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0. Introduction. For n = 4, let M be an n-dimensional conformally
flat submanifold of the (n + p)-dimensional Euclidean space E™**. Recently
under the assumption that M has the positive sectional curvature and
» < n — 8, Sekizawa [3] proved that M contains an open subset on which
there exists an involutive distribution of dimension = #n — p» such that
each leaf of this distribution is totally umbilic in M and in E***. In
this note we show that the result of Sekizawa remains true without
the assumption that the sectional curvature is positive.

The author sincerely thanks Professor S. Tanno for valuable sug-
gestions.

1. Statement of results. For n =4, let M be an n-dimensional
conformally flat submanifold of the (n + p)-dimensional Euclidean space
E*?,  We denote the induced Riemannian metric on M by (, >, the
Riemannian connection by /7, the Ricei tensor by Ric, the scalar curva-
ture by S, and the second fundamental form by «. The symmetric
tensor ¥ is defined by

(X, Y) = [Ric (X, Y) — <X, Y)§/2(n — D}/(n — 2)

for X, YeT,M. We now recall the notion of umbilic subspace of T,M
introduced in [3]. A subspace V of T,M is said to be umbilic if
dimV =2 and a(X, X) = a(Y, Y) for all unit vectors X and Y in V.
Then our first result is the following.

PROPOSITION 1. For m = 4, let M be an n-dimensional conformally
fAat submanifold of the (n + p)-dimensional Euclidean space E***, If
P =n — 3 and %, is the set of all vectors X € T, M such that ||a(X, X)|]* =
2|/ X |P¥(X, X), then

(a) %, 1s the largest umbilic subspace of T,M, and dim Z,=n — p.

(b) For each unit vector X € Z,, the subspace {Ye T.M: (Y, Z) =
Y, Z)au(X, X) for all Ze T,M} s equal to Z,.

Let » <% — 3. Then by Proposition 1 we can define a distribution
Z by Msx— 7Z,. We call % the umbilic distribution. The umbilic
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distribution Z7 is not smooth in general. However, we can prove the
following.

PROPOSITION 2. Forn =4 and p < n — 3, let M be an n-dimensional
conformally flat submanifold of the (n + p)-dimensional Euclidean space
E™?. Then there exists am open subset of M on which the wumbilic
distribution ZZ 1is smooth.

Finally our main result is the following.

THEOREM. For n=4 and p<n — 3, let M be an n-dimensional
conformally flat submanifold of the (n + p)-dimensional Euclidean space
E*?. If U is an open subset of M on which the umbilic distribution
Z 18 smooth, then 7/ |U is involutive and each leaf L of 77 |U 1s totally
umbilic in M and in E***. In particwlar, L is a Riemannian manifold
of comstant curvature.

REMARK 1. Let M* be the union of all open subsets of M on which

the umbilic distribution %/ is smooth. Using Proposition 2, we see that
M* is dense in M.

REMARK 2. Moore [2] states the above theorem without proof. Its
complete proof seems not to have been published yet.

2. Proof of Proposition 1. Since M is conformally flat, the Weyl
conformal curvature tensor vanishes. Hence by the Gauss equation we
have
(1) (X, Z), (Y, W)) — (X, Z)U(Y, W) - U(X, Z)XY, W)

=LY, Z), a(X, W)) — Y, Z)¥(X, W) — U(Y, Z)XX, W)
for all vectors X, Y, Z and W in T,M. The formula (1) implies
(2) (X, X), (Y, Y) =¥(X, X)+ ¥, 7) + ||la(X, V)|
for all orthonormal vectors X and Y in T.M.

LEMMA 1. If X and Y are unit vectors in T,M such that a(X, X) =
a(Y, YY), then ¥(X, X) =U(Y, Y).

ProOF. Since p < n — 3 implies dim Ker a(X, -) = 3, there exists a
unit vector Z € Ker a(X, -) orthogonal to X and Y. Using (2), we see that
VX, X)+¥(Z, Z)= X, X), a(Z, Z)) =Y, Y),a(Z, Z)) =¥(Y, Y) +
VZ, Z)+ ||a(Y, Z)||*. Hence ¥(X, X)=¥(Y, Y). By the symmetry of
X and Y, we get ¥ (X, X) =0(Y, V). q.e.d.

LEMMA 2. If V is an umbilic subspace of T.M, then V C Z,.
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PrROOF. For each unit vector X eV, there exists a unit vector
Y e V orthogonal to X. Since V is umbilic, we have a(X, X) = a(Y, Y)
and a(X, Y) =0. Lemma 1 implies ¥(X, X) = ¥(Y, Y). Hence by (2)
we see that ||a(X, X)||!= (X, X),a(Y,Y) =¥X, X)+¥(Y,Y)=
2U(X, X). ' g.e.d.

Let T,M* be the normal space to M at z, and define a Lorentzian
inner product { , ) on T.M* S RD R by

(3) <<(El; sly tl)y (52’ 82y t2)>> = <El! $2> + 31t2 + t;SZ

for (¢, s;, t;) e T.M* P RP R. Now we define a symmetric bilinear map
B:T.MXxX T.M— T.M P RDR by

(4) BX, ¥Y) = (a(X, Y), X, ¥), —¥(X, Y)).

The formula (1) implies that 2 is flat with respect to {, ) in the sense
of [2, p. 91]. Furthermore, p < n — 3 implies dim T, M > dim (T, M* D
R@ R), and (4) implies B(X, X) # 0 for all nonzero Xe T,M. Hence by
[2, Proposition 2] there exists a nonzero null vector ec T.M* P RP R
and a nonzero symmetric bilinear map f: T.M X T,M — R such that
dim N(B—fe) = n—p = 3, where N(B— fe) = {Xe T.M: (8— fe)(X, Y)=0
for all Ye T.M}.

Let e = (¢, s,t). Since ¢ is a null vector, we have ||&|]* + 2st = 0.
For all XeN(B — fe) and Ye T,M, we see that a(X, Y) = f(X, Y)&,
(X,Y)=f(X,Y)s and —¥(X,Y)=f(X, Y)t. Hence we have the
following:

(5) a(X, Y) = (X, Y)¢/s
(6) VX, Y)=—<X, Y)tfs
(7) la(X, Y)[I* = 2<X, Y)¥(X, Y)

for Xe N(B — fe) and Ye T, M.
LemMmaA 3. a(X, X) = &/s for all unit vectors X € #,.

PrROOF. For each unit vector X e %/, there exists a unit vector
Y e N(B — fe) orthogonal to X. By (5) and (7) we have a(Y, Y) = ¢&/s
and ||a(Y, Y)||*=2¥(Y, Y). Using (2) and ||a(X, X)|* = 2¥(X, X), we
see that ||a(X, X)—¢/s|’=[la(X, X)[*+||a(Y,Y)|—2{a(X, X), a(Y, Y)) =
(X, X) +20(Y,Y) — 2{a(X, X), (Y, Y)) = —2||a(X, Y)|*>. Hence by
(7) we get ||a(X, X) — &/s]|* = 0. q.e.d.

LeEMMA 4. If Xe %, then a(X, Y) =0 for all YeT,M orthogonal
to X.
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Proor. We may assume that X is a unit vector in %,, and Y is a
unit vector orthogonal to X. Since dim N(8 — fe) = 8, there exists a
unit vector Z e N(B — fe) orthogonal to X and Y. Then by (5) and
Lemma 3 we have a(X, X) = &/s = a(Z, Z). Hence by Lemma 1 we have
VX, X)=¥Z,7%). Using (2), we see that [|a(X, V)| = (X, X),
(Y, Y)) —¥(X, X)-¥Y,Y) =< aZ, 2), Y, Y)-¥(Z, Z2)-V(Y, Y)=
la(Z, Y)||*. Hence by (5) we get ||a(X, Y)|*=0. qg.e.d.

Let N be a subspace of T.M defined by N={XeT.M:a(X, Y) =
(X, Y)¢/s for all YeT,M}. Since (5) implies ND N(B — fe), we see
that dim N>n — p =3 and N is an umbilic subspace of T,M. Thus
by Lemma 2 we have NC %,. Lemmas 8 and 4 imply %, C N and we
get Z7, = N. Hence Lemma 2 implies (a), and Lemma 3 implies (b).
This completes the proof of Proposition 1.

3. Proof of Proposition 2. For n =4 and p <n — 3, let M be an
n-dimensional conformally flat submanifold of the (n + p)-dimensional
Euclidean space E"**. Then by Proposition 1 we can define a normal
vector n(x) at x € M by 7n(x) = a(X, X), where X is a unit vector in 7.
We call » the normal curvature vector field.

LEMMA 5. There exists an open subset of M on which the mormal
curvature vector field 1 is smooth.

ProoF. Let TM* be the normal bundle over M. We consider the
Whitney sum TM* P R, P R,;,, where R, is the trivial real line bundle
over M. For each fiber T.M* &P R P R, the Lorentzian metric {, ) and
the symmetric bilinear map 3: T.M X T.M — T.M* P R P R were defined
by (3) and (4). We introduce a function » on TM by AX) = rank B(X, -)
for Xe TM. Let V,e TM be a maximum point of )\ and let z, = n(V),
N = MV,), where 7 is the canonical projection n: TM — M. Choose a
smooth tangent vector field V on M such that V(x,) = V,. Since the
function M(V) defined on M is lower semi-continuous, there exists a
neighborhood U of x, such that (V) =, on U.

For each point « in U, V(x) is a regular element of B in the sense
of [2, p. 92]. As in the proof of [2, Proposition 2], we see that the re-
striction of ¢ , ) to (V(x), T,.M) is degenerate. Thus we have dim <7, >1,
where <&, = {ee 8(V(x), T.M): {e, €) = 0 for all ¢ 3(V(x), T.M)}. Since
{, ) is Lorentzian, we have dim &, < 1. Hence dim &, = 1 and we see
that &£ = U..r &, is a smooth subbundle of TM* P R, P R, |U.

It is not difficult to show by linear algebra that there exists an
open subset U,cU on which there exists a local frame (e, - - -, e,4,) of
TM* D R, P R, such that



UMBILICS 437

1—6, for 1<4i,j=<2.
e (ese) = ’ ="
04; otherwise.

For each point 2 in U, there exist symmetric bilinear functions f*:
T.M x T.M — R such that 8 = >\?? fl¢,. As in the proof of [2, Proposi-
tion 2], we have

(8) dim N,(8 — fle)=zn—p =3,

where N,(B — fle) ={XeT.M: (B — fle)(X, Y) = 0 for all Ye T.M}.
We write e, = (& s,t), where & is a smooth normal vector field on U,
and s and ¢ are smooth functions on U,. Then we have

(9) a(X, Y) = (X, Y)i(x)/s(x)

for Xe N,(8 — fl¢,) and Ye T,M. The formulas (8) and (9) imply that
N.(B — f'e;) is an umbilic subspace of T,M. Hence by Proposition 1
and (9) we have n(x) = &(x)/s(x). Thus the normal curvature vector field
7 is smooth on U,. g.e.d.

Let L(TM; TM*) be a vector bundle over M with fiber L(T . M; T,M"),
where L(T,M; T.M*) is the space of linear maps T.M — T,M*. By
Lemma 5 there exists an open subset U of M on which the normal
curvature vector field 7 is smooth. For each point x in U, we define a
linear map ¢,: T.M — L(T,M; T.M"*) by [$.(X)[(Y) =a(X, Y)— (X, Y)7(w).
Then we obtain a smooth bundle map ¢: TM|U — L(TM; TM*)|U. By
Proposition 1 we have %/, = Ker ¢,. Hence there exists an open subset
U,cU such that U,2x+ %/, is smooth. This completes the proof of
Proposition 2.

4. Proof of Theorem. Let % be the umbilic distribution and let
7 be the normal curvature vector field. For each point 2 in M, by
Proposition 1 we have

10) %, ={XeT,M:a(X,Y)=<X, Y)np(x) for all YeT,M}.

We define a distribution Z* by #Z*: Msx— %+, where %/ is the
orthogonal complement of %/, in T,M. Let U be an open subset of M
on which %/ is smooth. Then » and Z* are also smooth on U.

Let X and Y be smooth sections in %/ |U and let Z be a smooth
section in Z7*|U. Then we have the following:

VxaXY, Z) = ¥:Y, Z)n — a(»Y, Z) ,
ra)(X, Z) = VX, Z)n — al X, Z) ,
7:0)(X, Y) = <X, Y)Dy .
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We refer the reader to [1, Chapter 7] for the definitions of 7 and D.
Since the Codazzi equation implies (7, a)(Y, Z) = F,a)(X, Z) = (7 ,a)(X, Y),
we have the following:

(11) (X, Y], Z) =X, Y], Z)7,
(12) TxY, Z)n —alyY, Z) = <X, Y)Ds .

By (10) and (11) we see that [X, Y| belongs to % |U. Hence % |U is
involutive.

Let L be a leaf of Z/|U and let « be a point in L. We denote by
v the second fundamental form with respect to the immersion L M.
For all smooth sections X and Y in %/ |U, we see that v(X(x), Y(x)) is
the Z/}-component of (V,Y)(x). Hence by (12) we have

<7(Xzy Yx), Zx>7](x) - a(’Y(Xm Ya:)y Zx) = <Xa:, Yz>DZZ

for X,, Y,e %, and Z,ez;. If X, and Y, are unit vectors in %, the
above formula implies

<7(Xa:’ Xx), Z:c>7](x> - a(ty(Xx’ Xz); Za:)
= <fY( Ya:) Yz)’ Za:>77(x) - a(fy( Y:u Yx); Zx)

for Z,e Z;. Hence by (10) we have v(X,, X,) — v(Y,, Y, e Z,. Since
vX,, X,) — Y, Y,)e %}, we get v(X,, X,) =v(Y,, Y,). Hence L is
totally umbilic in M.

We denote by 6 the second fundamental form with respect to the
immersion L c E***, Then we have 6 = a + v on %,. For all unit
vectors X, and Y, in %, we see that /(X,, X,) = a(X,, X,) + 7(X,, X,) =
a(Y, Y, +v(Y, Y,)=00Y,, Y,). Hence L is totally umbilic in E~"*?,
This completes the proof of Theorem.
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