k with respect to GL,(Oy).
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