Tôhoku Math. Journ. 33 (1981), 127-131.

ON INTERTWINING BY AN OPERATOR HAVING A DENSE RANGE

EITOKU GOYA AND TEISHIRÔ SAITÔ

(Received February 28, 1980)

1. Throughout the paper, by an operator we mean a bounded linear transformation acting on a Hilbert space H. The algebra of all operators on H is denoted by B(H).

We formulate an algebraic version of generalized Putnam-Fuglede theorem [3; Theorem 1], and we show that a paranormal contraction T is unitary, if S is a coisometry, if W is an operator having a dense range and if TW = WS. This is a generalization of a result due to Okubo [1].

Let $T \in B(H)$. T is hyponormal (resp. cohyponormal) if $T^*T - TT^* \ge 0$ (resp. $TT^* - T^*T \ge 0$). T is dominant if range $(T - \lambda) \subset \text{range} (T - \lambda)^*$ for all $\lambda \in \sigma(T)$, the spectrum of T. This condition is equivalent to the existence of a constant M_{λ} for each $\lambda \in \sigma(T)$ such that

$$\| (T - \lambda)^* x \| \leq M_{\lambda} \| (T - \lambda) x \|$$

for all $x \in H$. Thus every hyponormal operator is dominant. T is paranormal if

$$||Tx||^2 \le ||T^2x|| \, ||x||$$

for all $x \in H$.

2. The following theorem is a version of [3; Theorem 1]. The proof of [3] applies to this version. We include it for completeness.

THEOREM 1. Let T, S, and $W \in B(H)$, where W has a dense range. Assume that TW = WS and $T^*W = WS^*$. Then

(i) T is hyponormal (resp. cohyponormal), if so is S.

(ii) T is isometric (resp. coisometric), if so is S. In particular, T is unitary, if so is S.

(iii) T is normal, if so is S.

PROOF. Let $W^* = V^*B$ be the polar decomposition of W^* . Since W has a dense range, W^* is injective. Thus $B^2 = WW^*$ is injective, and V is coisometric. From equations TW = WS and $T^*W = WS^*$, we have

E. GOYA AND T. SAITÔ

$$TWW^* = WSW^*, \qquad WW^*T = WSW^*.$$

Thus, WW^* commutes with T, and so B commutes with T. Hence we have

$$BTV = TBV = TW = WS = BVS$$
,

which implies that TV = VS because B is injective. Since V is coisometric, we obtain

$$T = TVV^* = VSV^*$$

From the equations $W^*T = SW^*$ and TB = BT, we have

$$V^*TB = V^*BT = W^*T = SW^* = SV^*B$$
,

which implies that $V^*T = SV^*$. Hence

$$V^*VS = V^*TV = SV^*V.$$

First we assume that S is normal. Since $S^*S = SS^*$, we obtain $T^*T = (VSV^*)^*(VSV^*) = VS^*V^*VSV^* = VS^*SV^*VV^* = VS^*SV^*$ $= VSS^*V^* = VV^*VSS^*V^* = (VSV^*)(VSV^*)^* = TT^*$,

whence T is normal.

To prove (i), assume that S is hyponormal (resp. cohyponormal). Since $S^*S \ge SS^*$ (resp. $SS^* \ge S^*S$), the above computation implies that

$$T^*T = VS^*SV^* \ge VSS^*V^* = TT^*$$
,
(resp. $TT^* = VSS^*V^* \ge VS^*SV^* = T^*T$),

and the assertion of (i) follows.

To prove (ii), assume that S is isometric (resp. coisometric). Again, by the above computation,

$$T^*T = VS^*SV^* = VV^* = I$$
, (resp. $TT^* = VSS^*V^* = VV^* = I$),

whence T is isometric (resp. coisometric).

The rest of the theorem is obvious.

REMARK. In Theorem 1, if W is injective and has a dense range, V is a unitary operator which implements the unitary equivalence of S and T.

The next theorem is a generalization of [1; Proposition 1].

THEOREM 2. Let T, V, and $W \in B(H)$, where T is a paranormal contraction, V is a coisometry and W has a dense range. Assume that TW = WV. Then T is a unitary operator. In particular, if W is injective and has a dense range, then V is also a unitary operator.

128

PROOF. Let $x \in H$ such that $Wx \neq 0$, and define

 $y_n = WV^{*^n}x$ $(n = 0, 1, 2, \cdots)$.

Then we have

$$Ty_{n+1} = TWV^{*^{n+1}}x = WVV^{*^{n+1}}x = WV^{*^n}x = y_n$$

Since T is a contraction,

$$||y_{n}|| = ||Ty_{n+1}|| \le ||y_{n+1}|| = ||WV^{*^{n+1}}x|| \le ||W|| ||x||$$

and hence $\{||y_{n+1}||\}$ is a monotone increasing convergent sequence. By the paranormality of T, we have

$$\|y_n\|^2 = \|Ty_{n+1}\|^2 \le \|T^2y_{n+1}\|\|y_{n+1}\| = \|y_{n-1}\|\|y_{n+1}\|$$

and

$$1 \geq \frac{\|y_0\|}{\|y_1\|} \geq \frac{\|y_1\|}{\|y_2\|} \geq \cdots \geq \frac{\|y_{n-1}\|}{\|y_n\|} \rightarrow 1 \quad (n \rightarrow \infty) .$$

In particular, $||y_0|| = ||y_1||$, that is,

$$||Wx|| = ||WV^*x||$$
.

Thus

$$\|WV^*x\| = \|Wx\| = \|WVV^*x\| = \|TWV^*x\| \le \|WV^*x\|$$
 ,

and so

$$||WV^*x|| = ||Wx|| = ||TWV^*x||$$
.

Note that these equalities are valid for $x \in H$ such that Wx = 0. Hence

$$\| T^* Wx - WV^*x \|^2$$

= $\| T^* Wx \|^2 + \| WV^*x \|^2 - (T^* Wx, WV^*x) - (WV^*x, T^* Wx)$
 $\leq 2 \| Wx \|^2 - (Wx, TWV^*x) - (TWV^*x, Wx)$
= $2 \| Wx \|^2 - (Wx, WVV^*x) - (WVV^*x, Wx)$
= $2 \| Wx \|^2 - 2 \| Wx \|^2 = 0$

for all $x \in H$, and $TW^* = WV^*$. It follows from Theorem 1 that T is a coisometry. Since T is paranormal, T is unitary by [2; Lemma 3]. The rest is clear by the remark after Theorem 1.

REMARK. Our proof of Theorem 2 is a modification of the argument due to Okubo [1]. He proved Theorem 2 under the hypothesis that V is unitary.

COROLLARY 3. Let $T \in B(H)$ be a paranormal contraction. Let TW = WV, where $V \in B(H)$ is a coisometry and $W \in B(H)$ is any non-

zero operator. Then T has a nontrivial invariant subspace.

PROOF. Let \mathfrak{M} be the closure of range W. If W does not have the dense range, \mathfrak{M} is a nontrivial invariant subspace of T. If W has the dense range, then T is unitary by Theorem 2, and T has a nontrivial invariant subspace.

3. As an application of Theorems 1 and 2, we give an alternative proof to the following theorem.

THEOREM 4. Let
$$T \in B(H)$$
 be a contraction. Let
 $\mathfrak{M} = \{x \in H | || T^{*^n} x || \to 0 \ (n \to \infty)\}.$

If T is dominant or paranormal, then \mathfrak{M} is a reducing subspace for T such that $T|_{\mathfrak{M}^{\perp}}$ is unitary and $T|_{\mathfrak{M}}$ is completely non-unitary (i.e., $T|_{\mathfrak{M}}$ has no nontrivial reducing subspace on which $T|_{\mathfrak{M}}$ is unitary).

This theorem was first proved for dominant operators in [4] and for paranormal operators in [1]. Note that the statements in [4; Theorem 2] contain a slip, because $\{x \in H | \| T^{*^n} x \| \ge \varepsilon_x > 0\}$ is not a linear subspace of H.

To prove Theorem 4, we need the following simple lemma.

LEMMA 5. Let $T \in B(H)$ be a contraction. Let $\mathfrak{M} \subset H$ be an invariant subspace for T. If $T|_{\mathfrak{M}}$ is a coisometry, then \mathfrak{M} reduces T.

PROOF. Let $S = T|_{\mathfrak{M}}$, and let $x \in \mathfrak{M}$. Then, since S^* is isometric

$$egin{aligned} \|S^*x - T^*x\|^2 &= \|S^*x\|^2 + \|T^*x\|^2 - (S^*x, \, T^*x) - (T^*x, \, S^*x) \ &\leq \|x\|^2 + \|x\|^2 - (TS^*x, \, x) - (x, \, TS^*x) \ &= 2\|x\|^2 - 2\|S^*x\|^2 = 2\|x\|^2 - 2\|x\|^2 = 0 \;. \end{aligned}$$

Thus, $T^*x = (T|_{\mathfrak{M}})^*x \in \mathfrak{M}$ for all $x \in \mathfrak{M}$, which implies that \mathfrak{M} is invariant under T^* .

PROOF OF THEOREM 4. Since $||T|| \leq 1$, the sequence $\{T^nT^{*^n}\}$ converges strongly to a positive contraction. Let

$$A = (\lim_{n \to \infty} T^n T^{*n})^{1/2} .$$

Then, $\mathfrak{M} = \ker A$ and $TA^2T^* = A^2$. Since

$$\|AT^*x\|^2 = (TA^2T^*x, x) = (A^2x, x) = \|Ax\|^2$$

for all $x \in H$, there exists a partial isometry $W \in B(H)$ such that

$$AT^* = WA$$
 , $W|_{\mathfrak{m}} = 0$.

It is easy to see that \mathfrak{M}^{\perp} is invariant under T. Let us write the equa-

130

tion $AT^* = WA$ in matrix from on $H = \mathfrak{M} \bigoplus \mathfrak{M}^{\perp}$. Then

0	0	S_1	$S_{\scriptscriptstyle 2}$	0	0	0	0
0	$A{\scriptscriptstyle 1}$	_0	S_{3}	0	W_1	0 A	1 ₁ '

whence $A_1S_3 = W_1A_1$, or $S_3^*A_1 = A_1W_1^*$. Note that $A_1 = A|_{\mathfrak{M}^{\perp}}$ is injective and has a dense range, and $W_1 = W|_{\mathfrak{M}^{\perp}}$ is an isometry.

Case 1. Assume that T is dominant. Since S_3^* is dominant and W_1^* is coisometric, S_3^* and W_1^* are unitarily equivalent normal operators by [4; Theorem 1] and the remark after Theorem 1. Thus \mathfrak{M}^{\perp} reduces T by [3; Lemma 2]. Since W_1 is normal and isometric, W_1 is unitary and so is S_3 .

Case 2. Assume that T is paranormal. Since $S_3^* = T|_{\mathfrak{M}^{\perp}}$ is paranormal, S_3^* is unitary by Theorem 2. Thus \mathfrak{M}^{\perp} reduces T by Lemma 5. It is clear that $T|_{\mathfrak{M}}$ is completely non-unitary in each case.

REMARK. In Theorem 4, A is the projection onto \mathfrak{M}^{\perp} . This was proved in [1] for a paranormal contraction.

COROLLARY 6. Let $T \in B(H)$ be a dominant or paranormal contraction. If there exists a vector $x_0 \in H$ such that $||T^{*^n}x_0|| \ge \varepsilon > 0$ for $n = 1, 2, 3, \cdots$, then T has a non-trivial invariant subspace.

PROOF. Let $\mathfrak{M} = \{x \in H | || T^{*^n}x || \to 0 \ (n \to \infty)\}$. By hypothesis, $\mathfrak{M} \neq H$ or $\mathfrak{M}^{\perp} \neq \{0\}$. By Theorem 4, $T = T_1 \bigoplus U$, where $U = T|_{\mathfrak{M}^{\perp}}$ is unitary, and thus T has a non-trivial invariant subspace.

References

- K. OKUBO, The unitary part of paranormal operators, Hokkaido Math. J. 6 (1977), 273-275.
- [2] T. SAITÔ, On a theorem by S. M. Patel, Rev. Roumaine Math. pures et appl. 21 (1976), 1407-1409.
- [3] J. G. STAMPFLI AND B. L. WADHWA, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), 359-365.
- [4] J. G. STAMPFLI AND B. L. WADHWA, On dominant operators, Monatshefte für Math. 84 (1977), 143-153.
- [5] T. YOSHINO, On the unitary part of paranormal contractions, preprint.

FACULTY OF EDUCATION	AND	College of General Education
RYUKYU UNIVERSITY		Tôhoku University
Naha, 903 Japan		Sendai, 980 Japan