Téhoku Math. Journ.
33 (1981), 227-247.

HOLOMORPHIC FAMILIES OF RIEMANN SURFACES
AND TEICHMULLER SPACES III

Bimeromorphic embedding of algebraic surfaces into projective
spaces by automorphic forms
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Introduction. In this paper, as an application of the results in [4]
and [5], we will deal with the bimeromorphic embedding of algebraic
surfaces into projective spaces by automorphic forms.

Let X Dbe a two-dimensional, irreducible, non-singular projective
algebraic variety over C. There exist a non-empty Zariski open subset
& of X, a Riemann surface R of finite type and a holomorphic mapping
7: % — R so that the triple (&7, 7, R) is a holomorphic family of Riemann
surfaces of type (g, n) with 29 — 2 + n > 0. We may assume that the
universal covering space of R is the unit dise. Then the universal
covering space & of .& is a bounded Bergman domain in C®. Let &
be the covering transformation group of the universal covering /1: —.”.
A holomorphic function f is called an automorphic form of weight ¢ on
< for ©, if

FT@) = F@@)]
for all Te < and ze <, where ¢ is an integer and J,(») is the Jacobian
of T at x. We also say that f is a g¢-form for Z. We assume ¢ =2
throughout this paper.

Our problem is stated as follows: Can we construct many automorphic
g-forms fo, -+, fy for & in such a way that F = (f,, ---, fy) induces a
bimeromorphic embedding of X into the N-dimensional complex projective
space Py(C)? This problem is solved affirmatively in §8.

At the beginning, in §1, we recall the main results in [4] and [5].
In §2, we construct a domain & and a discrete subgroup % of the
analytic automorphism group of & so that our problem for < and &
can be reduced to that for & and . §3 is devoted to constructing
some auxiliary domains, which will be used in §7. In §4, we define the
behaviour of automorphic forms for < near boundary points and, in §5,
we recall some well-known results on the Poincaré metric and the
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Poincaré series, which are used in §6 and §7, where the Poincaré series
and the Poincaré-Eisenstein series for & are constructed and their
behaviour near boundary points are studied.

The author would like to express his hearty gratitude to Professor
Kuroda for his constant encouragement and advices.

1. Preliminaries. We shall briefly explain the main results in [4]
and [5].

Let .&” be a two-dimensional Stein manifold and let B be a Riemann
surface of finite type with the universal covering o: D — R, where D is
the unit dise 7] <1 in the complex z-plane. We assume that a holo-
morphic mapping 7: & — R satisfies the following two conditions:

(i) = is of maximal rank at every point of &7, and

(ii) the fiber S, = 7~'(t) of & is connected and of fixed finite type
(g, ») with 29 — 2 + » > 0 as a Riemann surface for every ¢ in R. Such
a triple (&, «, R) is called a holomorphic family of Riemann surfaces of
type (g, n) over R.

Take a finitely generated Fuchsian group G of the first kind with
no elliptic elements acting on the upper half-plane U such that the
quotient space § = U/G is a Riemann surface of finite type (g, m). Let
Quorm(G) be the set of all quasiconformal automorphisms w of U leaving
0,1, « fixed and satisfying woGow'c SL'(2; R), where SL'(2; R) is the
set of all real Mobius transformations. Two elements w, and w, of
Qmm(@) are called equivalent if w, = w, on the real axis R. The
Teichmiiller space T(G) of G is the quotient of Quom(G) With respect to
the above equivalence relation. Let L=(U, G) be the complex Banach
space of bounded measurable complex-valued functions g satisfying
(g(2))g @)/g'(2) = pz) for all g in G and let L=(U, G), be the open unit
ball in L=(U, G).

Let w, be the element of Quum(G) with a Beltrami coefficient
re L=(U, ), and let W* be a quasiconformal automorphism of the
Riemann sphere C such that W has the Beltrami coefficient ¢ on the
upper half-plane U, is conformal on the lower half-plane L and

WHz) = 1/(z + i) + O(|z + &)
as 2z tends to —<. This mapping W* is uniquely determined by [w,] up
to the equivalence relation, that is, w. = w, on R if and only if W* = W*
on L UR. Let ¢, be the Schwarzian derivative of W# Then ¢, in an
element of the space B,(L, G) of bounded holomorphic quadratic differen-
tials for G on L. Bers proved that the mapping sending [w,] into ¢, is
a biholomorphic mapping of T(G) onto a holomorphically convex bounded
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domain of B(L G), which is denoted by the same notation T(G). We
set G¢ = WeoGo(Wrand D¢ = W#U). Then G96 is a quasi-Fuchsian
group and Koebe’s one-quarter “theorem implies that D¢ C(lw| <2) for
every ¢, of T(G).

Now, for a holomorphic family of Riemann surfaces (%, x, R) of
type (g, n) with 29 — 2 + » > 0, there exists a holomorphlc mapping
¥:D—T(G such that the quotient space DW(,)/GW,, is conformally
equivalent to S,., for every reD. We abbreviate G, ., as G. and Dy
as D.. We set

T = {(r,w)|reD,weD.)} .

This set < is a bounded Bergman domain in D x (|w|<2) and is
topologically ~equNivalent to the polydise D x D. Let F. be the confox;mal
mapping of D./G. onto S,., induced by ¥(z) for every reD. Let Il be
the holomorphic mapping of < onto & sending (z, w) into F.(Jw]), where
[w] is the orbit of w with respect to G.. Then [1: & —.% is a universal
covering of <.

Let £ be the covering transformation group of I7: 9 - . We
can explicitly express the elements of & as follows. Let I be the
covering transformation group of the universal covering p: D— R. For
each element v of I', the homotopic monodromy A of (&, m, R) is the
element of the moNdular group Mod(G) of G with ¥(v(z)) = //Z(llf(z-)) on
D. Denote by N(G) the set of all quasiconformal automorphisms @ of
U with @oGo@ = G. Take an element @, of N(G) which induces _z,
that is, the element (@;> of Mod(G) induced by &, is equal to _7Z. We
may assume that @;.; = @&, ®, for all v,o0€erl. N

Let F(G) be the fiber space over the Teichmiiller space T(G), that
is,

F@G) = {(, w)lpe T(G), we Dy} .

In general, every element @ of N(G) induces an analy~tic automorphism
of F(G) as follows. For every element [w,] of T(G), we set w, =
NowWuo@™! € Quorm(G), where ) is a real Mdbius transformation. If we
set

W = [@] (3, w) = W@ o (W)™ (w)
for weD,, , then the mapping ({@)., [®],) sending (., w) into (¢4, W) is
an analytlc automorphism of F(G). These elements ((@),, [®],) give

rise to the extended modular groumeod(G) of G. ~
Since @,§ is an element of N(G) for veI" and §eG, an analytic
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automorphism (v, §) of < is defined by

(v, )z, w) = (¥(7), Hy5(z, w))
with H,;(z, w) = [&r 7], @ (), w) for (z, w)eé . Then the covering
transformation group & of [I: & —.% is identical with the set
{(v, 9)|vel,Ge G). By definition, we have the formula
(v, 0) o (6, k) = (708, @' oFod,oh)

for v,0el and §, he@, that is, & is a semi-direct product of I" with
G. The quotient spaces G =G /{Z’ is biholomorphically equivalent to
.

Let C be the set of all cusps of I', that is, the set of all parabolic
fixed points of~ I'. For each 7, of C, there is an element ¥(z,) in the
closure of T(G) such that ¥(z) converges to ¥(r,) uniformly as z-—7,
through any cusp region at ¢ = ¢, in D. For each e DU C, denote by
G. = Gw(,) the Kleinian group associated with the quadratlc differential
¥(z) for G, by 2(G.) the region of discontinuity of G., and by A(G,)~the
invariant component corresponding to the lower half-plane. Set D. =
G, — 4G.) and let . be the set of all fixed points on 8D, of parabolic
transformations of G.. We set &, = {(c, w)|treDUC, weD.U .Z)}.
Each point of & = 9, — & is called a cusp of . A Hausdorff topology
on <, is defined canonically and every element (v, §) of & is extended
to a topological automorphism (v, §), of .. We set

G, ={(, §)lvel, gebG).

Then the quotient space % = ﬁ/%c is a two-dimensional compact normal
space and every compactification of & is bimeromorphically equivalent

to .&. (See §6 in [5].)

2. Construction of domains & and 2’. Let II;: U—S be the
canonical projection. For a fixed v > 3, there exists a Fuchsian group
G with signature (g, #;v, ---,v) such that the quotient space U’/G is
conformally equivalent to S, where U’ is the complement in U of the
set of elliptic fixed points of G. Let II,: U'—S be the canonical pro-
jection. There is a universal covering II,: U— U’ with Il = Il I,
The covermg transformation group H, of /7,: U— U’ is a normal sub-
group of G and we have the relation

G = {geSL'2; R) |11, = goIl,, for some geG} .
If S is compact, that is, » =0, then G =G, U’ = U, II, = IT; and I,
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is the identity map. The Teichmiiller space T(G) is canonically isomoeric
to T(G) as follows. (See Bers and Greenberg [3].) For every fie L>(U, G),,
the element pe L=(U, G), is defined by

1z (2)) = B (2)[(I,(2)) -

If w; = wy on R for fi, Ve L.(U, G),, then w. = w, on R. Therefore the
mapping m: T(G) — T(G) sending [w;] into [w,] is well-defined. It can
be shown that the mapping m is isomorphic.

Now, the holomorphic mapping @: D — T(G) is defined by @ = mo¥.
Take a Beltrami coefficient /. € L>(U, @)l such that Z(z) is the Schwarzian
derivative of W#. Then @(z) is the Schwarzian derivative of W*. Let
D. = Doy = W(U), D! = Dy, = W*(U') and G. = W oGo(Wr)'. We
set

Z = {(r, w)|teD, we D}
and
" = {(r, w)|teD, we Dy} .

Since the mapping M.; D. — D! sending w into W& oIl o (W) (w) is
holomorphic and depends only on ¥(z), we can define a holomorphic
mapping M: 9 — " with M(z, w) = (t, M.(w)).

For every element @&,e N(G) inducing the homotopic monodromy
A € Mod(G) for v e I, there is a unique element w, € N(G) with IIy,0d; =
;o I1,,. Hence the element ({(@;°g), [w;°g],) of mod(G) can be defined
for yel and geG. We set

(™, 9)(z, w) = (7(7), Hy,p(7, )

with H (7, w) = [wy0g].(@(7), w) for (r,w)e<=. Then (v,g) is an
analytic automorphism of & and all such automorphisms give rise to a
properly discontinuous group & of analytic automorphisms of <. For
every element §eG and geG with 17 1,°9 = golly, we have the relation
Mo(y,§) = (v, g) o M, which implies Mo & = & oM.

By the same reasoning as for ¥, we see the following fact. For
each parabolic fixed point 7, of I', there is an element &(z,) € T(G) such
that @(z) converges to @(z,) uniformly. as ¢ — 7z, through any cusp region
at z =7, in D. For each € DUC, we denote by G. = G, the Kleinian
group associated with quadratic differential @(z) for G, by 2(G.) the
region of discontinuity of G, and by 4(G.) the invariant component
corresponding to the lower half-plane. Set D, = 2(G.) — 4(G.) and let
Z. be the set of all fixed points on 0D, of parabolic transformations of
G.. It should be noted that the set 7 is empty for e D. We set
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Z ={(v,w)|lvyeDUC, weD,U F}.

Each point of & = F — < is called a cusp of . A Hausdorff topology
on & is defined canonically and every element of (v, g) of & is extended
to a topological automorphism (v, g). of &7. We set

Z = {0, 9)lvel, geG}.

Then the quotient space G =T /:T;” is a two-dimensional compact normal
space. Moreover, the holomorphic mapping M: 9 — D' is extended to
a continuous mapping M: ﬁ—n@A with MoZ, = z o M, which induces
a biholomorphic mapping of & onto .&.

For an automorphic ¢g-form ¥ on & for &, we set

(M*¥)(z, w) = T(M(z, w))[Ju(z, w)]*

for (z, w)e <. Then M*V is an automorphic g-form on & for Z.
Therefore, our problem stated in Introduction is reduced to the case
for 2 and &. So, in the following sections, we will study automorphic

forms on & for  in place of those on & for Z.

3. Construction of domains &, ;, &, &,,and &/,. In this section,
we will use the notations in §2 of [5].

Let R be the compactification of R, that is, Ris a compact Riemann
surface of genus g, such that the surface obtained from R by deleting
finitely many points ¢, ---, ¢, is conformally equivalent to B. Let R,
be the moduli space of all Riemann surfaces without nodes of signature
(g, n;v, -+, v) and let M,,,, be the moduli space of all Riemann surfaces
with nodes of signature (g, »; v, ---, v), where v is a fixed integer greater
than 3. Then the holomorphic mapping J: R — R, ., sending ¢ into [S,]
can be extended to a holomorphic mapping JA:I?HM(M,. Let S, be a
Riemann surface with J(¢,) = [S,] for each I =1, ---, m,.

Let v, > 3 be an integer. We set v,;, =y, and v,,, = =, | #m for
l,m=1,---,n,. Let E be the unit disc |{| <1 in the complex {-plane.
For each l =1, ---, m,, we take a Fuchsian group I';, acting on E such
that E/f, is conformally equivalent to R with the given signature
(g, Mo; Vi1 * **y Yi,y). Denote by 0, the canonical projection of E onto R
and by E/ the complement in E of the set of elliptic fixed points of I,.
Let I', be the covering transformation group of the universal covering
o:D—E/ with p= 0,00, For each point (e E/, we take a point
[S, 7., Sowy] of T(S) corresponding to a point &(z) of T(G) with oz) =¢.
Then there exist an integer v, and a deformation @;: S— S, such that
the analytic mapping K;: E/ — X(a(S,)) sending ¢ into <{a(S,.,), a(a, f7),
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a(S,)) is single-valued and has a holomorphic extension K,: E— X(a(S))
for each Il =1, ---, n,.

For each [ =1, ---, %, and (€ E, we can canonically construct a
finitely generated Kleinian group H,({) as follows. Let S; have r, parts
Zig ety T, .and k, nodes P, ---, P,,, and let a(S, have = parts
2y 0y 21, and Kk nodes Py, ---, Py, Assume that each part X, ; has
genus g,; and n,; punctures. We choose 7] Fuchsian groups H,,, ---,
H,,, acting on dises 4,,, ---, 4,,,; with disjoint closures such that (i) H;;
has m,; non-conjugate maximal subgroups with the same fixed order
y > 3, (ii) the Riemann surface 4,;/H,; with the images of all elliptic
vertices removed is conformally equivalent to 3, ; and (iii) H,,, ---, H,,,
generate a Kleinian group H, with an invariant component 4,. Let 4 ;
be the complement in 4, ; of the set of elliptic fixed points of H,,;. Let
Q(H,) be the region of discontinuity of H, and let Q'(H,) be the comple-
ment in 2(H,) of the set of elliptic fixed points of H,. We assign to
each node P,; of a(S,) two non-conjugate maximal elliptic subgroups

Li I'l',y of Hy so that, if P, joins ¥,; to 3,;, then I'|,C H,; and

.« C H,;. Two elliptic vertices not lying in 4, is called related if they
are fixed under elliptic subgroups conjugate to either I/, or to I'/,..
The I',, are chosen so that the union of 4,;/H,; with the images of any
two related elliptic vertices identified is isomorphic to a(S,).

If 5, , € Cis small and is not zero, then there exists a unique loxodromic
Mobius transformation 4, , which conjugates I';, into I'},, has the
multiplier s;; and has fixed points in 4,; and 4,;, where j, and j, are
as before. We set s, = (s;,,, -+, 814p). If [s| = max|s,,| is small, then
H, and h*’pi generate a Kleinian group H”’z; Let s, be as before and
let V be a quasiconformal automorphism of C such that VoH;, oV~ is
a Kleinian group, V|4, is conformal and V(z) =z + O(1/|2|) as 2z — .
Then each V|4, ; defines an element &, ; of the Teichmiiller space T(H, ;).
If s,;,#0, set ,,=a,; —d,;,, where a,, is the repelling fixed point of
Voh,l,,-oV~1 and d,, is the fixed point of VolI,oV~ in V(4,,. If
8, =0, set 9, =0. Then the point

En ) = Eua vy Eunp Mo * 05 Tity)

determines the Kleinian group Vo H,, oV~ which is denoted by H(&, 7).
The set of all points (&, %,) for which a group H(s, 7,) can be defined,
is denoted by X'(a(S;)). We say that such a V is a quasiconformal
automorphism associated with (&, 7). The deformation space X(a(S))) is
canonically identified with X'(a(S;)). Let (&(£), 7,(C)) be the point of
X'(a(S;)) corresponding to the point R,0) of X(a(S)) for e E. Denote
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by H,({) the finitely generated Kleinian group determined by the point
(&(©), n(©)). Let (&, 7,) be the point of X’(a(S;) corresponding to the
point (a(S), a(a), a(S,)) of X(a(S)), H, the Kleinian group determined by
(&, 7,) and let V, be a quasiconformal automorphism of C associated with
(¢, 7). For each j=1, , 71, there is a component 4, {(c VL(A, ;) of
the region of d1scont1nu1ty of H, such that the Riemann surface 4, ;/H,
is conformally equivalent to S = U/G, where H,; is the component
subgroup of H, for AT,, Hence there exists a holomorphic covering map
Fui U—4,; with f,;0G = H, ;o f, ;. Let W be a quasiconformal auto-
morphism of C corresponding to o(z) of T(G) for v € D with p(z) =(ecE|.
Then there exists a unique quasmonformal automorphism Vc of € and a
holomorphic covering map f.; D, — V.(4,,) such that Vc = VC oV, is a
quaswonformal automorphism associated with (5,(&), 7,(2)), VC oH,o(V) " =
H(Q) and Vo Fioy=foo Wr. Weset 4, (0= Ve(d,.), H, (0= Veo Hyyo (Vo
and k(C, -) = V,oho(V,)* for he H,. Then 4,,48) is a component of H,({)
with the component subgroup H, ;({) and f.°G. = H, ;({)of.. Let 4; ;) be
the complement in 4, ;({) of the set of elliptic vertices of H, ;({). We set

% = (& w)|Ce B, we 4,0,
&l =€ wle B, we 4,0,
1= G w) e B, we 4,,0),
& =G wle B we 4,0,

foreachI=1, ---,n,and =1, ---, 7.

The above holomorphic coverings f.: D. — 4, ;() induce a holomorphic
covering F) ;: & — &, ; sending (z, w) into (o,(7), f-(w)).

For each h € H, ;, the conformal automorphism a(Z, ) of 4, ;) induces
an analytic automorphism & of &,,; sending (¢, w) into ({, h(, w)). Then
A ;= {ﬁ |he H,;} is a properly discontinuous group of analytic auto-
morphisms of &,;. It is noted that each element h of 5%, has a
holomorphic extension on é;,,j.

Let 7, be a cusp for I with ¢, = p(z;) and let v., be a generator of
the stabilizer I'., of 7, in I'.  Then the element v, ., = (v.,)© is a generator
of the stabilizer I'; ., of 7, in I',. We set {; = p(z;). We may assume
that K,(¢,) = (id), which implies that H,(,) = H,. By a reasoning similar
to that in §4.1 of [5], we can prove that f. converges uniformly to a
holomorphic covering map f;, of a certain component 2. ; of G., onto
the component 4,; of H, on any compact subset of 2.,; as ¢ tends to 7,
through any cusp region at z =7,. If a component 2., of G, is not
2.,;, then f. converges to a constant map on any compact subset of 2.,



TEICHMULLER SPACES 235

as 7 tends to z;, through any cusp region at ¢ = r,. For the component
subgroup G.,; of G, foxL Q,l,i-, we }Eave f,l:G,m- = H, ;of.. Moreover,
we can prove that V.o(Vioho(V;))™o (V)™ = V,ohoV;' converges
uniformly to h for each he H, and V.oko (V)" converges uniformly to
a constant for each he H, — V,oH,o(V)™ on any compact subset of
Q'(H)) as  tends to {,.

Let I'=37,I.0ov;and &,.,={(v, 9)|ve ., g€ G}. Let w;, . € N(G)
be the quasiconformal automorphism of U with (a)rl,,l> = A, ., Where
A, 18 the homotopic monodromy of (&, x, R) for v,.,. Since K;cp,o7;,.,=
Klop,, we may assume that for a certain pos1t1ve integer v, oy, is
induced by a quasiconformal automorphism of S which is homotoplc toa
product of v-th powers of Dehn twists about Jordan curves on S mapped
by a, into nodes of S, foreachl =1, ---, n,. Then we have F, ;o %, ., =
S0 F,; and Hy, . (2., = 2,,;. Hence F; induce a biholomorphic
mapping of /%, onto &, /24, ;.

By using these facts, we will construct certain automorphic forms
on & for & in §T.

4. Behaviour of automorphic forms for & at cusps. We determine
the behaviour of a g-form ¥ on & for ¥ near a cusp (¢, w,) €& as
follows.

(i) If z,e€C, that is, 7, is a cusp of I', and if w,eD,, then the
stabilizer I'. of 7, in I" is generated by a parabolic transformation v
There is a Mobius transformation A of the upper half-plane U onto the
unit dise D with A~'ov, o A(r) = 7 + ¢, for a positive constant ¢,. Since
@(7) converges uniformly to &(z,) as ¢ tends to 7, through any cusp
region 4 at v =7, in D, there is a positive constant ¢ such that N, =
(lw — w,| < 0) is contained in D. for every ze 4. (See §4.10of [5].) We
assume that 4 is the image of the strip region E, ,={te U| —a <Re(t)<a,
Im(t) > b} by A, where a and b are positive constants. We set

g* ={{t, w)|te U, weD,,},
and
(L, w) = (A(t), w) for (&, w)ed*.
Then .&7: 2* — < is a biholomorphic mapping and
(7Tt w) = (.7 (t, w)[J(t, w)]°

is a g-form on 2* for ¥ *oZ 0.o”. The behaviour of ¥ near (z,, w,)
is determined by that of .o7*¥ near (oo, w,) in E,, X Nj.
(ii) Since & is a two-dimensional compact normal complex space
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and since the cusps for & except in the case (i) corresponds to a set
of finitely many points of ., every meromorphic mapping of & —{finitely
many points of &} into a projective space P,(C) is extended to a

meromorphic mapping of & into P,(C). Thus it is sufficient to study
only the behaviour of ¥ near cusps in the case (i).

5. Poincaré metric and Poincaré series. We shall briefly recall
some well-known results on the Poincaré metric and on the Poincaré
series.

1. Let 2 be a domain on the Riemann sphere whose boundary
consists of more than two points. Let Ay(2)|dz| be the Poincaré metric
for 2. We call A\, the Poincaré density of this metric. Then the following
proposition is well known. (See Kra [6, Chap. II, Prop. 1.1].)

PROPOSITION A.
(a) If f: 2— 2, is a conformal mapping, then

Mo (F@ENI ()] = No(2) , 2€ 2.
(b) IfQ,CQ, then \y(2) = Ny (2) for z€ Q..
(e) Let d4(z) = inf{lz — {|; €0dR}. Then

M(R)0,(2) 1, ze Q.
(d) If Q is connected and simply connected and if o € 2, then
Na(2)00(2) = 1/4 .

2. Let I' be a finitely generated Fuchsian group of the first kind
with translations acting on the upper half-plane U. Let I'. be the
stabilizer of o for I'. Then I'. is generated by a parabolic element
Yo(2) = 2 + ¢ with ¢ > 0. Writing I'e\I = I'wv, + 'y, + -+, Wwe have
a system (I'o\TI)={7]71=0,1,2, ---} of representatives of the cosets
I'.\I. The following proposition is also known. (See Lehner [7, Chap.
2, Prop. 1.B and Prop. 1.E].)

PROPOSITION B. For any integer q > 1, the series
3\ 7@l
converges for each ze€ U and converges uniformly on each closed region
E,=fz=z+wyllz|<a, y=a>0}.

Let x, be a parabolic fixed point for I' on the real axis which s not
equivalent to co wunder I' and take the real Mobius transformation
a(z) = (22, — 1)/z sending x, into . Then the series
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szlo [(7i0a) ()"
converges to zero uniformly as z tends to o through E,.

3. Let X be a bounded domain in C” and let H be a discrete sub-

group of the analytic automorphism group of X. For any bounded
holomorphic function f on X, we set

P/®) = 3 F(h@) @)

for x€ X. This series is called the Poincaré series of weight ¢ for H.
The following proposition holds. (See Baily [1, Chap. 5, Prop. 1].)

.

PROPOSITION C. The Poincaré series P; comverges absolutely and
uniformly on each compact subset of X for q =2 and is a holomorphic
q-form on X for H. :

We denote by H, the stabilizer of a € X in H. Let _#" be a neigh-
bourhood of the origin O in C* and let A\, be a biholomorphic mapping
of .+ onto a neighbourhood % of a stable under H, with )\,(0) = a
and |J;,(0)] =1. We may assume that /", 27 and \, are chosen in such
a way that 1) he H, ()N % + @ imply he H,, and (2) H, =\;"o H, o\,
acts on .4~ by linear transformations.

If f is a holomorphic function on a neighbourhood of a satisfying
Fr(@)J(x)* = f(x) for all he H, when h(x) is contained in the domain
of definition def(f) of f, then we say f is a local automorphic form of
weight ¢ with respect to H,. For such a function f, define \*f by

e Q) = Fna(O)2,(0)"
for e 7" N a;*(def(f)). Then we have

N OIRE) = OF T ()

for each he H,. Since he H, is linear, J;({) is a constant N-th root of
unity, where N is the order of H,. Let .2 (q), denote the linear space
of germs of local automorphic forms of weight q for H, at a. For each
q devisible by N, the mapping A} is an isomorphism of .2(q), onto the
ring <(H,) of germs of H,-invariant holomorphic functions at 0. Let
A, be the maximal ideal in the ring < of germs of holomorphic func-
tions at O in C*, that is,

Ao ={f e | f(0) =0} .

Then we know that the following proposition holds. (See Baily [1, Chap.
5, Theorem 10].)
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ProposSITION D. Leta, ---, a, € X belong to distinct orbits of H and
let a positive integer | be given. Let f; € ﬁ(ﬁai) be given fori =1, ---, k.
Then there exists a positive integer q and a Poincaré series P; of weight
q for H such that

\Pr=f mod 4t
in a neighborhood of O for each i =1, ---, k.

6. Poincare series on &2 for . Let f be an arbitrary bounded
holomorphic function on the domain < defined in §2. Assume that
|fISMon =. We set

Py(z, w) = (T%f [(v, 9)(z, W[ 7,0 (T, w)]*
= (TZ,;)f [(v(2), Hi,0(7, W) H,0(T, w)™Y'(7)?

for (7, w) € &, where (v, g) runs through I' X G, H{, ,,(t, w)=0H 4, (t, w)/ow
and ¢ = 2 is an arbitrary integer. By Proposition C, this Poincaré series
P, converges absolutely and uniformly on any compact subset of &2 and
is a holomorphic g-form for <.

We study the behaviour of P, near a cusp for &. Let (7, w, be
a cusp for & such that 7, is a cusp for I and w,eD,. We use the
notations of §4 and §5. Let I'* = A'ol'cA and v* = A'ovoA for
each yeI'. The stabilizer I'% of « in I'* is generated by v& = A~'ovo A
which is a translation v¥(z) = ¢ + ¢, with a positive constant ¢, Let
{v¥11=0,1,2, ---} be a system of representatives of the left cosets
Ix\r*.

LEMMA 1. There exists a positive constant C, such that

5| Hi(s, )" < €,

on A(E,,) X N; for each vel.

ProOOF. Let A, be the Poincaré density of D, and F. a fundamental
domain for G.. We set g.(w) = H, ,(z, w) for each g€ G. Since (v, g) =
A, w;egew;)(7, 1), we have Hg,(z, w) = (@rogo®; )y o Hy (T, w).
Hence,

g% | H (T, w)|* = g.:a; [{(@r 090 @)y o Hy, ) (z, w)|*
= g%} g1 o Hy,nY (7, w) |
= g{:}lg;(r)(H(r.u(T, w)) |*| H{, (T, w) |

and
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{1, 2wy S | He e, w) o1 dw A do|

= 3 |1, M1 e Honte, )| i, w1 dw A dao|

geG

50, @@z A dz)

geq

s “ Nrior (20| dz A dZ |
9€G JJgy(r) (Fr(r)

Il

“Dm) M@ de AN dZ| < SSQ)\,Q(zy—qdz NdZ| = K,

for each 7z e D, where z = H, ,(z, w), Fy, = Hy (7, F,)and 2 = (|z] < 2)
which contains Dy, for each 7 € D. We may assume that Ny=(w—w,| < 388)
is contained in F, for each 7 € A(E,,). Since M A(w)d,.(w) < 1 by Proposition
A, we have 6, (w)"? < n(w)*? for weD,. Hence

3\, 1 Hote, w)ildw A dw)
Nos

geq

<o 5 || o wr o, w) it dw A dal

ice
<3 || @i o, wildw A do|
<k,
Therefore, there exists a positive constant C, such that
> | Hi, oz, w)[* = G

geqG

for each (z, w)e A(E,,) x N, and for each vel.

LEMMA 2. There exists a positive constant C, such that
IRV (CEHLELH0) K=ol
on E,, for each j=0,1,2, ----.

PROOF. Let A(t) = e“(t — ia)/(t + i) and v¥(t) =t + ¢,, where a and
¢, are positive real numbers and ¢ is real. Set ¥¥(t) = w + v with » > 0.
Then we have

< ’ *\n * q q < 1
2 | ATOE eI = @ay 3 T ony @ o
a\” dx 2
= (o {S—w {(u + cox)® + (@ + )} * (o + 1;)2“}

. T 2
s Cay | o]
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¥ 21
2z, 2" _g,.
c,att a’

A

Now we have the following:

THEOREM 1. Let (7, w,) be a cusp for & such that t, is a cusp for
I' and w,e D.,. Then (.57 *P;)(t, w) converges to zero uniformly as (¢, w)
tends to (oo, w,) with w,€ N; through E,, X N;.

PrOOF.
[ 7*Py(t, w)| = lg}f [(r, @)(A(E), W[z, (A(D), w)]*A'(2)?|
= TZ‘, | fL(v, )(A®), w)] || Hi;, ) (A(E), w)(Aev*)(8)]*

< M S (5| Higr, o A®), w) [ AT 7O (3B

§=0 m=—o0

and the series on the right hand side converges to zero uniformly as
(t, w) tends to (oo, w,) through E,, X N, by Proposition B and Lemmas
1,2. This proves our Theorem 1.

Let a = (7, w,) be a point of & and let G, ,, be the stabilizer of
w, in G,. We use the notations of §5.3.

Case 1. G.,., = {id}. Weset (x,y) = (t — 7o, w — w,) and A\, (, y) =
(x + 7o, ¥ + w,). Then (x, y) are local coordinates of &2/%< in a neigh-
bourhood of [z, w,]. Since the stabilizer &, of a in & is trivial, the
group &, = \;'o &, oM, is also trivial. Therefore, each element of &’(?.,)
is a convergent power series

oo

D A Y™ .

Case 2. @G.,., is generated by an elliptic transformation g.. The

transformation @ = g.(w) is given by the relation
(W — &(2))/(W — &x(7)) = exp@2mi/v)(w — &(7))/(w — &(7)) ,
where &,(7) # &(7) are holomorphic functions of ze€D and &(z,) = w,.
We set
(@, 2) = ((&(7o) — &(T))(T — T0), (W — &(7))/(w — &(7))) ,

No(t, 2) = (7, w) and (x, y) = (¢, 2*). For the stabilizer &, of a in &, the
group &, = \;'oZ, 0\, is generated by the linear transformation sending

(t, 2) into (, (exp 27i/v)z). Since each element ¢ of <*(Z,) is a convergent
power series

DI A

n,m=0
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the function ¢ is regarded as a holomorphic function of (z, y) = (¢, 2*)
and (z, y) are local coordinates of /% in a neighbourhood of [z,, w,].

Thus, for any point a = (7, w,) € 2 and for any automorphic form
fo of weight ¢, for & with f(a)+# 0, Proposition D implies that there
exist two Poincaré series f, and f, for & of the same weight ¢ such
that

AN LN fo)"e, (N L) (NG fo) ™) [0, ) # O

at (x, y) = 0 for all positive integers d, and d with d.q, = dq.
Now we have the following.

PROPOSITION 1. Let a = (7, w,) be a point of Z and let f, be an
automorphic form of weight q, on & for & with f(a)*0. Then there
exist two Poincaré series f,, f, for & of the same weight q such that

OO LN fo)o, (N2 £ (NG fo)™)[o(e, y) = 0

at (x,y) =0 for all positive integers d, d with d,., = dq, where (x, y)
are local coordinates of =Z|Z in a meighbourhood of [z, w,] so that
[zo, wo] s given by (x, y) = 0.

7. Poincare-Eisenstein series on &7 for . We use the notations
in §3 and §4, but for the sake of simplicity, let us simply denote B,
fi, 0 and o; instead of p,0 A4, fi, v* and v}, respectively.

For any bounded holomorphic function f on gA’,,j, set

Q& w) = X fIE, ME, WA, w)]*

for ({, w) e gl,j, where h(z, -) runs through H,({) and »'(€, w)=0oh(, w)/ow.
Proposition C implies that this Poincaré series Q; is a holomorphic ¢-form
on &,; for 27 ;.

Let 7, be a cusp for I with ¢, = p(z,) and let ., be a generator of
the stabilizer I',, of 7, in I'. The element 7,., = (v.,)* is a generator of
the stabilizer I, of 7, in I',. Take a Mobius transformation A: U— D
such that Aoy, cA(t) =t + ¢ for a positive constant ¢. Let I'} =
Aol'o A, I'Y, = A"l oA and 0 = A7ov0o A for yel'. We set

2 ={t, w)te U, weDy,},
H, ,(t, w) = Hy ,(A(D), w) ,
(8, w) = (A®R), w) .
Then
R, w) = Qs[B(), fw)]Lfi(w)]*
is a ¢-form on Z* for £%, =%, 0% . In fact, for each (g, g) € %,
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with ¢ = A7eveA, we have R/(g, 9)t, W)[J .ot w)' = Q[B-a(t),
Sow o Hig g, W(foiy o Heoy) (8, w)]* = Qo070 A(D), froaw o Hyy,ph(A(2), w)] X
[(Freaw © Hir,9)) (A(L), w)]°. ~Since w;,., of N(G) is induced by a quasicon-
formal automorphism of S which is homotopic to a product of v-th powers
of Dehn twists about Jordan curves on S mapped by @, into nodes of
S,, we see that, if v, is sufficiently large, then there exists an element
nB(t), -) of Hy(B(t)) with
Sreaw © Hi,(At), w) = h(B(1), f(w))
for an element verl',.. Since g,y =0, for vel',, and ¢’ =1 for
oel,, we get R/(o, 9)(t, w[J©,o(, w)* = Q,[B(), h(B(?), f(w)][{R(B({),
L)Y = Q/B®), f(w)]lfi(w)]* = Rs(t, w). Hence E; is a g-form on Z*
for &,
Let I't = X2, 0%, 00, Set

Er(t, w) = 3, Bol(0, 1, )l in(t, w)]"

for (t, w)e =2,*. This series E} is called a Poincaré-Eisenstein series for
Z*. Explicitly, E}f is given by

Ef(t, w) = 3{f[B>0it), ((B20.(t), four* Hirpu(t, w)]

X [{h(BOGi(t)’ fui(t) oH(ai,l)(tr w))}']q}o-:(t)q ’
where h(Bo,(t), -) runs through H,(Boo,(t)) for 1 =0,1,2, ---.

LEMMA 3. Let t, be a point in U or a parabolic fixed point of I'}
and let w, be a point in D,.,. Take a meighbourhood 4 of t, or a cusp
region 4 at t, such that a meighbourhood N, of w, is contained in D,
for each t in 4. Then there exists a positive constant not depending on
1=20,1,2, --- such that

Z I {h(BO ai(t); fai(t) oH(ai,l)(ty W))}’ Iq é Cs
on 4 X N;, where h(Bo(t), -) runs through H,(Boal)).

PrROOF. Let 7 = A(t), { = Boay(t), ¢(w) = f,,u°o Hi,n(t, w) and let .
be the Poincaré density of D.. Let A, be the Poincaré density of the
domain 4, = h(, 4,;)) for each he H/({). Since h(, ¢(w)): D. — 4, is a
universal covering, by definition, ), [A(C, ¢(w))]|{R(, ¢(w))}' |=\.(w). Hence,
for a fundamental domain F' for G,

S| i, sy idw ndwl = S| w@rldzadzl,
F Fp

h

where F, = h(¢, ¢(F')) and z = h(, ¢(w)). Since V. (z) = z + O(1/|z|) as 2
tends to -, Koebe’s one-quarter theorem implies there is a positive
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constant 7, such that 4, is contained in D, = (|z] < 7,) for each { e E and
each A, -)e H({). If ), is the Poincaré density of D,, then \,(2) = A\ (2)
for ze 4,. Therefore,

5 SLJ“MM LINIES S SStho(zy—q |dz A dZ |
< SSD M) dz A dZ| < K,

for each te U, where K, is a positive constant not depending on i =
0,1,2, ---. Hence, by the same reasoning as in the proof of Lemma 1,
we can prove Lemma 3.

THEOREM 2. The Poincaré-Eisenstein series E}f for < converges
absolutely and uniformly on any compact subset of =2,* and is a holo-
morphic g-form for €*.

ProOOF. Proposition B and Lemma 3 imply that E} converges
absolutely and uniformly on any compact subset of < *.
For each (o, g) € &€/*, we have

Ef{(0, 9)t, Wl wnlt, W) = 3 R(0:0, 9)(t, W wpon(t, )] -

Since there exists an integer «, and a non-negative integer k;, with
g,00 = (7} )%e0,, for each i, we have (g,°0,9) = ((71:)%, 9))° (04, 1)
with g, = @y, cgow;} and v, = Ao, oA, Hence, E}[(0, g)(t, w)]
[Ji0,0(t, W' = 3% Byl(0w, DE, w6, 0@, w)]* = EF(¢, w). Therefore, E}
is a g-form for £ *. This completes the proof of Theorem 2.

Now, we set
Ei(z, w) = (&) EX) (T, w) .
Then E; is a ¢-form on & for &, which is called a Poincaré-Eisenstein
series on & for <.
We study the behaviour of E; near cusps of <.

THEOREM 3. If w,eD., then .S4*E; is bounded in the domain
E.» X N, for (z,, w). If we Q. ;, then (S7*E)(t, w) converges uniformly
to

E.)‘Q(Tb w) = Ig{he% ,f[lol(fl)) hofz'l OH(Ti,l)(Tlr wl)][(h OfrlOH(Yi,l)),(Tl’ wl)]q}

as (t, w) tends to (oo, w,) through E,, x N;, where w, € N, and v, = (v.,)".
Moreover, E; is a holomorphic q-form on 2., ; for the group gemerated
by G, ;and Hy, ,,,m=1,2,---, v, — 1. On the other hand, if a parabolic
fixzed point v, for I' is mot equivalent to v, under I' and if w,€D., then
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(S *E)(t, w) converges to zero uniformly as (t, w) tends to (oo, w,) with
w, € N; through E,, X N;.

ProOOF. By Proposition B and Lemma 3, it is clear that &/*E; = Ef
is bounded in E,, x N, and it is also clear that E} converges uniformly
on any compact subset of 2., ; as (¢, w) tends to (o, w,) through E,, X N;.
Each covering f,, . °H,,.(t, w) converges uniformly to the covering
fepo Hy (T, w) as (¢, w) tends to (co, w,) through E,, X N;. As stated
in §8, V.oho V' converges uniformly to & for each he H,, and V.oho
(V) converges uniformly to a constant mapping for each ke H, —
V.o H,o(V)™" on any compact subset of 2'(H,) as { tends to £,. There-
fore, if w,e€.; then lim ,wu)(-F*E)(t, w) = EF(c0, w) = 355
{ZheHl,jf[pl(Tl)y h °frl ° H(ri,u(z't, wll(h °fr, ° H(ri,n)'(fz, wy]’}.

Let 7, be a cusp of I' which is not equivalent to z, under I". We
set

B(t) = (¢4;'(zo) — DT,
A= A,-B, Z(t, w) = (B), w) and .&7(t, w) = (A(t), w). Then
(7 Ef)E, w) = (Z*Ef)t, w) = EX(B(), w)B'(t)" .
Hence, Proposition B and Lemma 3 imply that (.&7*E/)(t, w) converges

to zero uniformly as (¢, w) tends to (e, w,) through E,, X N,. This
completes the proof of Theorem 3.

Now, by Propositions B, D and Theorem 3, it can be proved that
for each I =1, - - -, n,, there exist finitely many Poincaré-Eisenstein series
Ey,, -+, Ef,,, on & for & of the same weight such that they have
finitely many common zeros on the compactification of D, /G.,. Therefore,
Efl,l,A- " Efpp v Bryp "0 Efno,aﬂo have finitely many common zeros
on F|T — D|<Z.

Thus, we have the following.

COROLLARY. LetS = & /? — (% . Then there exist finitely many
Poincaré-Eisenstein series E, ---, E, on & for & of the same weight
q, such that they have finitely many common zeros on X.

Now, we have the following.

THEOREM 4. If f, and f, are non-zero Poincaré or Poincaré-Eisenstein
series for & of the same weight q, then the quotient f = (fi/f.)* is a
meromorphic function on ¥ for all positive integers d,, d with d,q, = dq.

ProoF. Let Z, be the set of common zeros of E, ---, E, on 3 and
let Z, be the set of points on ¥ which correspond to cusps (z, w, for
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< with w,e F,,. Set Z = Z, U Z,, which consists of finitely many points.
Since f, f, are holomorphic on &, it is clear that f is meromorphic on
Z|€. For each point peX — Z, there exists a Poincaré-Eisenstein
series K, for some ¢ =1, ---, m such that E,(»)+# 0. By Theorems 1
and 3, the functions (f%)/(E/) and (f)/(E ) are holomorphic and bounded
in U, — %, where U, is a neighbourhood of p in . Since . is normal
and Y is a one-dimensional analytic subset of .&, (fO/(EH) and (f2)/(E )
are holomorphic in U,, which implies that f is meromorphic on & — 7.
Therefore, by Levi’s extension theorem, f is meromorphic on .&°. This
completes the proof of Theorem 4.

8. Bimeromorphic embedding of algebraic surfaces into projective
spaces by automorphic forms.

THEOREM 5. There exist holomorphic automorphic forms ¢, ---, ¢y
of the same weight on =2 for < so that @ = (¢, -+, ¢y) induces a
bimeromorphic embedding of G =D /5/2/‘ into the N-dimensional complex
projective space Py(C).

PrOOF. Set S =< /f" —2|%. There exist finitely many Poincaré-
Eisenstein series E, ---, K, of the same weight ¢, on & for & such
that the set Z, of their common zeros on Y consists of finitely many
points. Let Z, be the set of all points on ¥ which correspond to cusps
(to, wy) for & with w,e .7,

For arbitrary non-zero Poincaré series f,, f; for £ of the same weight
¢, Theorem 4 implies that F,=(f./f,)? is a meromorphic function on & for
all positive integers d,, d with d,q, = dq. Let I(F,) be the set of points
of indeterminacy of F,. Set

AF) = {(p, 9| Fup) = Fi(@), », 9€ & — I(F,)} .

Since 4(F,) is a three-dimensional analytic subset of (9 — I(F)) %
(&P — I(F) — (& x IF))UU(F,) x &) and sinee (& x I(F))UI(F,) x.)
is a two-dimensional analytic subset of P x , Remmert-Stein’s exten-
sion theorem implies that the closure of 4(F)) in & x & is a three-
dimensional analytic subset of G x P Therefore, by Proposition D
and Theorem 4, there exist finitely many Poincaré series f,,, f;,, for &
of the same weight ¢, for each 7 =1, , @ such that the mapping

= (foo fu 3 fa op fo) OF & into the product of a copies of P,(C) is

meromorphlc on .& and is injective on & — 3.
For arbitrary non-zero Poincaré series g, g, g. for & of the same
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weight ¢, Theorem 4 implies that G, = (g,/9,)* and G, = (g./g,)* are
meromorphic functions on & for all positive integers d,, d with dyg, = dq
Let I(G,, G,) be the set of points of 1ndeterm1nacy of G, or G, and let Slng(.V )
be the set of singular pomts of &. Since .& is a normal complex
space, I(G,, G,) and Smg(y) are analytic subsets of & of codimension
2. The set D(G,, G,) of points on & — G, G,) USing(Q ), where the
mapping (G, G,) is degenerate, is a one-dimensional analytic subset of
& — I(G, Gy USing(.%”). By Remmert-Stein’s extension theorem, the
closure of D(G,, G,) in & is a one-dimensional analytic subset of .
Therefore, by Proposition 1 and Theorem 4, there exist finitely many
Poincaré series g;., 9;.1, 9;. for & of the same weight ¢; for each j =
1, -+, B such that the mapping G = (9.0, G911, 91,55 "5 95,00 95,1 5,2) Of 9
into the product of B copies of P,(C) is meromorphic on & and is of
maximal rank at every point of & — 3.

We now use the well-known Segre mapping, that is, for any two
projective spaces P,(C) and P,(C), the Segre mapping is an injective
holomorphic mapping of P,(C)x P,(C) into P,(C), where M = ((n + 1)X
(m + 1) — 1). By this Segre mapping, the above mappings F and G
induce a meromorphic mapping @ of & into P,(C), where N = 2°3% — 1.
This mapping @ is injective on & — ¥ and is of maximal rank at every
point of & — 3. We set

Go = ((p, ®)|w e O(p), pe.F} .

Since @ is a meromorphic mapping of .& into P,(C), the graph G, of @
is a two-dimensional analytic subset of & x Py(C) and the projection p,
of G, onto .& is a proper modification. Let p, be the projection of G,
into Py(C) and let Y = p,(Gy). Then, by the proper mapping theorem,
Y is an analytic subset of P,(C). If p, is the projection of G, onto Y,
then p, induces a biholomorphic mapping of G, — 37 (px(2)) onto ¥ — p,(2),
which implies that p, is a proper modification. Therefore @: & Y is
a bimeromorphic mapping. This completes the proof of Theorem 5.
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