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Abstract. Earlier in 1961, Doob proved that if f(z) is a normal func-
tion in a disk, then every angular cluster value at a boundary point is also
a fine cluster value at the point. He then asked whether or not the con-
verse of this theorem is true. In this paper, we answer this question in
the negative sense with respect to the ordinary fine topology of Brelot.

1. Introduction. Let D(|z| < 1) and C(|z| = 1) be the unit disk and
circle respectively. Let f(2) be a function defined in D. We say that
the function f has an angular cluster value v at a boundary point pe
C, if there is an angle A(p) lying in D with one vertex at p and a
sequence {p,} of points p, € A(p) such that
limp, =» and lim f(p,) =v.

n—o00

We shall now introduce the notion of fine topology in the sense of
Brelot [2, p. 327]. Let E be a set and p a point. We say that E is thin
at the point p, if either p is not a limit point of E or there exists a
superharmonic function s(z) such that

s(p) < liminfs(z), where zecE — p.
2D

The first case is trivial and therefore only the second case will be con-
sidered in the sequel.

With the notion of thinness, we can now follow Doob [3 or 4] to
define the fine cluster value. We say that the function f has a fine

cluster value v at a point peC, if there is a set Tc D which is not
thin at » and

lim f(z) = v, where zeT.

z2—p
In this case, the point p is called a fine limit point of the set T.
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It remains to introduce the notion of normal functions. We say
that a function f meromorphic in D is normal in the sense of Lehto-
Virtanen [6], if the family of transformations of f by the linear trans-
formation taking D onto itself is a normal family in Montel’s sense.
In particular, if f is bounded holomorphic in D, then f is normal. In
fact, our result is based on a construction of a Blaschke product which
is bounded holomorphic in D. With those definitions, we can now state
our result which answers Doob’s question [3, p. 529].

THEOREM. There is a function f(z) normal in D such that f has a
fine cluster value at a boundary point which is mot an angular cluster
value of f at the point.

2. Wiener criterion. According to a theorem of Brelot [2, p. 327],
we know that the notion of thinness is equivalent to that of irregularity.
It follows from the Wiener criterion [8] (see also the book of Landkof
[5, p.- 298 and 308]) that a set E is thin at a point pe E if and only if

(1) S\W(E,) log di* < <,

where W(E,) is the Wiener capacity of the set
En:En{z:d'n+1S|z—p[<dn}’ 1<a’§dn/dn+1—<_—b'

We notice that without loss of generality we may take the number
d, =2

We shall now introduce the metric property of W(E). To see this,
we first observe that the relation between the Wiener capacity W(X)
and the logarithmic capacity L(E) of a set E is the following (see for
instance [5, p. 167]):

(2) W(E) = 1/(log 1/L(E)) .

Moreover, if E is a line segment of length |FE|, then the logarithmic
capacity satisfies (see [5, p. 172])

(3) L(E) = |E|/4 .

3. Proof of Theorem. According to Section 1, we see that it is
sufficient to construct a Blaschke product B(z, a,) whose zeros a, tend
tangentially to a boundary point, say, the point z = 1, such that the
function B has the fine cluster value 0 at z = 1 and this value 0 is not
an angular cluster value of B. In fact, the following Weierstrass product
serves this property (see Seidel [7, p. 214))

(z+1)/(2—1) _ ,—1 X hd —
(4) Bz, a,) = -° =g I Ge— 2 10
1 — e l.glzt0/(z—1) == 1 — @ .2 @
n20 n n
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with the zeros a, = nni/(zni + 1), n = £1, £2, ---.
It is easy to see that all zeros a, are located on the horocycle

(x — 12 + o> = 1/4 .

Thus the value 0 is not an angular cluster value of B at the point z = 1.
Since

|B(e®,a,)| =1, foral =0,

this value 0 is neither an angular cluster value of B at any point on
C. Moreover, the product B omits the value —e™ in D and therefore
this value —e™! is the angular limit of B at z = 1.

To finish the proof, we need only show that the value 0 is a fine
cluster value of B at z = 1. To do so, it suffices to consider the upper
zeros a,,n = 1,2, ---. For convenience, we write

a, = r.e% , where 7r,=7mTn(@n®+ 1)7%,
d,=|1—a,| =@+ 1),

b, = (r, — dle?%», where ¢=3, and
t, = a,b,, with the length |t,| =d¢.

(5)

The Theorem will be proved if we can show the following two
properties:

(6) The set Tzﬁtn is not thin at 2 =1,

(7) The product B(z, a,) 0, as z—1 and ze T .

We begin by proving the property (6). Since ¢, is a line segment,
it follows from (3) and (5) that the logarithmie capacity of ¢, satisfies

L(t,) = 47(n*n® + 1)~
and therefore by (2), we have
(8) W(t,) = (log 4 + (g/2)log (z*n’ + 1)),
= (g + 1Dlogn)™, for n=>4.

In order to apply the Wiener criterion (1), we need only choose a
subsequence {n;} of {n}, say, n; =2/, =1,2, ---. We then have
d.; = (@29 + 17",
so that

l1<as=d,/d,, <2, for j=1,2---.

nit1
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This together with (1) and (8) yields that for some constant k& > 0,

(9) SWit, ) logdst = kS, —E = oo .
= TTomg+1

This shows that the subset U, t,; of T is not thin at z = 1, and therefore
T itself can not be thin at z = 1. This proves (6).

It remains to prove (7). According to a theorem of Bagemihl and
Seidel [1, Theorem 3], it suffices to show that the hyperbolic metric
satisfies

(10) 0@y, b,) >0, as n— oo,

Where p(am bn) = (1/2) IOg(ll - anbn| + |an - bnl)(|1 - 6nbn| - [a’n - bnl)_l'
In view of (5), we see that

1 —ab,|=1—r,(r,—d) and |a,—b,| =4d:.
It follows that

1 1+7r 1—17,+d?
11 w D) = =1 n_. » 5.,
(1) olar b.) 20g<1+'r,,—d;’, 1—7r, >

Clearly, by (5), we have
r,—1 and di—0, as n— oo,

so that

12) lim—L1t7 ¢
n-w 1 4 9, — dY
Moreover, by the restriction ¢ = 8 in (5), we find that

(13) hm 1=t dh @ D
noeo 1 — 1, oo (TP 4 1)@ D2

By substituting (12) and (13) into (11), we obtain the desired result
(10). This establishes (7) and therefore the value 0 is a fine cluster value
of B at z =1. The proof is complete.

REMARK. In view of the rapid divergence of (9), we see that the
set T is in a sense “very thick”. In fact, the divergence of (9) can be
achieved even if the constant ¢ is replaced by the order O(j).
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