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1. Introduction. Let (S? h) be a 2-dimensional sphere with metric
h, and let Ay =0 <\, = N(h) <\, < --- be eigenvalues of the Laplacian
4 on (S?% h) acting on smooth functions. J. Hersch [3] showed that

(*) /N + 1/n, + 1/N = (8/87)Vol(S?, k)
holds, and in particular
() M(h)VoI(S?, h) < 8,

where Vol(S? h) denotes the volume of S® with respeet to 2. Equality
in (*) or (xx) holds if and only if h is a constant curvature metric.

M. Berger [1] showed that (x) cannot be generalized for (S™, h), m=3.
With respect to (xx), M. Berger [1] posed a problem: Let M be a
compact smooth manifold; then does there exist a constant k(M) depend-
ing only on M such that the first eigenvalue M\,(h) of the Laplacian
satisfies

(%) M(R)VOl(M, h)™ < k(M)

for any Riemannian metric A?

H. Urakawa [5] showed the following: Let G be a compact connect-
ed Lie group with a non-trivial commutator subgroup; then there exists
a family of left invariant Riemannian metrics g(¢) (0 < t < ) on G such
that

M(g(E) > = a8 oo,
M(g(t) — 0 as t—0
and Vol(G, ¢g(t)) = constant. In particular, since SU(2) is diffeomorphic

to S?, there exists no constant k(S®) for a 3-dimensional sphere S* such
that (x+x) holds.

The purpose of this paper is to prove that for any odd dimensional
sphere S***' there exists no constant %(S*"*') such that (xxx) holds.
Namely we show the following.

(k)

THEOREM. Any odd dimensional sphere S*™,m=1, admits a
family of Riemannian metrics g(t) (0 <t < o) such that the first
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etgenvalue N (g(t)) of the Laplacian satisfies (xxxx) and Vol(S**, g(t))=
constant.

2. Definition of g(t). Let E™" be a Euclidean (m + 1)-space and
CE*** be a complex Euclidean (n + 1)-space. Let (S™, g) (m = 2n + 1=3)
be a unit sphere in E™*" with the induced metric g and let & be a
natural Sasakian structure on (S™, ¢). That is, £ is a unit Killing vector
field with respect to g on S™ such that, for x e E™* N S™, two vectors
2 and &, determine a holomorphic plane in E™' with respect to the
complex structure of CE™"* = E™*'. Let 7 be the 1-form on S™ dual to
& with respect to g. We define a one parameter family of Riemannian
metrics g(t) by
2.1) gt =t + (" —t RN, 0<t<oo .

Easily we get

LEMMA 2.1. Volume elements with respect to g(t) and g(1) = g are
identical; dS™(g(t)) = dS™(g), and Vol(S™, g(t)) = Vol(S™, g).

From now on by dS™ we denote both of the volume elements.

By (¢9°*) we denote the inverse matrix of (g,;) in a local coordinate
neighborhood (U, x¥). By / and 4 we denote the Riemannian connec-
tion and the Laplacian with respect to g. We also write *'g instead of
git). (Mgi), ®F and 4 etc. denote ones with respect to “'g. The
relation between (‘'¢?*) and (¢g7*) is given by (cf. S. Tanno [4], p. 702)

(2.2) (gik = ggit — Y1 — eIk
The difference Wi, = It — I't, of the Christoffel’s symbols is given by
([4], p. 702)
=0 —t") (M + 1iot) »

where ¢i=—V ;. Note that ¢ = 0 and hence,

Wi =0, FEWL=0.
Let f be a function on S™ and put df = (f,) = (9f/0x*). Then

©0Af = g O f, .

By (2.2) and “P,f, = V,f, — Wif, we get
(2.8) OAf =tdf —t(1 — t™™)L.L.f ,
where L. denotes the Lie derivation by & and

L.L.f = ijkEjEk .
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3. Eigenfunctions on (8™, g). Contrary to the case of the introduc-
tion, we denote by A, the k-th eigenvalue with multiplicity g£(\,). Then,
(ef. for example, [2])

Spee(S™, g) ={ =k(m + k —1); £ =0,1,2, ...},

#(Nk):(m+k>_<m+k—2>; k=2

k k—2
tnv) =1 and p(\,) = m + 1. Let {®,,} be a complete basis of the space
of smooth functions on S™, m = 2n + 1, such that
Ag)k,'v + x'It:q)k,'v = O ’ V= 17 2’ ct Yy #()’k)
<¢k.m @i,r> = 51:.7'31”' ’
where {f,, fo0> = S f.f:dS™ for functions f, and f,.
By V(\,) we denote the eigenspace corresponding to the eigenvalue
Mg
With respect to the complex projective space (CP*, g,) with the

Fubini-Study metric g, of constant holomorphic sectional curvature 4, it
is known that

Spec(CP*, g,) = {k, = 4q(n + ¢q); ¢ =0,1,2, ---},
n+q)\? n+q—1)\°
=" = (50 em
q qg—1

Let W(k,) denote the subspace of V(\,,) which is invariant by exp s¢,
that is, each element of W(k,) is a lift of an eigenfunction correspond-
ing to the ¢-th eigenvalue £, = \,, of the Laplacian on CP", by the Hopf

fibration;
m: (8", g) — (CP™, g,) = (S*™*"/&, g,) .
Let (%, y; 2 =1, -+, n + 1) be coordinates in E™** = CE"*'. For
a point z = (x5, y&) of S™, Jx is given by
Jr = (y5, —a7) ,

where J 1is the complex structure of CE*™. Then the trajectory
I = {I(s)} of ¢ passing through the point x is a great circle of S™ and is

given by
I(8) = (xfcoss + yssins, yscoss — x5 sins) .
Let f be a function in V(\,). Since f is the restriction F'|S™ of a

harmonic homogeneous polynomial F' of degree &k in E™*, writing down
F and substituting I(s), we see that f(s) = F(s) = F(I(s)) is of the form;
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3.1) fls) = E:; Q, cos*s sin*’s ,

where @, are constants depending on [.

Now operating L, to 4f + N\, f = 0 and noticing that L, and 4
commute, we see that L, is a linear transformation of V(»,). By Green’s
theorem we get

Lef, by = [erhasm= e rnas=,

and hence, {L.f, h) + {f, L:h> = 0 holds for any C'-functions f and h.
Therefore L. is a skew-symmetric linear transformation of V(\,).

LEMMA 3.1. For each eigenvalue N, of 4, V(\,) has the orthogonal
decomposition [here we do mot care if some Vy(\,) is trivial or not]:

(3.2) Vin) = Vi) + Vi) + =« + Vicaterai(M)
where [k/2] is the integral part of k/2, and for @€ V,(\), 0 = k — 2p,
(3.3) LLp+ (k—2p)p =0, 0=p=][k/2].

PROOF. Since L, is a skew-symmetric transformation of V(,), each
non-zero eigenvalue of L, is purely imaginary. Hence, each eigenvalue
of L.L, is real and non-positive. Let f be an eigenfunction of L.L.;

(3.4) L.L.f +6f=0, 0=0.
Solving (3.4) on I = {I(s)}, we get
(8.5) f(8) =bsin (s + ¢) ,

where b and ¢ are constants depending on I. (8.1) and (3.5) imply that
0 is of the following form;

0=k k—2 -,k — 2[k/2]

according as the expression of (8.1) reduces to the lower degree. Here,
0 = Ik — 2p means that the degree of the reduced expression of (8.1) is
equal to k¥ — 2p for some I and <k — 2p for any l. Denoting by V,(\.)
the eigenspace of L.L, corresponding to —&*=—(k — 2p)’, we have the
decomposition (3.2). g.e.d.

REMARK 1. We show that V,(\,) #{0}. Let F be a harmonic
homogeneous polynomial of degree &k in E™*(x* y*) such that

F = F(@, o) = @) + o @) @)+ +a) .

Take the trajectory I of ¢ passing through the point (1,0, -+, 0). Then
[ lies in the (z', y')-plane (i.e., 2* = 0) and F(s) = F(I(s)) is of degree k.
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REMARK 2. We show that V,(»,) # {0} (in this case k¥ = odd) and
V() # 0 (in this case k = even) for m =2n +1=5. We extend & to
a vector field *2 on E™* by

% = y*(0/ox*) — x*(0/0y*) -

Then L¢,F =0 if and only if L.(F|S™) = 0 for any homogeneous poly-
nomial F' in E™*. For each 2q, let F' be a (non-trivial) harmonic homo-
geneous polynomial of degree 2¢q in E™*' such that

F= F(xiy cee, X7, yly ct y“) ’

Ly )F=0.
Existence of such an F is seen by considering the Hopf fibration
w: S™2— CP*'. We put

F* — xn+1F , *F — xn+1yﬂ+1F .

Since

oFox*** = oF oy = 0,
we see that F'* is a harmonic homogeneous polynomial of degree 2¢q + 1,
and *F is a harmonic homogeneous polynomial of degree 2¢q + 2 in E™*.
By L¢,F =0, we see that F'*(s) is of degree 1, and *F(s) is of degree
2. Thus, for &k = 2q + 1, V,(\,) # {0}, and for k = 2q + 2, V,(\,) = {0}.

REMARK 8. For m =38 we show that V,(\;) # {0} and V,(»,) # {0}.
First we notice that L#,F = 0, where
F = a[(a') + (¥')] + d[(2*) + (¥°)] .

Next we verify that, if b= —2a, #'F is a harmonic homogeneous poly-
nomial of degree 8 in E*, and (2'F')(s) is of degree 1. Similarly, if
b= —a, x'2*F is a harmonic homogeneous polynomial of degree 4 in E*,
and (x'2*F')(s) is of degree 2.

REMARK 4. For k = 2q, V,(\) = W(k,) # {0}. So, by above remarks
we see that in the decompositions;
VW) = Vih),
V()'z) = Vzo\'z) + Voo\'z) ’
Vo\'a) = VaO"a) + V1(7\'s) ’
V()‘u) = V4(7\'4) + Vzo\u) + Voo\u) ’
all subspaces are non-trivial.

4. Eigenfunctions on (S™, g(t)). Let {®,,} be a complete orthonormal
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base stated in Section 3. By Lemma 3.1 we can assume that each ¢, ,
is contained in some V,(\,) in (8.2).

LEMMA 4.1. Each eigenfunction @, of 4 corresponding to N\, is
also an eigenfunction of 4 corresponding to
(4.1) v — tL — )k — 2p), 0=<p<=I[k/2]

according as P, € Vi_sn(Mp).
In particular, each eigenvalue of *'4 takes the above form.

Proor. (4.1) follows from (2.3) and (8.3). Since {®,,} is also a
complete orthonormal base of the space of smooth functions on S™ with
respect to g(t), and since each @, , is an eigenfunction of '4, Spec(S™, g(t))
is given by eigenvalues for {®,,} (cf. [2], Lemma A.Il. 1, p.143).

PROPOSITION 4.2. The first eigenvalue of (S™, g(t)), m = 2n + 1, s
given by
@n + t™™)¢ for t™=m+ 3
M(g(@) = -
4(n + 1)t for t™z=m + 3.
In particular,
2nt < M) S 4(n + 1)t, 0<t< oo,

PROOF. Since N, = k(m + k — 1), by (4.1) the first (non-zero) eigen-
value can be found among

(i) th(m +k—1)—t@d —t™™k* k=1,

(ii) th(m +k —1) —tQ —¢t™) k=o0dd=1,

(iii) thk(m +k — 1) k=even=2.
The minimum for (i), (ii) is given by t(m — 1 + t™), and the minimum
for (iii) is given by 2t(m + 1). g.e.d.

5. Remarks. (a). In Proposition 4.2 the multiplicity of (2n + t™™)t
for tt"<m+ 8 is p(\) =m + 1. The multiplicity of 4(n + 1)t for
t™>m + 3 is
n+1

1

The multiplicity of 4(n + 1)t for ¢t™ =m + 8 is equal to the sum of
the above two; n®* + 4n + 2. Thus,

dim V,(»,) = p(k,) = < >2 —1=nn+2).

There exists a Riemannian metric on S™ (m = 2n + 1) such that the
first eigenvalue has multiplicity (m* + 6m + 1)/4.

There is a natural problem: What is the maximum of multiplicity
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of the first eigenvalue of the Laplacian (for fixed dimension m of com-
pact manifolds)?

(b). M. Berger [1] showed the existence of a Riemannian metric h
on 8™, m = 3, such that, for the first m + 1 eigenvalues 0 <)\, <\, <
cee <\

'm+19
m + 1 Vol(S™, h)*™
m Vol(S™, g)¥/™

holds, where g is a constant curvature metric. This is a counter-
example to the natural generalization of (x) in the introduction.

For each odd dimensional sphere S*"*!, as a simple example of such
a Riemannian metric # we may put h = g(¢) given by (2.1) where ¢ is
sufficiently near 1. In fact, )\,(9(t)) = (2n + t™™)¢ has multiplicity m + 1,
and

m+1 1
(5.1) =<
j=1 7\:j

@n 4+ t™t>m .
Thus, (5.1) holds for any g(¢t);t™ < m + 3, ¢t + 1.
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