THE FIRST EIGENVALUE OF THE LAPLACIAN ON SPHERES

Shûkichi Tanno

(Received April 25, 1978, revised May 19, 1978)

1. Introduction. Let $\left(S^{2}, h\right)$ be a 2 -dimensional sphere with metric h, and let $\lambda_{0}=0<\lambda_{1}=\lambda_{1}(h) \leqq \lambda_{2} \leqq \cdots$ be eigenvalues of the Laplacian Δ on (S^{2}, h) acting on smooth functions. J. Hersch [3] showed that

$$
\begin{equation*}
1 / \lambda_{1}+1 / \lambda_{2}+1 / \lambda_{3} \geqq(3 / 8 \pi) \operatorname{Vol}\left(S^{2}, h\right) \tag{*}
\end{equation*}
$$

holds, and in particular

$$
\begin{equation*}
\lambda_{1}(h) \operatorname{Vol}\left(S^{2}, h\right) \leqq 8 \pi, \tag{**}
\end{equation*}
$$

where $\operatorname{Vol}\left(S^{2}, h\right)$ denotes the volume of S^{2} with respect to h. Equality in (*) or (**) holds if and only if h is a constant curvature metric.
M. Berger [1] showed that (*) cannot be generalized for (S^{m}, h), $m \geqq 3$. With respect to (**), M. Berger [1] posed a problem: Let M be a compact smooth manifold; then does there exist a constant $k(M)$ depending only on M such that the first eigenvalue $\lambda_{1}(h)$ of the Laplacian satisfies
(***)

$$
\lambda_{1}(h) \operatorname{Vol}(M, h)^{2 / m} \leqq k(M)
$$

for any Riemannian metric h ?
H. Urakawa [5] showed the following: Let G be a compact connected Lie group with a non-trivial commutator subgroup; then there exists a family of left invariant Riemannian metrics $g(t)(0<t<\infty)$ on G such that

$$
\begin{cases}\lambda_{1}(g(t)) \rightarrow \infty & \text { as } \tag{****}\\ \lambda_{1}(g(t)) \rightarrow 0 & \text { as } \\ t \rightarrow 0\end{cases}
$$

and $\operatorname{Vol}(G, g(t))=$ constant. In particular, since $S U(2)$ is diffeomorphic to S^{3}, there exists no constant $k\left(S^{3}\right)$ for a 3 -dimensional sphere S^{3} such that (***) holds.

The purpose of this paper is to prove that for any odd dimensional sphere $S^{2 n+1}$ there exists no constant $k\left(S^{2 n+1}\right)$ such that (***) holds. Namely we show the following.

Theorem. Any odd dimensional sphere $S^{2 n+1}, n \geqq 1$, admits a family of Riemannian metrics $g(t)(0<t<\infty)$ such that the first
eigenvalue $\lambda_{1}(g(t))$ of the Laplacian satisfies (****) and $\operatorname{Vol}\left(S^{2 n+1}, g(t)\right)=$ constant.
2. Definition of $g(t)$. Let E^{m+1} be a Euclidean $(m+1)$-space and $C E^{n+1}$ be a complex Euclidean $(n+1)$-space. Let ($\left.S^{m}, g\right)(m=2 n+1 \geqq 3)$ be a unit sphere in E^{m+1} with the induced metric g and let ξ be a natural Sasakian structure on $\left(S^{m}, g\right)$. That is, ξ is a unit Killing vector field with respect to g on S^{m} such that, for $x \in E^{m+1} \cap S^{m}$, two vectors x and ξ_{x} determine a holomorphic plane in E^{m+1} with respect to the complex structure of $C E^{n+1}=E^{m+1}$. Let η be the 1 -form on S^{m} dual to ξ with respect to g. We define a one parameter family of Riemannian metrics $g(t)$ by

$$
\begin{equation*}
g(t)=t^{-1} g+\left(t^{m-1}-t^{-1}\right) \eta \otimes \eta, \quad 0<t<\infty . \tag{2.1}
\end{equation*}
$$

Easily we get
Lemma 2.1. Volume elements with respect to $g(t)$ and $g(1)=g$ are identical; $d S^{m}(g(t))=d S^{m}(g)$, and $\operatorname{Vol}\left(S^{m}, g(t)\right)=\operatorname{Vol}\left(S^{m}, g\right)$.

From now on by $d S^{m}$ we denote both of the volume elements.
By ($g^{j k}$) we denote the inverse matrix of ($g_{2 j}$) in a local coordinate neighborhood $\left(U, x^{i}\right)$. By ∇ and Δ we denote the Riemannian connection and the Laplacian with respect to g. We also write ${ }^{(t)} g$ instead of $g(t)$. $\quad\left({ }^{(t)} g^{j k}\right),{ }^{(t)} \nabla$ and ${ }^{(t)} \Delta$ etc. denote ones with respect to ${ }^{(t)} g$. The relation between $\left({ }^{(t)} g^{j k}\right)$ and $\left(g^{j k}\right)$ is given by (cf. S. Tanno [4], p. 702)

$$
\begin{equation*}
{ }^{(t)} g^{j k}=t g^{j k}-t\left(1-t^{-m}\right) \xi^{j} \xi^{k} . \tag{2.2}
\end{equation*}
$$

The difference $W_{j k}^{i}={ }^{(t)} \Gamma_{j k}^{i}-\Gamma_{j k}^{i}$ of the Christoffel's symbols is given by ([4], p. 702)

$$
W_{j k}^{i}=\left(1-t^{m}\right)\left(\phi_{j}^{i} \eta_{k}+\eta_{j} \phi_{k}^{i}\right),
$$

where $\phi_{j}^{i}=-\nabla_{j} \xi^{2}$. Note that $\phi \xi=0$ and hence,

$$
g^{j k} W_{j k}^{i}=0, \quad \xi^{j} \xi^{k} W_{j k}^{i}=0
$$

Let f be a function on S^{m} and put $d f=\left(f_{i}\right)=\left(\partial f / \partial x^{2}\right)$. Then

$$
{ }^{(t)} \Delta f={ }^{(t)} g^{j k}{ }^{(t)} \nabla_{j} f_{k}
$$

By (2.2) and ${ }^{(t)} \nabla_{j} f_{k}=\nabla_{j} f_{k}-W_{j k}^{r} f_{r}$, we get

$$
\begin{equation*}
{ }^{(t)} \Delta f=t \Delta f-t\left(1-t^{-m}\right) L_{\xi} L_{\xi} f, \tag{2.3}
\end{equation*}
$$

where L_{ξ} denotes the Lie derivation by ξ and

$$
L_{\xi} L_{\xi} f=\nabla_{j} f_{k} \xi^{j} \xi^{k}
$$

3. Eigenfunctions on $\left(S^{m}, g\right)$. Contrary to the case of the introduction, we denote by λ_{k} the k-th eigenvalue with multiplicity $\mu\left(\lambda_{k}\right)$. Then, (cf. for example, [2])

$$
\begin{gathered}
\operatorname{Spec}\left(S^{m}, g\right)=\left\{\lambda_{k}=k(m+k-1) ; k=0,1,2, \cdots\right\}, \\
\mu\left(\lambda_{k}\right)=\binom{m+k}{k}-\binom{m+k-2}{k-2} ; k \geqq 2,
\end{gathered}
$$

$\mu\left(\lambda_{0}\right)=1$ and $\mu\left(\lambda_{1}\right)=m+1$. Let $\left\{\varphi_{k, v}\right\}$ be a complete basis of the space of smooth functions on $S^{m}, m=2 n+1$, such that

$$
\begin{aligned}
& \Delta \varphi_{k, v}+\lambda_{k} \varphi_{k, v}=0, \quad v=1,2, \cdots, \mu\left(\lambda_{k}\right) \\
& \left\langle\varphi_{k, v}, \varphi_{j, r}\right\rangle=\delta_{k j} \delta_{v r},
\end{aligned}
$$

where $\left\langle f_{1}, f_{2}\right\rangle=\int f_{1} f_{2} d S^{m}$ for functions f_{1} and f_{2}.
By $V\left(\lambda_{k}\right)$ we denote the eigenspace corresponding to the eigenvalue λ_{k}.

With respect to the complex projective space ($C P^{n}, g_{0}$) with the Fubini-Study metric g_{0} of constant holomorphic sectional curvature 4, it is known that

$$
\begin{gathered}
\operatorname{Spec}\left(C P^{n}, g_{0}\right)=\left\{\kappa_{q}=4 q(n+q) ; q=0,1,2, \cdots\right\}, \\
\mu\left(\kappa_{q}\right)=\binom{n+q}{q}^{2}-\binom{n+q-1}{q-1}^{2}, q \geqq 1
\end{gathered}
$$

Let $W\left(\kappa_{q}\right)$ denote the subspace of $V\left(\lambda_{2 q}\right)$ which is invariant by $\exp s \xi$, that is, each element of $W\left(\kappa_{q}\right)$ is a lift of an eigenfunction corresponding to the q-th eigenvalue $\kappa_{q}=\lambda_{2 q}$ of the Laplacian on $C P^{n}$, by the Hopf fibration;

$$
\pi:\left(S^{2 n+1}, g\right) \rightarrow\left(C P^{n}, g_{0}\right)=\left(S^{2 n+1} / \xi, g_{0}\right)
$$

Let ($x^{\alpha}, y^{\alpha} ; \alpha=1, \cdots, n+1$) be coordinates in $E^{m+1}=C E^{n+1}$. For a point $x=\left(x_{0}^{\alpha}, y_{0}^{\alpha}\right)$ of $S^{m}, J x$ is given by

$$
J x=\left(y_{0}^{\alpha},-x_{0}^{\alpha}\right),
$$

where J is the complex structure of $C E^{n+1}$. Then the trajectory $l=\{l(s)\}$ of ξ passing through the point x is a great circle of S^{m} and is given by

$$
l(s)=\left(x_{0}^{\alpha} \cos s+y_{0}^{\alpha} \sin s, y_{0}^{\alpha} \cos s-x_{0}^{\alpha} \sin s\right)
$$

Let f be a function in $V\left(\lambda_{k}\right)$. Since f is the restriction $F \mid S^{m}$ of a harmonic homogeneous polynomial F of degree k in E^{m+1}, writing down F and substituting $l(s)$, we see that $f(s)=F(s)=F(l(s))$ is of the form;

$$
\begin{equation*}
f(s)=\sum_{\nu=0}^{k} Q_{\nu} \cos ^{\nu} s \sin ^{k-\nu} s \tag{3.1}
\end{equation*}
$$

where Q_{ν} are constants depending on l.
Now operating L_{ξ} to $\Delta f+\lambda_{k} f=0$ and noticing that L_{ξ} and Δ commute, we see that L_{ξ} is a linear transformation of $V\left(\lambda_{k}\right)$. By Green's theorem we get

$$
\left\langle L_{\xi} f, h\right\rangle=\int \xi^{i} f_{\imath} h d S^{m}=-\int \xi^{i} f h_{i} d S^{m}
$$

and hence, $\left\langle L_{\xi} f, h\right\rangle+\left\langle f, L_{\xi} h\right\rangle=0$ holds for any C^{1}-functions f and h. Therefore L_{ξ} is a skew-symmetric linear transformation of $V\left(\lambda_{k}\right)$.

Lemma 3.1. For each eigenvalue λ_{k} of $\Delta, V\left(\lambda_{k}\right)$ has the orthogonal decomposition [here we do not care if some $V_{\theta}\left(\lambda_{k}\right)$ is trivial or not]:

$$
\begin{equation*}
V\left(\lambda_{k}\right)=V_{k}\left(\lambda_{k}\right)+V_{k-2}\left(\lambda_{k}\right)+\cdots+V_{k-2[k / 2]}\left(\lambda_{k}\right), \tag{3.2}
\end{equation*}
$$

where $[k / 2]$ is the integral part of $k / 2$, and for $\varphi \in V_{\theta}\left(\lambda_{k}\right), \theta=k-2 p$,

$$
\begin{equation*}
L_{\xi} L_{\xi} \varphi+(k-2 p)^{2} \varphi=0, \quad 0 \leqq p \leqq[k / 2] . \tag{3.3}
\end{equation*}
$$

Proof. Since L_{ξ} is a skew-symmetric transformation of $V\left(\lambda_{k}\right)$, each non-zero eigenvalue of L_{ξ} is purely imaginary. Hence, each eigenvalue of $L_{\xi} L_{\xi}$ is real and non-positive. Let f be an eigenfunction of $L_{\xi} L_{\xi}$;

$$
\begin{equation*}
L_{\xi} L_{\xi} f+\theta^{2} f=0, \quad \theta \geqq 0 \tag{3.4}
\end{equation*}
$$

Solving (3.4) on $l=\{l(s)\}$, we get

$$
\begin{equation*}
f(s)=b \sin (\theta s+c) \tag{3.5}
\end{equation*}
$$

where b and c are constants depending on l. (3.1) and (3.5) imply that θ is of the following form;

$$
\theta=k, k-2, \cdots, k-2[k / 2]
$$

according as the expression of (3.1) reduces to the lower degree. Here, $\theta=k-2 p$ means that the degree of the reduced expression of (3.1) is equal to $k-2 p$ for some l and $\leqq k-2 p$ for any l. Denoting by $V_{\theta}\left(\lambda_{k}\right)$ the eigenspace of $L_{\xi} L_{\xi}$ corresponding to $-\theta^{2}=-(k-2 p)^{2}$, we have the decomposition (3.2).
q.e.d.

Remark 1. We show that $V_{k}\left(\lambda_{k}\right) \neq\{0\}$. Let F be a harmonic homogeneous polynomial of degree k in $E^{m+1}\left(x^{\alpha}, y^{\alpha}\right)$ such that

$$
F=F\left(x^{1}, x^{2}\right)=\left(x^{1}\right)^{k}+a_{1}\left(x^{1}\right)^{k-1}\left(x^{2}\right)+\cdots+a_{k}\left(x^{2}\right)^{k}
$$

Take the trajectory l of ξ passing through the point $(1,0, \cdots, 0)$. Then l lies in the (x^{1}, y^{1})-plane (i.e., $x^{2}=0$) and $F(s)=F(l(s))$ is of degree k.

Remark 2. We show that $V_{1}\left(\lambda_{k}\right) \neq\{0\}$ (in this case $k=o d d$) and $V_{2}\left(\lambda_{k}\right) \neq 0$ (in this case $k=$ even) for $m=2 n+1 \geqq 5$. We extend ξ to a vector field " ξ on E^{m+1} by

$$
{ }^{\#} \xi=y^{\alpha}\left(\partial / \partial x^{\alpha}\right)-x^{\alpha}\left(\partial / \partial y^{\alpha}\right) .
$$

Then $L_{\left({ }^{*} \xi\right)} F=0$ if and only if $L_{\xi}\left(F \mid S^{m}\right)=0$ for any homogeneous polynomial F in E^{m+1}. For each $2 q$, let F be a (non-trivial) harmonic homogeneous polynomial of degree $2 q$ in E^{m+1} such that

$$
\begin{aligned}
& F=F\left(x^{1}, \cdots, x^{n}, y^{1}, \cdots, y^{n}\right) \\
& L_{\left({ }^{*} \xi\right)} F=0
\end{aligned}
$$

Existence of such an F is seen by considering the Hopf fibration $\pi: S^{m-2} \rightarrow C P^{n-1}$. We put

$$
F^{*}=x^{n+1} F, \quad * F=x^{n+1} y^{n+1} F
$$

Since

$$
\partial F / \partial x^{n+1}=\partial F / \partial y^{n+1}=0
$$

we see that F^{*} is a harmonic homogeneous polynomial of degree $2 q+1$, and ${ }^{*} F$ is a harmonic homogeneous polynomial of degree $2 q+2$ in E^{m+1}. By $L_{\left({ }_{\left(\tilde{\xi}_{\xi}\right)} F\right.} F=0$, we see that $F^{*}(s)$ is of degree 1 , and ${ }^{*} F(s)$ is of degree 2. Thus, for $k=2 q+1, V_{1}\left(\lambda_{k}\right) \neq\{0\}$, and for $k=2 q+2, V_{2}\left(\lambda_{k}\right) \neq\{0\}$.

REMARK 3. For $m=3$ we show that $V_{1}\left(\lambda_{3}\right) \neq\{0\}$ and $V_{2}\left(\lambda_{4}\right) \neq\{0\}$. First we notice that $L_{\left({ }_{(\#)}^{*}\right)} F=0$, where

$$
F=a\left[\left(x^{1}\right)^{2}+\left(y^{1}\right)^{2}\right]+b\left[\left(x^{2}\right)^{2}+\left(y^{2}\right)^{2}\right]
$$

Next we verify that, if $b=-2 a, x^{1} F$ is a harmonic homogeneous polynomial of degree 3 in E^{4}, and $\left(x^{1} F\right)(s)$ is of degree 1 . Similarly, if $b=-a, x^{1} x^{2} F$ is a harmonic homogeneous polynomial of degree 4 in E^{4}, and $\left(x^{1} x^{2} F\right)(s)$ is of degree 2 .

Remark 4. For $k=2 q, V_{0}\left(\lambda_{k}\right)=W\left(\kappa_{q}\right) \neq\{0\}$. So, by above remarks we see that in the decompositions;

$$
\begin{aligned}
& V\left(\lambda_{1}\right)=V_{1}\left(\lambda_{1}\right) \\
& V\left(\lambda_{2}\right)=V_{2}\left(\lambda_{2}\right)+V_{0}\left(\lambda_{2}\right) \\
& V\left(\lambda_{3}\right)=V_{3}\left(\lambda_{3}\right)+V_{1}\left(\lambda_{3}\right) \\
& V\left(\lambda_{4}\right)=V_{4}\left(\lambda_{4}\right)+V_{2}\left(\lambda_{4}\right)+V_{0}\left(\lambda_{4}\right),
\end{aligned}
$$

all subspaces are non-trivial.
4. Eigenfunctions on $\left(S^{m}, g(t)\right)$. Let $\left\{\varphi_{k, v}\right\}$ be a complete orthonormal
base stated in Section 3. By Lemma 3.1 we can assume that each $\varphi_{k, v}$ is contained in some $V_{\theta}\left(\lambda_{k}\right)$ in (3.2).

Lemma 4.1. Each eigenfunction $\varphi_{k, v}$ of Δ corresponding to λ_{k} is also an eigenfunction of ${ }^{(t)} \Delta$ corresponding to

$$
\begin{equation*}
t \lambda_{k}-t\left(1-t^{-m}\right)(k-2 p)^{2}, \quad 0 \leqq p \leqq[k / 2] \tag{4.1}
\end{equation*}
$$

according as $\varphi_{k, v} \in V_{k-2 p}\left(\lambda_{k}\right)$.
In particular, each eigenvalue of ${ }^{(t)} \Delta$ takes the above form.
Proof. (4.1) follows from (2.3) and (3.3). Since $\left\{\varphi_{k, v}\right\}$ is also a complete orthonormal base of the space of smooth functions on S^{m} with respect to $g(t)$, and since each $\varphi_{k, v}$ is an eigenfunction of ${ }^{(t)} \Delta, \operatorname{Spec}\left(S^{m}, g(t)\right)$ is given by eigenvalues for $\left\{\varphi_{k, v}\right\}$ (cf. [2], Lemma A.II. 1, p. 143).

Proposition 4.2. The first eigenvalue of $\left(S^{m}, g(t)\right), m=2 n+1$, is given by

$$
\lambda_{1}(g(t))= \begin{cases}\left(2 n+t^{-m}\right) t & \text { for } \quad t^{-m} \leqq m+3 \\ 4(n+1) t & \text { for } \quad t^{-m} \geqq m+3\end{cases}
$$

In particular,

$$
2 n t<\lambda_{1}(g(t)) \leqq 4(n+1) t, \quad 0<t<\infty .
$$

Proof. Since $\lambda_{k}=k(m+k-1)$, by (4.1) the first (non-zero) eigenvalue can be found among

$$
\begin{array}{lc}
\text { (i) } t k(m+k-1)-t\left(1-t^{-m}\right) k^{2} & k \geqq 1, \\
\text { (ii } t k(m+k-1)-t\left(1-t^{-m}\right) & k=\text { odd } \geqq 1, \\
\text { (iii) } t k(m+k-1) & k=\text { even } \geqq 2 .
\end{array}
$$

The minimum for (i), (ii) is given by $t\left(m-1+t^{-m}\right)$, and the minimum for (iii) is given by $2 t(m+1)$.
q.e.d.
5. Remarks. (a). In Proposition 4.2 the multiplicity of $\left(2 n+t^{-m}\right) t$ for $t^{-m}<m+3$ is $\mu\left(\lambda_{1}\right)=m+1$. The multiplicity of $4(n+1) t$ for $t^{-m}>m+3$ is

$$
\operatorname{dim} V_{0}\left(\lambda_{2}\right)=\mu\left(\kappa_{1}\right)=\binom{n+1}{1}^{2}-1=n(n+2)
$$

The multiplicity of $4(n+1) t$ for $t^{-m}=m+3$ is equal to the sum of the above two; $n^{2}+4 n+2$. Thus,

There exists a Riemannian metric on $S^{m}(m=2 n+1)$ such that the first eigenvalue has multiplicity $\left(m^{2}+6 m+1\right) / 4$.

There is a natural problem: What is the maximum of multiplicity
of the first eigenvalue of the Laplacian (for fixed dimension m of compact manifolds)?
(b). M. Berger [1] showed the existence of a Riemannian metric h on $S^{m}, m \geqq 3$, such that, for the first $m+1$ eigenvalues $0<\lambda_{1} \leqq \lambda_{2} \leqq$ $\cdots \leqq \lambda_{m+1}$,

$$
\begin{equation*}
\sum_{j=1}^{m+1} \frac{1}{\lambda_{j}}<\frac{m+1}{m} \cdot \frac{\operatorname{Vol}\left(S^{m}, h\right)^{2 / m}}{\operatorname{Vol}\left(S^{m}, g\right)^{2 / m}} \tag{5.1}
\end{equation*}
$$

holds, where g is a constant curvature metric. This is a counterexample to the natural generalization of (*) in the introduction.

For each odd dimensional sphere $S^{2 n+1}$, as a simple example of such a Riemannian metric h we may put $h=g(t)$ given by (2.1) where t is sufficiently near 1 . In fact, $\lambda_{1}(g(t))=\left(2 n+t^{-m}\right) t$ has multiplicity $m+1$, and

$$
\left(2 n+t^{-m}\right) t>m
$$

Thus, (5.1) holds for any $g(t) ; t^{-m}<m+3, t \neq 1$.

References

[1] M. Berger, Sur les premières valeurs propres des variétés riemanniennes, Compositio Math., 26 (1973), 129-149.
[2] M. Berger, P. Gauduchon et E. Mazet, Le spectre d'une variété riemannienne, Lect. Notes in Math. 194, Springer, 1971.
[3] J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, Compt. Rend. A. S. Paris, 270 (1970), 1645-1648.
[4] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700-717.
[5] H. Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, 31 (1979), 209-226.

Mathematical Institute
Tôhoku University
Sendai, 980 Japan

