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1. Introduction. Let (S2, h) be a 2-dimensional sphere with metric
h, and let λ0 = 0 < \ = \(h) ^ λ2 <; be eigenvalues of the Laplacian
Δ on (S2, h) acting on smooth functions. J. Hersch [3] showed that

(*) l/\ + l/λ2 + l/λ3 ^ (3/8π)Vol(S2, h)

holds, and in particular

(**) \(h)Vol(SM, h) S 8π ,

where Vol(S2, h) denotes the volume of S2 with respect to h. Equality
in (*) or (**) holds if and only if h is a constant curvature metric.

M. Berger [1] showed that (*) cannot be generalized for (Sm, h), m^>3.
With respect to (**), M. Berger [1] posed a problem: Let I be a
compact smooth manifold; then does there exist a constant k{M) depend-
ing only on M such that the first eigenvalue \{h) of the Laplacian
satisfies

(***) \(fc)Vol(ΛΓ, h)2/m ^ k(M)

for any Riemannian metric hi
H. Urakawa [5] showed the following: Let G be a compact connect-

ed Lie group with a non-trivial commutator subgroup; then there exists
a family of left invariant Riemannian metrics g(t) (0 < t < ©o) on G such
that

(\(g(t)) - > oo a s ί ^ o o ,

(\((t))>O as ί ^ O

and Vol(G, g(t)) = constant. In particular, since SU(2) is diffeomorphic
to S3, there exists no constant k(Ss) for a 3-dimensional sphere S3 such
that (***) holds.

The purpose of this paper is to prove that for any odd dimensional
sphere S2n+1 there exists no constant k(S2n+1) such that (***) holds.
Namely we show the following.

THEOREM. Any odd dimensional sphere S2n+\ n^l9 admits a
family of Riemannian metrics g(t) (0 < t < oo) such that the first
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eigenvalue \(g(t)) of the Laplacian satisfies (****) and Yo\(S2n+\ g(t)) =
constant.

2. Definition of g(t). Let Em+1 be a Euclidean (m + l)-space and
CEn+1 be a complex Euclidean (n + l)-space. Let (Sm, g) (m = 2w + 1 ^3)
be a unit sphere in Em+1 with the induced metric g and let ξ be a
natural Sasakian structure on (Sm, 0). That is, ξ is a unit Killing vector
field with respect to g on Sm such that, for x e Em+1 Π Sm, two vectors
x and £x determine a holomorphic plane in Em+1 with respect to the
complex structure of CEn+1 = Em+1. Let η be the 1-form on Sm dual to
ξ with respect to g. We define a one parameter family of Riemannian
metrics g(t) by

(2.1) flr(ί) = r ^ + (t -1 - r 1 ) ^ <g> 77, 0 < t< 00 .

Easily we get

LEMMA 2.1. Volume elements with respect to git) and g{l) — g are
identical; dSm(g(t)) = dSm(g), and Vol(Sm, g(t)) = Vol(Sw, g).

From now on by dSm we denote both of the volume elements.
By (gjk) we denote the inverse matrix of (gtS) in a local coordinate

neighborhood {U^x1). By V and Δ we denote the Riemannian connec-
tion and the Laplacian with respect to g. We also write {t)g instead of
g(t). ( (V fc), WV and WA etc. denote ones with respect to {t)g. The
relation between ({t)gjk) and (gjk) is given by (cf. S. Tanno [4], p. 702)

(2.2) ( ί y * = tg>k - ί(l - t~m)ζψ .

The difference W% = (t)Γjfc — ΓJfc of the ChristoffeΓs symbols is given by

([4], p. 702)

where <j>)=—V£\ Note that φξ = 0 and hence,

^' f cT7} f c-0, ^ f cΐ7} f c = 0 .

Let / be a function on Sm and put df = (/4) = (df/dxι). Then

By (2.2) and < % / t = FJk - W?kfr, we get

(2.3) wAf = ί J / - ί(l - t-™)LζLζf ,

where L f denotes the Lie derivation by ξ and
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3. Eigenfunctions on (Sm, g). Contrary to the case of the introduc-
tion, we denote by λ* the &-th eigenvalue with multiplicity μ(Xk). Then,
(cf. for example, [2])

Spec(S™, g) = {Xk = k(m + k - 1); k = 0, 1, 2, . . .} ,

(m + k\ Im + k - 2\

μ(λ0) = 1 and μ(Xt) = m + 1. Let {%,„} be a complete basis of the space
of smooth functions on Sm, m = 2% + 1, such that

4?>*,. + λΛ%,v - 0 , v - 1, 2, , μ ( λ j

(<Pktv, <Pj,r) = ^ Λ r ,

where (f19f2) = \/i/2ώSw for functions /i and / 2.

By V(Xk) we denote the eigenspace corresponding to the eigenvalue

With respect to the complex protective space (CPn, gQ) with the
Fubini-Study metric g0 of constant holomorphic sectional curvature 4, it
is known that

Spec(CP*, <70) - {fcq = 4g(^ + q); q = 0, 1, 2, ..} ,

fn + qV (n + q-lV

Let W(fCg) denote the subspace of V(\g) which is invariant by exp sξ,
that is, each element of W(ιcq) is a lift of an eigenfunction correspond-
ing to the tf-th eigenvalue tzq = X2q of the Laplacian on CPn, by the Hopf
fibration;

π: (S*n+\ g) -> (CP\ gQ) = (S-+ 1/f, Qo) .

Let (^α, i/α; α = 1, , n + 1) be coordinates in Em+1 = CEn+1. For
a point α = « , j/f) of Sm, Jo? is given by

Jx = (Vof -Xo) ,

where J is the complex structure of CEn+1. Then the trajectory
I = {ί(s)} of £ passing through the point x is a great circle of Sm and is
given by

l(s) — (as? cos s + i/? sin s, #? cos s — as? sin s) .

Let / be a function in F(λfc). Since / is the restriction F\Sm of a
harmonic homogeneous polynomial F of degree k in i£m + 1, writing down
F and substituting ί(s), we see that f(s) = F(β) = -P(Z(β)) is of the form;
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(3.1) /(s) = Σ Q_ cos's sin^s ,

where Qu are constants depending on I.
Now operating Lξ to J / + \kf = 0 and noticing that Le and J

commute, we see that Lζ is a linear transformation of F(λfc). By Green's
theorem we get

= j
and hence, <L f/, fe> + </, L€Λ> = 0 holds for any C'-functions / and h.

Therefore Lξ is a skew-symmetric linear transformation of V(Xk).

LEMMA 3.1. For each eigenvalue Xk of Δ, V(Xk) has the orthogonal
decomposition [here we do not care if some Vθ(Xk) is trivial or not]:

(3.2) V(Xk) = Vk(Xk) + VUXk)+ + V*_lC*/.](λ*) f

where [k/2] is the integral part of k/2, and for φ 6 Vθ(\), θ — k — 2p,

(3.3) LξLξφ + (k - 2p)2φ = 0 , 0 ^ p ^ [fc/2] .

PROOF. Since Lξ is a skew-symmetric transformation of F(λfc), each
non-zero eigenvalue of L f is purely imaginary. Hence, each eigenvalue
of LζLξ is real and non-positive. Let / be an eigenfunction of LξLξ;

(3.4) LζLJ

Solving (3.4) on I = {l(s)}, we get

(3.5) f(s) = b sin (θs + c) ,

where b and c are constants depending on I. (3.1) and (3.5) imply that
θ is of the following form;

θ = k, k - 2 , ••.,&- 2[fc/2]

according as the expression of (3.1) reduces to the lower degree. Here,
θ = fe — 2p means that the degree of the reduced expression of (3.1) is
equal to k — 2p for some I and <*k — 2p for any Z. Denoting by Vθ(\)
the eigenspace of LξLζ corresponding to —θ2=—(k — 2p)2, we have the
decomposition (3.2). q.e.d.

REMARK 1. We show that Vk(Xk) Φ {0}. Let F be a harmonic
homogeneous polynomial of degree k in Em+1(xa, ya) such that

F = F(x\ x2) = (x1)* + a1(x1)k-\x2)+ . . +αΛ(x 2) f c .

Take the trajectory I of £ passing through the point (1,0, •••,0). Then
I lies in the (x\ ί/O-plane (i.e #, x* = 0) and F(s) = F(l(s)) is of degree k.
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REMARK 2. We show that VΊ(λfc) Φ {0} (in this case k = odd) and
V2(\) Φ 0 (in this case k = even) for m = 2n + 1 ^ 5. We extend £ to
a vector field *ξ on £7m+1 by

*£ = ya{djdxa) - x%d/dy«) .

Then L{*ξ)F = 0 if and only if L^ίΊS 1*) = 0 for any homogeneous poly-
nomial F in 2£*+1. For each 2q, let JP be a (non-trivial) harmonic homo-
geneous polynomial of degree 2q in Em+1 such that

L{*ξ)F = 0 .

Existence of such an F is seen by considering the Hopf fibration
π:Sm-2->CPn-\ We put

F* = xn+ίF , *JP = xn+1yn+1F .

Since

dF/dxn+1 = dF/dyn+1 = 0 ,

we see that ί7* is a harmonic homogeneous polynomial of degree 2q + 19

and *F is a harmonic homogeneous polynomial of degree 2q + 2 in J5rm+1.
By L{*ξ)F = 0, we see that .F*(s) is of degree 1, and *F(β) is of degree
2. Thus, for & = 2q + 1, Fx(λfc) Φ {0}, and for & = 2q + 2, F2(λfc) Φ {0}.

REMARK 3. For m = 3 we show that Fi(λ3) ^ {0} and F2(λ4) ^ {0}.
First we notice that L{*ξ)F = 0, where

Next we verify that, if b=— 2a, xιF is a harmonic homogeneous poly-
nomial of degree 3 in E\ and (aΛF)(8) is of degree 1. Similarly, if
b=—a, oΛΛP7 is a harmonic homogeneous polynomial of degree 4 in i£4,
and (xWFXs) is of degree 2.

REMARK 4. For & = 2q, V0(Xk) = T7(/c?) ^ {0}. So, by above remarks
we see that in the decompositions;

F(λ2) = F2(λ2) + F0(λ2) ,

= F3(λ3) + F,(λ3) ,

= F4(λ4) + F2(λ4) + F0(λ4) ,

all subspaces are non-trivial.

4. Eigenfunctions on (Sm, g(t)). Let {<pktV} be a complete orthonormal
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base stated in Section 3. By Lemma 3.1 we can assume that each φk>v

is contained in some Vθ(\) in (3.2).

LEMMA 4.1. Each eigenfunctίon φkiV of A corresponding to Xk is
also an eigenfunction of {t)Δ corresponding to

(4.1) tXk - t(l - t~m){k - 2p)2 , 0 ^ p ^ [k/2]

according as φktV e Vk_2p(Xk).
In particular, each eigenvalue of {t)Δ takes the above form.

•
PROOF. (4.1) follows from (2.3) and (3.3). Since {φkj is also a

complete orthonormal base of the space of smooth functions on Sm with
respect to g(t), and since each φk}Ό is an eigenfunction of (ί)zf, Spec(Sm, g(t))
is given by eigenvalues for {φktV} (cf. [2], Lemma A.IL 1, p. 143).

PROPOSITION 4.2. The first eigenvalue of (Sm, g(t)), m = 2n + 1, is
given by

U2n + t~m)t for t— ^ m + 3
XΛQit)) = 1

(4(n + l)ί for r m ^ m + 3 .

In particular,

2nt < \(g(t)) ^ 4(n + l)ί , 0 < t < oo .
PROOF. Since Xk = fc(m + & — 1), by (4.1) the first (non-zero) eigen-

value can be found among
( i ) tk(m + fc - 1) - *(1 - t~m)k2 k ^ 1 ,
(ii) tk(m + k - 1) - ί(l - r m ) fc = odd ^ 1 ,
(iii) tk(m + k — 1) fc = even ^ 2 .

The minimum for (i), (ii) is given by t(m — 1 + ί"m), and the minimum
for (iii) is given by 2t{m + 1). q.e.d.

5. Remarks, (a). In Proposition 4.2 the multiplicity of (2n + t~m)t
for t~m < m + 3 is μ(X,) = m + 1. The multiplicity of 4(w + l)ί for
r m > m + 3 is

/w + 1\2

dim F0(λ2) = μfa) = ί J - 1 = n(n + 2) .

The multiplicity of A(n + ϊ)t for t~m — m + 3 is equal to the sum of
the above two; n2 + An + 2. Thus,

There exists a Riemannian metric on Sm (m = 2n + 1) swcfc that the
first eigenvalue has multiplicity (m2 + 6m + l)/4.

There is a natural problem: What is the maximum of multiplicity
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of the first eigenvalue of the Laplacian (for fixed dimension m of com-
pact manifolds)?

(b). M. Berger [1] showed the existence of a Riemannian metric h
on Sm, m ^ 3, such that, for the first m + 1 eigenvalues 0 < \ <̂  λ2 <;

' ^ λm+1,

( 5 jx "ψ i_ < m + 1 β VolQS*, fe)2/w

holds, where g is a constant curvature metric. This is a counter-
example to the natural generalization of (*) in the introduction.

For each odd dimensional sphere S2n+\ as a simple example of such
a Riemannian metric h we may put h = g(t) given by (2.1) where t is
sufficiently near 1. In fact, \(g(t)) = (2n + ί"m)ί has multiplicity m + 1,
and

(2w + t~m)t > m .

Thus, (5.1) holds for any g(t); Γm < m + 3, t Φ 1.
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