
Tόhoku Math. Journ.
34(1982), 437-483.

ZETA FUNCTIONS IN SEVERAL VARIABLES ASSOCIATED
WITH PREHOMOGENEOUS VECTOR SPACES I:
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Introduction. 0.1. Let G be a connected linear algebraic group, V
a finite dimensional vector space and p a rational representation of G
on V. We call a triple (G, p, V) a prehomogeneous vector space if there
exists a proper algebraic subset S of V such that V — S is a single G-
orbit. The set S is called the singular set of (G, p, V). When G and
V have structures over a field K such that jθ is defined over K, the
triple (G, /?, V) is said to be defined over K. An arithmetic significance
of the theory of prehomogeneous vector spaces lies in a conjecture due
to M. Sato that one can associate a system of Dirichlet series satisfying
certain functional equations with a prehomogeneous vector space defined
over an algebraic number field. This conjecture was taken up by Sato
himself and Shintani in [14] under the hypothesis that G is reductive,
S is an absolutely irreducible hyper surf ace and (G, p, V) is defined over
the rational number field Q. In this case, according to their results,
one can associate with such a triple (G, p, V) a system of Dirichlet series
in one complex variable which satisfies a functional equation similar to
those of classical zeta functions such as the Riemann zeta function, the
Epstein zeta function, etc. If we remove the assumptions above on the
group G and the singular set S, it is natural to consider Dirichlet series
in several complex variables. The purpose of this paper is to present
a definition of zeta functions in several variables associated with a
prehomegeneous vector space satisfying certain mild assumptions and
to establish the conjecture of M. Sato for such zeta functions.

Igusa [6] posed a problem to associate a zeta function with a poly-
nomial mapping with coefficients in an algebraic number field. Our result
may be regarded as a partial answer to his problem.

0.2. Now we give a summary of this paper. For a prehomogeneous
vector space (G, p, V) defined over an algebraic number field K, we are
able to obtain a prehomogeneous vector space RK/Q(G, p, V) defined over
Q by restricting the field of definition K to Q. The zeta functions
associated with (G, p, V) should coincide with those associated with
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RK/Q(G, P, V) for various reasons. Hence, without loss of generality,
we may assume that (G, p, V) is defined over Q. Let Pίf , Pn be Q-
irreducible polynomials defining the Q-irreducible components of S with
codimension 1. It is known that there exist Q-rational characters
Xl9 —,%n of G such that

for all geG and for all xeV, namely, the polynomials Plf •• , P n are
relative invariants of (G, p, V). Let Gi be a subgroup of the real Lie
group GR containing the connected component of the identity element
and let VR - SR = V, U U Vv be the GJ-orbit decomposition. We fix
a matrix expression of G and a basis of V compatible with the given
Q-structure of (G, p, V) and such that p(Gz)Vz(zVz. Put

Γ = {g 6 Gz n Gi; Ug) = 1 (1 ̂  i ^ n)} .

Let L be a Γ-invariant lattice in VQ and set Lt = L Π F< (1 ̂  i ^ v).
Denote by r\L f the set of all Γ-orbits in Lit Let Gx be the isotropy
subgroup of G at a point x in V and denote by G° the connected com-
ponent of the identity element of Gx. Put Gi = GXΠ Gi and Γx = GXΓ\Γ.
We assume that the group of Q-rational characters of G° is trivial for
all x in VQ — SQ. Then, for any X in VQ — SQ, the invariant volume of
Gi/Γx is finite. For any rapidly decreasing function / on FΛ, consider
the integrals

Z(f, L; s) = \ Π I X*Cfir) I'* Σ f(p(g)x)dg

and

\ Π I P i ( » ) I *f(x)dx (l^i^v)f; 8)=\

where dg is a right invariant measure on Gi and cί# is a Euclidean
measure on VR. The functions Φlf ••-, Φv have analytic continuations to
meromorphic functions of s in Cn. By a routine argument, we have at
least formally the formula

(0-1) Z(f, L;s) = ± ξt(L; s)Φi{f\ * ~ *)
i=l

for some δ in Qn. Here ξlf , ξu are the Dirichlet series defined by

ML; s) = Σ μ(x) I PiW I"11 I P.(») l"8% (1 ̂  i ^ v, s 6 CΛ)

where jtβ(α?) is the volume of Gi/Γx with respect to a suitably normalized
Haar measure on Gi. The Dirichlet series ξu •••, fv are called the zeta
functions associated with (G, p , V). W e a l w a y s a s s u m e t h a t ξl9 •• ,f1/
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are absolutely convergent when Reslf , Resn are all sufficiently large.
Then the formula (0-1) is justified in a domain on which both £/s and
0/s are absolutely convergent.

If the representation p is irreducible, then we have at most one
irreducible relative invariant up to a constant factor. So we are inter-
ested in a triple (G, p, V) such that p is reducible. Especially we consider
the case where (G, p, V) is decomposed into the form (G, p, V) = (G, pλ 0
Pi, E® F) over Q and the singular set S is a hypersurface in F. The
invariant subspace F is called a Q-regular subspace of (G, p, V) if there
exists a relative invariant P(x, y) (xeE, y e F) with coefficients in Q such
that the Hessian

HP,y(x, y) = det (-J¥—(χ9 y))

of P with respect to the variable y in F is not identically zero. We
assume the Q-regularity of F. Let F * be the vector space dual to F.
Denote by pt the representation of G on ί7* contragredient to p2. Put
P* = Pi® p? and V* = E® F*. As a consequence of the Q-regularity
of F, the triple (G, <o*, F*) is also a prehomogeneous vector space which
has a natural Q-structure. The assumptions imposed on (G, p, V) are also
satisfied by (G, p*, V*) with the only possible exception of the assumption
on the convergence of the zeta functions. Moreover it can be seen that
the singular set S* of (G, p*, F*) is also a hypersurface in F* with n
Q-irreducible components and V£ — S% is decomposed into v orbits under
the action of G\. Let Zf, ••-,%£ be the Q-rational characters of G
corresponding to Q-irreducible relative invariants Q^x, y*)f , Qn($, #*)
defining the Q-irreducible components of S*. Then there exist an n by
n unimodular matrix U = (ui5) and an w-tuple λ of half-integers such
that

Uo) = Π mg)Uίύ (l£i£n) and det p2(gY = Π UdT* .
3=1 i = l

Let M and N be Γ-invariant lattices in EQ and F ρ respectively. Let
iV* be the lattice dual to N. Put L = M 0 iV and L* = ikf φ iV*. For
the triple (G, <o*, F*) and a rapidly decreasing function /* on FΛ*, define
£*(/*, L*; β), f *(L*; β) and Φ*(/*; s) (1 ^ i ^ v) as for (G, p, F). Finally
we assume the absolute convergence of ff, •••,£*• Then we have

(0-2) Z*(/*, L*; s) = Σ £?(!<*; «)Φ?(/*; β - δ*)
ί = l

where δ* = (5 — 2λ)ϊ7. Denote by β and .B* the domains of absolute
convergence of Z(f, L; s) and Z*(f*, L*; s) respectively. Let D (resp.
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D*) be the convex hull of (B^U'1 + λ ) U 5 (resp. (B - X)UϋB*) in C\

Notice that (D - λ)J7 = D*. Set

Φ(f;s) = t(Φ1(f;s), . -- ,* ,(/ ;*))

and

We define the partial Fourier transform of / * with respect to F* by
the formula

x, V) =

THEOREM 1. ΓΛere e#ΐs£ a v by v matrix A(s), a Gamma factor 7(s)
and non-zero complex numbers clf •• ,c Λ , which are independent of / * ,

β) = Π cΓSί(2τri/^l)d*(8)7(s)A(s)Φ*(/*; (s + \)U)

where d*(β) = sλ degy* Q^x, y*) + + sTO degy* Qn(a?, y*) and all the entries
of A(s) are polynomial functions in e x p ί π s j / —1), e x p ( — πsj}/ — 1), •••,
exp (ττsnl/^ϊ), exp (— πSnV^Ϊ).

This theorem is a generalization of Sato [11, Theorem 4], Sato and
Shintani [14, Theorem 1] and Shintani [16, Theorem 1.1].

Set

and

t(L*; s) = <(£*(£*; s), •, ζΐ(L*; s)) .

The following is the main theorem of the present paper.

THEOREM 2. ( i ) The Dirichlet series ζ^L; s), , ξv(L; s) (resp.
ξf(L*; s), , ξϊ(L*; s)) have analytic continuations to meromorphic func-
tions of s in D (resp. D*).

(ii) There exists a polynomial b(s) (resp. 6*(s)) in s such that b(s —
δ)ξι(L; s),' ', b(s - δ)fXL; β) (resp. b*(8-δ*)ξT(L*; β), - • f δ*(S-S*)ί?(L*; s))
are holomorphic functions in D (resp. D*).

(iii) The following functional equation holds for seD:

v(N*)ζ*(L*; (s-X)U) = f[ c^-s^(-2πV^l)dHs-δ)Ί(s - δ) *A(s - δ)ξ(L; s)

where v(N*) = \ dy*.
)F*R/N*

Theorem 2 is derived from Theorem 1 and the integral representations
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(0-1) and (0-2) of the zeta functions. Under the additional assumptions
that G is reductive and V itself is a Q-regular subspace, the domains
D and D* coincide with Cn, and hence, the associated zeta functions are
continued meromorphically in the whole of C\ It is another consequence
of Theorem 2 that the zeta functions satisfy at least the same number
of functional equations as the number of Q-regular subspaces. As is
seen in examples, it frequently occurs that (G, p, V) has several Q-regular
subspaces.

0.3. This paper is devided into seven sections. In § 1, § 2 and § 3,
we investigate elementary properties of prehomogeneous vector spaces
and their Q-regular subspaces. The zeta functions are introduced in § 4.
Generalizing the method used in [11] and [14], we prove Theorems 1 and
2 in § 5 and § 6 respectively. The final section is devoted to the study
of concrete examples. The examples treated in § 7 are rather easy ones.
Further applications of Theorem 2 will be seen in subsequent papers
([23], [24]). Another summary of this paper is found in [26].

0.4. The author would like to thank Professor M. Sato and the late
Professor T. Shintani for their helpful advises and encouragement.

Notation. As usual, Z, Q, R and C are the ring of rational integers,
the rational number field, the real number field and the complex number
field, respectively. For any non-zero real number x, sgnx is x/\x\. For any
complex number x, we put e[x] = exp2τπ/ — lx. Let R be a commutative
ring with an identity element. We denote by M(n; R) (resp. M(n, m; R))
the set of n by n (resp. n by m) matrices with entries in R. For any
matrix A, denote by *A the transposed matrix of A. We use the symbols
tr A and det A, respectively, as abbreviations for the trace and the deter-
minant of AeM(n; R). For an affine algebraic set X defined over a field
K, we denote by Xκ the set of i£-rational points on X. If G is an
algebraic group of matrices defined over Q, the group of integral matrices
with determinant ± 1 contained in G is denoted by Gz. For any finite
dimensional real vector space V, 6^(V) is the space of rapidly decreasing
functions on V. For any smooth manifold X, C™(X) is the space of smoth
functions with compact support on X. Let (X, μ) be a measure space.
Denote by L\X, μ) the space of μ-integrable functions on X. We denote
by Γ(z) the Gamma function and ζ(z) the Riemann zeta function.

1. iJL-structures on prehomogeneous vector spaces. Let (G, p, V) be
a triple of a connected complex linear algebraic group G, a finite dimen-
sional vector space V over C and a rational representation p of G on V.
A triple (G, p, V) is called a prehomogeneous vector space (briefly a p.v.)
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if there exists a proper algebraic subset of V such that V — S is a
single G-orbit. Then S is called the singular set of (G, p, F). By a
generic point, we mean a point in V — S. For a rational character X
of G, a non-zero rational function P on V is called a relative invariant
of (G, |O, V) corresponding to X if P(p(g)x) = X(g)P(x) (for all g e G and
for all ice F).

For any subfield K of C, if G and F admit ίί-structures such that
p is defined over K, then (G, |O, V) is said to be defined over K. From
now on we fix a ^-structure on (G, p, F). Identify F with Cs (s = dim F)
and G with a closed subgroup of GL(r) defined over K. We may assume
that all the entries of p{g) e Aut (F) = GL(s) (g e G) are rational functions
on G with coefficients in K. Let Gal (C/1SΓ) be the Galois group of C
over K. The canonical action of σ in Gal(C/ίΓ) on a rational function
i? on CN is denoted by R\ Let P(α) be a relative invariant corresponding
to a rational character X of G. Then, for any σ in Gal(C/ίΓ), we have

(1-1) Pσ(ρ(g)χ) = Xa(g)P\χ) (g e G, x e V) .

LEMMA 1.1. Let (G, ̂ o, F) be a p.v. defined over K and S be its
singular set. Denote by S' the union of the irreducible components of
S with codimension 1. Then both S and S' are defined over K.

PROOF. For an x e F, denote by Gx the isotropy subgroup of G at
x. It obvious that G9* = (Gx)° for all σeGsil(C/K). By the proof of
[13, §2, Proposition 2], x is in S if and only if dimG^ > dim G — dimF.
Since dimG^ = dim(Ga.)

σ = dim Gx, S is stable under the action of
Gal(C/ϋΓ). This implies that S is defined over K (cf. [2, Chapter AG,
Theorem (14.4)]).

Let Sl9 , Sn be the irreducible components of S with codimension
1. Then S' = St U U Sn. Since the singular set S is defined over K,
S^ (σ e Gal (C/K)) is also an irreducible component of S with codimension
1 for every i. Hence S'σ = S' for any αe Gal (C/K). Thus S' is also
defined over K.

Let Gx be the normal closed subgroup of G generated by the com-
mutator group of G and the isotropy subgroup Gx at a generic point x.
By the prehomogeneity, the group G1 is independent of the choice of x.
Let X(G) be the group of rational characters of G. Denote by XP(G)
the subgroup of X(G) consisting of elements whose restrictions to G1

are trivial:

(1-2) XP(G) = { X l

It is known that the group XP(G) coincides with the group of rational
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characters corresponding to relative invariants of (G, p, V) (cf. [13, § 4,
Proposition 19]). Denote by XP(G)K the subgroup of XP{G) consisting of
rational characters defined over K.

LEMMA 1.2. Let (G, p, V) be a p.v. defined over K.
( i ) There exists a finite Galois extension L of K such that any

relative invariant coincides with a rational function with coefficients in
L up to a constant factor.

(ii) Let P{x) be a relative invariant corresponding to a rational
character X of G. Then P(x) coincides with a rational function with
coefficients in K up to a constant factor if and only if Xe XP(G)K.

PROOF. ( i ) As in the proof of Lemma 1.1, let Sl9 , Sn be the
irreducible components of S with codimension 1 and put S' = St U U Sn.
Since the algebraic set S' is defined over K, we may take a finite Galois
extension L of K as a common field of definition of Su , Sn. For each
Sif let Pi(x) be an irreducible polynomial with coefficients in L such that
St = {x 6 V; Pi(x) = 0}. Then, by [13, § 4, Proposition 5], the polynomials
Pi($)f '' '9 Pn(%) a r e relative invariants and any relative invariant P(x)
is of the form

P(x) = cPλ{x)^ Pn(α0" (c e C, mu -, mn e Z) .

This proves the first assertion.
(ii) If P(x) has coefficients in K, then, by (1-1),

P(p(g)x) = X\g)P{x) (σ e Gal (C/K)) .

Since the characters X and Xσ correspond to the same relative invariant
P(x), Xσ = X for all σ e Gal (C/K). Hence X e XP(G)K. Conversely, suppose
that X is defined over K. By (i), we may assume that P(x) has coeffici-
ents in a finite Galois extension L over K. Then the equality (1-1) im-
plies that Pσ(p(g)x) = X{g)P°{x) for arbitrary σe Gal (L/K). By [13, §4,
Proposition 3], there exists a non-zero constant cσeLx such that Pσ = cσP.
It is obvious that cστ = cσ

τcσ. According to Hilbert-Speiser's theorem, one
can find a constant ceLx such that cσ = (c*)""1*? for all σ 6 Gal (L/K).
Then (cP)σ = cP for all σ e Gal (L/K). This completes the proof.

Let Sl9 •—, Sn be the i£-irreducible components of S with codimension
1 and Pi, , Pn be polynomials with coefficients in K defining Sl9 , Snf

respectively. Denote by Xlf •••,%» the rational characters of G cor-
responding to Px, , Pnt respectively.

The next lemma follows from [13, §4, Proposition 5].
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LEMMA 1.3. These Pu •••,?„ are algbraically independent relative
invariants and any relative invariant P(x) with coefficients in K is of
the form

P(x) = cP^x)^ - Pn(x)mn (ceK, mlf ,mneZ).

These polynomials Plf , Pn are determined uniquely up to constant
factors in K. We call the set {Plf , Pn) a complete system of K-irre-
ducible relative invariants of (G, p, V).

The following lemma is an immediate consequence of Lemma 1.2 (ii),
Lemma 1.3 and [13, § 4, Lemma 4].

LEMMA 1.4. The group XP(G)K is a free abelian group of rank n

generated by Xlf ••-,%„.

2. Direct sum of prehomogeneous vector spaces. 2.1. Let K be
a subfield of C. Let G be a connected linear algebraic group defined
over K. Let px and p2 be irrational representations of G on finite dimen-
sional vector spaces E and F respectively. Put V = E@F and p =
Pi 0 Pz Here p is, by definition, the representation of G on V given
by the following formula:

p(g)(χ, v) = (PMX, p*(g)v) (g € G, (x, y) e E © F = V).

For an x e E, denote by Gx the isotropy subgroup of G at x: Gx = {g e G;
Pi(ΰ)x = ίc} Let G° be the connected component of the identity element
of Gx. If x is a ίΓ-rational point in E, then both Gx and (•?£ are defined
over K (cf. [2, Chapter 1, Proposition (1-2)]).

LEMMA 2.1. Assume that (G, p, V) is a p.v. with the singular set S.
( i ) The triples (G, pίf E) and (G, p2, F) are p.v.'s defined over K.
(ii) For a K-rational generic point x of (G,plfE), the triple

(G°, p2, F) is a p.v. defined over Ky whose singular set Sx is given by

S. = {yeF;(x,y)eS}.

For an irreducible component W of S with codimension r, put

Wx = {yeF;(x,y)eW} .

If Wx is non-empty, it is of pure codimension r in F.

PROOF. The first part of the lemma is obvious. Let us prove the
second part. Denote by Gx>y the isotropy subgroup of Gxatye F. Then

Gx,y = {ge Gx; p2(g)y = y) =. {g e G; p(g)(x, y) = (x, y)} .

It is clear that the group GXtV Π Gx contains the connected component of
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the identity element of GXty. Hence dim (Gx,yf]Gx) = άimGx>y and
dimG° = dimGv Therefore, by [13, §2, Proposition 2], the triple
(GS, ft, F) is a p.v. and y is a generic point of (G°, ft, i*7) if and only if

(2-1) dim Gx - dim Gx,y = dim F .

Since x is a generic point of (G, ft, 2£) and dim G — dim Gx = dim E, the
equality (2-1) is equivalent to the following: dim G — dim GXιV = dim V.
This implies that (G°, ft, F) is a p.v. with a generic point y if and only
if (xf y) is a generic point of (G, ft V). Hence (G°, ft, F) is a p.v. and
£* = {ysF; (x, y)eS}. It is obvious that (G°, ft, F) is defined over if.
Finally let Wx be any irreducible component of Wx. Since x is a generic
point, dim Wx + dim £7 <: dim W. Hence we have

r = dim F - dim W ^ dim F - dim W*1 .

On the other hand, Wx is the intersection of two irreducible varieties
W and {x} x F and each component of Wx is of dimension not smaller
than dim W + dim F — dim V = dim F — r. Thus we obtain r = dim ί7 —
dim W7.

Let (G, ft F) = (G, ft 0 ft, S φ ^ b e a p.v. For a relative invariant
QΛaO of (G, ft, JB), put Q(x, y) = Qx(ic). Obviously Q(α, y) is a relative
invariant of (G, ̂ o, V) independent of the second component y eF. The
mapping Q1 \-^ Q gives rise to a natural one to one correspondence between
relative invariants of (G, ft, E) and relative invariant of (G, ft V) inde-
pendent of y. In the following we do not distinguish them.

Fix a iΓ-rational generic point x of (G, ft, E). Let P be a relative
invariant of (G, ft V) which corresponds to X e XP{G)K. Then, as a func-
tion of y, P(χf y) is a relative invariant of (G°, ft, ί7) which corresponds
to 1 |Go, the restriction of 1 to G°. Hence % \G°χ e XP2(G°)K for any 1 e XP(G)K.
Define a homomorphism

by the formula a(X) = X\G\ A character X is in the kernel of a if and
only if it is a rational character of G which corresponds to a relative
invariant P(&, y) with coefficients in if of (G, ft V) independent of the
second component y. Hence Ker a = XPl(G)κ. Set

(2-2) XP\pJίGS)κ = the image of α in X,2(G°)* .

This is the group of rational characters of Gx which correspond to rela-
tive invariants of (G°, ft, F) with coefficients in K obtained from relative
invariants of (G, ft V) by restricting them to {x} x F.
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Put n = rank XP(G)K and r = n - rank XPl(G)κ. Let {Plf , Pn} be a
complete system of if-irreducible relative invariants of (G, ̂ o, F). Then
exactly n — r of P/s are independent of the second component y. We
may assume that P r + 1, , Pn are independent of y. The set {Pr+1, , P J
is a complete system of if-irreducible relative invariants of (G, pl9 E).
Let Zlf ,Xn be rational characters of G corresponding to Pl9 - f Pn9

respectively.

LEMMA 2.2. .Fix α K-rational generic point x of (G, pl9 E). Then,
as functions of y, Pλ{x, y), , Pr(x, y) are algebraically independent.

PROOF. Assume that Pλ(x, y)9 , Pr{x, y) are not algebraically inde-
pendent for a generic point x of (G, pl9 E). Then, by [13, § 4, Lemma
4], there exists an (mlf , mr) e Z r - {(0, , 0)} such that XT1 * #?r = 1
on G°. Hence ZΓ1 Z ^ e K e r α = XPl(G)κ. Since XPl(G)κ is generated
by Zr+1> •••,%„, we have a non-trivial relation

ZΓ1 Z?' = ZΓίΓ χ >

This contradicts the fact that Pl9 , Pn are algebraically independent
(cf. Lemma 1.3).

COROLLARY. The group XplP2(G°)κ is a free abelian group of rank
r generated by ZJ^, . . . , Zr|Go.

LEMMA 2.3. The following three assertions are equivalent.
( i ) a is surjective, namely, XplP2(G°)κ = XP2(G°)K.
(ii) Any relative invariant Q(y) of (G°, p2j F) with coefficients in

K is of the form

c Π Pt(x, y)mi (ceK, mlf '",mreZ) .
ϊ = l

(iii) For any i = 1, , r, Pt{x9 y) is a K-irreducible polynomial in y.

PROOF. The equivalence of the first and the second assertions is quite
obvious. We shall show that the second assertion implies the third.
Assume that Pt(x9 y) = Qid/)Q2(i/) for some polynomials Qλ and Q2 in y
with coefficients in K. Then, by Lemma 1.3, Qx and Q2 are relative
invariants of (G°, p2y F) and, by the assumption, they are written as
follows:

Qk(y) = ck Π P5(x, y)»*i (ck 6 K, mkj e Z, k = 1, 2, j = 1, - ., r ) .

Since Q1 and Q2 are polynomial functions in y and a; is a generic point
of (G, pl9 E)9 the rational functions ΐ[rj=iPpj a n d Πί=i-PΓ2i h a v β no poles
in (E — SE) x F where we denote by SE the singular set of (G, ̂  J&).
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Hence the exponents mkj are all non-negative integers. As a function

of V> (Π.rj=iP,(%, y)mί'+m2j)-Pi(x, y)~ι is a constant and we have

?ϊι = c Π Pp

for some ceK and some ur+u — ,uneZ. Since mkj are non-negative,
this equality implies that

Uj = 0 , mkj = 0 (j Φ i) , {m1£, m2ί} = {1, 0} .

Therefore the polynomial Pι{x, y) of y is ίΓ-irreducible for any i. Finally,
it follows from Lemma 2.1 (ii) that any irreducible component of the
singular set of (G*, ft, F) with codimension 1 is contained in the set of
zero-points of Πi=i-P<(^ 2/) Hence, by Lemma 1.3, the third condition
implies the second.

Let F * be the vector space dual to F and ft* be the representation
of G on F * contragredient to ft. Put

7* = F 0 F * , p* = ft0 ft* .

We call p* the partial contragredient representation of p with respect
to F. Fix ίΓ-structures of (G, ft, F) and (G, ft, F) and identify F with
Cm (m = dimF). We identify F * with Cm via the symmetric bilinear
form

(y> y*y = yίyΐ + * + ymym

Then ft* and p* are ίΓ-rational representations of G on F * and V*f

respectively. For any relative invariant P of (G, ft F), define a rational
mapping φP of F — S into F * by

(2-3) 0p(#, y) = (x, grady log P(&, y))

where

grady logP(CU, y) =
(x,y) dy, P(x,y) dym

The mapping φP is independent of the choice of a basis in F. If P has
coefficients in K, φP is defined over K. Moreover we have

(2-4) ΦP(p(g)(χ, y)) = P*(9)ΦP(X, y) ((«, ») e 7. - S, fl e G ) .

Put

flp./*, y) = det

If there exists a relative invariant P of (G, ft F) such that HPtV(x, y) is
not identically zero, then F is called a regular subspace of (G, ft F).
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Moreover, if P can be taken so that P has coefficients in K, we say that
the subspace F is regular over K oτ K-regular. We call a p.v. (G, p, V)
regular over K if V is a ίΓ-regular subspace. When K = C, (G, p, V) is
simply called regular instead of regular over C. This terminology is
consistent with [13, § 4, Definition 7]. If F is a JK-regular subspace, the
p.v. (G°, p2, F) is regular over K for any if-rational generic point x of
(G, ft, E).

Basic properties of p.v.'s with a regular subspace are summarized
in the next lemma which follows from Lemma 1.2 (ii) and [13, §4, Prop-
osition 10, Remark 11].

LEMMA 2.4. Let (G, p, V) = (G, ft 0 ft, E<&F) be a p.v. with a K-
regular subspace F.

( i ) The triple (G, |O*, F*) = (G, ft0 ft*, £ 0 F * ) is α p.v. wiίΛ α
K-regular subspace F*.

(ii) For αw (x, y)eV — S, put (x, y*) = 0P(a, #). // ίZ"P>2/ does not
vanish identically, then GXty = GXfV*.

(iii) XP(G)K = XP*(G)K and XP2{G°X)K = XP*2(Gϊ)κ for any K-rational
generic point x of (G, pu E).

(iv) Let S and S* be the singular sets of (G, p, V) and (G, p*, V*)
respectively. For aXeXP(G)K = XP*(G)K, let P and Q be relative invari-
ants of (G, p, V) and (G, p*, V*) corresponding to X and X"1 respectively.
If HptV does not vanish identically, φP is a biregular rational mapping
defined over K of V — S onto F * — S* and the inverse mapping of φP

is given by φQ.
( v ) The singluar set S of (G, p, V) is a hypersurface if and only

if the singular set S* of (G, p*, V*) is a hypersurface.

LEMMA 2.5. Denote by det p2(g) the determinant of p2(g) in F. If
F is a K-regular subspace, then det p2(gf e XP{G)K.

PROOF. Let P be a relative invariant of (G, p, V) such that HP,y is
not identically zero. Then an easy computation shows that PmHp)y (m =
dim F) is a relative invariant of (G, p, V) corresponding to det #>(flO2

Since p2 is assumed to be if-rational, it is clear that det̂ >2(gr)2 is a K-
rational character of G.

2.2. Let (G, p, V) be a p.v. defined over a subfield If of C. Assume
that (G, p, V) is decomposed into the form (G, p,0ρ2©pz, Vt@Vt® Vz)
over K and V3 is a ϋΓ-regular subspace. Denote by F3* the dual space
of F3 and by p% the representation contragradient to p3. Then the triple
(G, p*, V*) = (G, ft © ft © pf, V, 0 V2 0 Vf) is also a p.v. Let S and S*
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be the singular sets of (G, p, V) and (G, p*, V*) respectively.

LEMMA 2.6. The following assertions are equivalent.
(1) F 2 φ F 3 is α K-regular subspace of (G, p, F).
(2) V2 is a K-regular subspace of (G, p*, F*).

PROOF. Put F* = Vx © F2* 0 F3* where F2* is the vector space dual
to F2. For a relative invariant P of (G, ̂ , F), we define two mappings
φP: V - S-> F* and ^ : F - S-> F* by

^p(», ί/, z) = (»> -p grad^ P(x9 y, z), — grad, P(x, y,

and

^P(«, V, z) = (», 2/» -p gradz P(OJ, y, «)J .

By the JSΓ-regularity of Vs, we can find a P with coefficients in K such
that 0p is a biregular rational mapping of V — S onto V* — S*. Put
Q(#, 2/, z*) = P ^ P " 1 ^ , i/, «*)). The function Q is a rational function on F*
defined over if and is a relative invariant of (G, p*, F*). Let ψQ be the
mapping of F* — S* into F* defined by

ΦQ(P9 V, «*) = (»»4 grady Q(aj, y, z*),

We shall prove the equality φP — φQ°φP. Since P = Qoφ'P, we have

(2-5) i^.(» f y, z) = (ψ-\φ'P(x, y, z)) + Σ (-£?)(*'*(*, V, *))

It is clear that the character of G corresponding to Q coincides with that
corresponding to P. By Lemma 2.3 (iv), the mapping

φqiβf y, »*) = (&, V, - 7 r ^ r ad z* Qfe 2/, 2;

is the inverse mapping of φP. Hence we have

and the second term of the right hand side of (2-5) is equal to

3 / 1 # 3P\_ p d (1 γ 3P

The function P is homogeneous in z (cf. [13, § 4, Proposition 3]). By
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Euler's identity, we obtain

(x, V, z) = (4r-)<M*f V> *)) (1 ^ ί ^ dim F2) .

The equality φP = ΦQ°Φ'P follows immediately from this identity. Either
of the conditions (1) and (2) yields that (G, p\ F*) = (G, ftφ pί φ pf,
VΊ φ F2* φ V*) is a p.v. Denote by S* the singular set of this p.v. If
the condition (1) is satisfied, there exists a relative invariant P of
(G, p, V) such that φP and φP are biregular rational mapping of V — S
onto F # — S* and F* — S* respectively. Then φQ = φpoφ'f1 is a biregular
rational mapping of F* — S* onto F* — S*. This implies the condition
(2) (cf. [13, § 4, Proposition 10]). Similarly we are able to prove that
the condition (2) implies the condition (1).

3. Partial &-functions. We keep the notation in § 2.1 and assume
that ί 1 is a ϋΓ-regular subspace. By Lemma 2.4 (iii), rank XP(G)K =
rank Xp*(G)κ. Let Pu , Pn (resp. Qίf , Qn) be a complete system of
ίC-irreducible relative invariants of ((?, p, V) (resp. ((?, p*9 V*)) where
n = rank XP(G)K = rank XP*(G)K. For every i, the ίΓ-rational character
of G corresponding to Pt (resp. Q*) is denoted by %ί (resp. %?). For a
character % in X,(G)* = X^G)^, let δ(X) = (δ(Z)x, - , δ(Z)J and ί*(Z) =
(δ*(%)x, . . . , δ*(X)n) be the elements in Zn such that

Since {Zx, ••-,%„} and {%?, ••-,%*} form two system of generators of the
free abelian group XP(G)K, there exists a unimodular matrix UeGL(n; Z)
such that

(3-1) δ(X)U=δ*(X) (XeXP(G)κ).

In particular,

where %t i is the (i, j)-entry of the matrix U.
For a X e X,(G)* = Xp*(G)̂ , we put

Pz(«, ») = Π P*(«, »)I(Z)< and Q (̂aj, »*) = Π Qfa vΎa)i .

[13, § 4, Proposition 3] implies that Pt (resp. Qt) are homogeneous with
respect to the variable y (resp. y*) in ί7 (resp. F*). Denote by d(X) and
d*(Z), respectively, the homogeneous degrees of Pχ and Qχ with respect
to y and y*:
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d(X) = degy P* = g S(X)t degy Pt , d*QL) = degy* Q* = ± δ*(X)i degy. Qt .

If δ*(X)i ;> 0 (resp. δ(X\ ^ 0) for all i, we can define a partial differential
operator Q\x, grady) (resp. P*(x, grad^)) in K[x, d/dy] (resp. K[x, d/dy*])
such that

(P*(α, grad, V 1 ^ = Pχ(ff, y)e<M*> .

The operator Q\x9 grady) (resp. P*(x, grady.)) has order d*(Z) (resp. d(X)).
For s = (sl9 - , sn) e Cn, set

and

P°(x, y) = exp ( Σ * log (PΛ&, »)))

Q\x, y*) = exp (± 8i log (Q4(aj, tf*))) .

We consider P8 (resp. Q8) as a function on the universal covering space
of V - S (resp. F* - S*).

LEMMA 3.1. ( i ) // δ*(X)i ^ 0 for all i, there exists a polynomial
bχ(s) of degree d*(X) in s — (sly , sn) satisfying

Q\x, grady)P8(x, y) = bχ(s)P8+δ™(x, y) .

(ii) If δ(X)i ̂  0 for all i, there exists a polynomial b%(s) of degree
d(X) in s = (su - - , sn) satisfying

P*(x, grad,*)Q8(α, 2/*) = bϊ(s)Q8+δ*{χ\x, y*) .

PROOF. We give a proof only for the first assertion. Denote by
F(x, y) the left hand side of the equality. It follows from the definition
of Qχ(x, gradj that

Qx(pιiΰ)x, gradp2(ff)y) = X(g)Qχ(x, gradj .

Let W be a simply connected neighbourhood of the identity element e
of G. Define a function X8(g) on W by setting

X8(g) = exp ( g 8t
= 0 .

Then we have F(p(g)(x, y)) = X8(g)X(g)F(x, y) for all geW. By the pre-
homogeneity, p(W)(x, y) contains an open neighbourhood of (x, y) for any
(x, y)eV — S. Hence the equality above implies that P"8~δa\x, y)F(x, y)
is a constant which depends only upon s and X. Denote it by bχ(s). It
is clear that bχ(s) is a polynomial in s of degree not greater than eZ*(X).
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Let aχ(s) be the part of bχ(s) homogeneous of degree eZ*(%). Then, by
an elementary calculation, we have

aχ(s)P*(x, V) = Qχ(x, grad, log P8) - Q*(M&, V))

Since F is a if-regular subspace, there exists an s0 in Zn such that φPs0

is a biregular mapping of V — S onto F* — S*. Then αχ(s0) =£ 0. Thus
the polynomial bχ(s) is of degree d*(%).

LEMMA 3.2. Lei % and ψ be characters in XP(G)K.
(i) If δ*QC)t ^ 0 and δ*ty), ^ 0 /or αZZ i,

M e ) = bχ(s)bf(s +

(ii) // δ(X)t ̂  0 and δ(ψθ, ̂  0 /or αW i,

+ δ*(X)) .

PROOF. It is easy to see that the operators Qy(x, gradj and
(x, grady) commute and Qxir(x, grady) = Q^x, gradtf)Q

χ(α;, grady). Now
the first assertion is an immediate consequence of the definition of by(s).
The second assertion is proved quite similarly.

By using the formulas in Lemma 3.2, we can define bχ(s) and δ*(s)
for arbitrary character X in XP(G)K. We call the polynomial bχ(s) (resp.
&*(*)) the (partial) b-function of (G, p, V) (resp. ((?, p*, V*)) with respect
to the K-regular subspace F (resp. F*) corresponding to X.

In the case where E — {0}, F = V and ρ2 — p, the 6-functions were
introduced by Sato and precisely investigated in [11]. It is easy to see
that our partial δ-functions are the b-tunctions of ((?£, p2, F) in the sense
of [11] and the results of Sato can be applied to our case without any
essential change. The next lemma due to Sato plays an important role
in §5.

LEMMA 3.3 ([11, Theorem 2, Theorem 3, Corollary to Theorem 3]).
There exist a homomorphism c: XP(G)K -*C X , non-zero linear forms
eu Ί em: Cn -*C and a Gamma factor

= Π JΠ Γ(et(s) - Piί)\ JΠ Γ(et(s) -

with the following properties:
(1) All the coefficients of el9 , em are non-negative integers,
(2) 6,(8) = c(XMs)/7(s +

Notice that 6*(s) has a similar expression in terms of the Gamma
function.
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For the general theory of δ-functions, see [11] and [12]. The deter-
mination of 6-functions for irreducible p.v.'s is treated by Kimura in [7].

4 Definition of zeta functions. Let (G, p, V) be a p.v. defined
over Q and denote by S the singular set of (G, p, V). Let Pu , Pn

be a complete system of Q-irreducible relative invariants of (G, p, V).
We denote by Xt the character corresponding to Pt (1 <̂  i <; ri). For any
xeVQ — SQ, denote by G° the connected component (with respect to the
Zariski topology) of the identity component of the isotropy subgroup of
G at x and put

(4-1) V'Q = {x 6 VQ - SQ; X(Gϊ)Q = {1}} .

The set V'Q is ^(G^-stable.

LEMMA 4.1. // V'Q is not empty, then rank XP(G)Q = rank X(G)Q.

PROOF. Take an xe V'Q and put m = [Gx: G°]. Since X\G.r = l for
any XeX(G)Q, X(g)m = X(gm) = 1 for all geGx. This implies that {Xm;
X 6 X(G)Q} c X,(G)β. Hence we have rank XP(G)R = rank X(G)g.

We always assume that F^ is not empty. Let Ω be a right in-
variant algebraic gauge form on G. Define a character Δ of G by the
following formula: Ω(gx) = Δ(g)Ω(x). Then z/eXtG)^. By Lemma 4.1,
there exists a natural number d such that (άetp-Δ^Y eXp(G)Q. Put

Let Gί be a subgroup of the real Lie group GR containing the con-
nected component of the identity element. Then VR — SR is decomposed
into a finite number of GJ-orbits (see the proof of Lemma 5.1). Let
VR - SR = V1 U U Vy be the Gί-orbit decompositon. Let | Δ \ be the
character of Gi defined by |Δ\(g) — \Δ(g)\. Normalize a Gi-relative
invariant measure ω(x) on VR — SR with multiplier \Δ\by setting ω{x) =
\P(x)\-δdx where |P(a;)|"δ is an abbreviation for IP^αOΓ*1 \Pn(x)\~δn

and dx is a Euclidean measure on VR. Let ώ̂ r be a right invariant
measure on Gi. Then

{ . Fίλ-^dflr - IΔ \(h) \ F{g)dg {F 6 L\Gi; dg)) .

We fix a matrix expression of G and a basis of F compatible with the
given Q-structure of (G, p, V) and such that ρ(Gz) VzaVz. Put
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For any x e VQ, we set Gi = Gx n G£ and Γx = Γf] Gi. Then, by [3,
Theorem 9-4], Gi is unimodular and Gi/Γx has a finite invariant volume.
We normalize a Haar measure dμx on Gi such that

(4-2) ( TOdg = ί ω(/9(g)a?) ( F(gh)dμx(h)

(FeL\Gi; dg), x e V'Q). Put /£(*) = ί ίjei. (a; e VJ).

Let L be a /θ(Γ)-invariant lattice in VQ and set L' = LC\VQ and
Zr, = 2/ Π V< (1 ^ i ^ v). The sets Z/, Lx, , Lv are also /θ(Γ)-invariant.
Denote by Γ\Li the set of all />(F)-orbits in L ie

In the sequel, we use the symbols | P(x) \° and | X(g) \* as abbreviations
for

Π|Pi(*)l f< and fί\Ug)\8i

t=l ί=l

respectively (xeVR — SR, g e GJ, s 6 Cπ).

DEFINITION. The Dirichlet series

ζi(L; s) = Σ tfaOITOI"' (β6C , U * ^ v )
xer\Lt

are called the «eία functions associated with (G, /O, F) (and L).

In the following, we assume that
(4-3) the Dirichlet series ζi(L;s), •• ,£ v(L;s) are absolutely convergent
in a domain of the form {s e Cn; Re βί > α* (1 <̂  i ^ ^)} /or sufficiently
large real numbers alf , αn .

For an fe£*(VR)f we consider the following integrals:

and

f,L;s) = \ . \1C(9)\' Σ f(p(9)x)dg .

When Re Si > 0, , Re sn > 0, the integrals Φ±(f; s), , Φv(/; s) are abso-
lutely convergent and represent holomorphic functions of s (cf. Lemma
5.2). The following lemma, which gives an integral representation of
Sit ••*> ξ»f is a n immediate consequence of the assumption (4-3).

LEMMA 4.2. Let a19 , an be as in (4-3). Then the integral Z(f9 L; s)
) is absolutely convergent in the domain

B = {s 6 Cn; Re st > Max (α*, 8t) (1 ^ i ^ w)}
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and the following identity holds:

Z{f, L;s) = ± ξt(L; «)*,(/; s - δ) (seB) .
i

REMARK. It is a conjecture that the condition (4-3) always holds for
a, = δu , an = δn (cf. [14, p. 154, Remark 1]). In [23], we shall establish
the conjecture in a particular case.

5. Partial Fourier transforms of complex powers of relative in-
variants. 5.1. In this section, we keep the notation in §2 and §3 and
we always assume the following two conditions (5-1) and (5-2):

(5-1) (G, ft, E) and (G, ft, F) are defined over a subfield K of R and
F is a K-regular subspace of the p.v. (G, p, V) = (G, ft 0 p2, V\0 V2).

(5-2) The singular set S of (G, p, V) is a hyper surface.

Here the subspaces E and F may be {0} and V respectively. Lemma
2.4 (i) and (v) imply that these conditions are satisfied also by the p.v.
(G, p\ V*) = (G, A 0 ft*, E 0 F*) and F*.

For simplicity, we further assume that

(5-3) there exists a positive integer d such that (det ft)d 6 XP(G)K.

Let Gi be as in § 4.

LEMMA 5.1. Under the assumption (5-1), the sets VR — SR and
VR — S£ decompose into the same finite number of Gi-orbits.

PROOF. By (5-1) and Lemma 2.4, there exists a relative invariant
P{x, y) with real coefficients such that φP is a biregular mapping from
V - S onto F* - S* defined over R (for the definition of φP, see (2-3)).
Let X be the rational character corresponding to P and let Q be a rela-
tive invariant of (G, p*, V*) corresponding to Z"1. By Lemma 1.2 (ii),
the character X and X"1 are defined over R and we may assume that Q
has real coefficients. Then it follows from Lemma 2.4 (iv) that the inverse
mapping of φP is φQ and is also defined over R. Hence, by (2-4), the
mapping φP gives a Gί-equivariant homeomorphism between VR — SR and
VR — St. This implies that there exists a one to one correspondence
between Gί-orbits in VR — SR and those in VR — S£. Since Gi contains
the identity component of GΛ, the number of Gί-orbits in VR — SR is
not greater than that of the topological components of VR — SR. By
[3, Proposition 2.3], it is finite.

Let
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VR-SR=V1Ό--UV» and Vi - S% = Vf U U V*

be their G£-orbit decompositions. Let dx, dy and d̂ /* be Euclidean
measures on ER, FR and FR respectively. Put

Φi(f; s) = \ |P(», 2/)|8/(#, »)d^l/

and

(1 ^ i ^ v, 8 € Cn, / 6 £*(VR)9 / * 6 S^iytί). The meromorphic properties
of complex powers of polynomials were studied by Bernstein and Gelfand
[1]. The following lemma is essentially due to them and is proved by
the method indicated at the end of [1],

LEMMA 5.2. ( i ) When Re %x > 0, , Re sn > 0, the integrals Φt(f; s)
and Φz*(/*; s) are absolutely convergent and represent holomorphic func-
tions. Moreover they have analytic continuations to meromorphic func-
tions of s in Cn.

(ii) There exist Γ-factors 7P(s) and ΎP*(s) independent of f and f*
of the form

Vp(s) = Π Πα,fl8i + + aitU8n + 6,) (aiJf bteQ) ,

?,.(«) = Π /Xα£A + + af,nsn + bf) (aϊt, bf 6 Q)

such that Ύpis^Φiif; s) and Ύp^s^Φfif^ s) are entire functions.
(iii) The mappings

and ^(V%)sf* H* Φf(/*; s) eC

are tempered distributions depending meromorphically on s. Let Do be
a bounded domain in Rn such that Φt(f; s) and Φ*(f*; s) are holomorphic
functions in the tube domain D = Do + V — lRn. Then the orders of
these tempered distributions are bounded for seD.

By Lemma 2.5, we have det p2(g)2 6 XP(G)K. Set

(5-4) λ = (λlf , λ j = 2-1δ((det p2)
2) .

For any /* e ^(VR), we define the partial Fourier transform
with respect to the irregular subspace JF* by setting

, v*>]dy* {{x, y) e

Let τ(s) and c(X) be as in Lemma 3.3. Put
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c(s) =

and

d*(s) = srdegy+Qi + + sn degy,Qn .

Then c(δ(X)) = c(Z) and d*(«*(Z)) = d*(Z). Also put

Φ ( / ; β) - XΦiif; s), -- ,ΦXf;s))
a n d

φ*(/*; β) = '(*?(/*;«), , *?(/*;«)) -

Now we can state the first main theorem of the present paper.

THEOREM 1. The functions Φtf a), - ,ΦXf;s) and Φf{f*; s), •••,
$?(/*; 8) satisfy the following functional equation:

(5-5) ΦOT*; a) = c(-s)(-2ττι/^Ir(8)7(s)A(s)Φ*(/*; (s + λ)CΓ)

where A(s) is a v x %> matrix whose entries are polynomials in
exp (±πv/^-ϊs1)) , exp (±πv/~^ϊsn).

We are able to prove Theorem 1 by using the similar argument to
that in [11] and [16] where the theorem is shown under the additional
assumptions that E = {0}, F = V, p = ft, ίΓ = iJ, X,(G)Λ = X,(G)C and G
is a reductive algebraic group. For the sake of completeness, we shall
give a proof.

PROOF OF THEOREM 1. As is easily seen, it is sufficient to prove the
theorem for the case where the group Gi is the identity component of
GR. Then the sign of any relative invariant does not change on a Gi-
orbit. For any i (1 <; i <̂  v), set

e(i) = (ε^i), , en(i)) , e/i) = sgn Py(a?, 3/) , (a?, y) 6 Vt

and

e*(i) = (ef(i), -, e*(i)) , ey*(i) - sgn Q/α, 2/*) , (x, y*) e Vf .

Moreover we define ε(i)8 and ε*(ΐ)8 by the formulas

6(ΐ)f = Πey(t)v and ε*(i)8 = flε;(i)8i

where ei(i) ^ (resp. ε^(i)s0 = exp (2πv/":::lsi) or exp ( n/^ϊβ,-) according as
ε^i) (resp. εf(i)) = 1 or - 1 .

LEMMA 5.3. (i) For any 1 6 XP(G)K such that δ*(X)l9 , δ*(X)n ^ 0,
we obtain

ΦάQKx, grad,)/; β) - (-lΓ^tfr^zWW; β +
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(ii) For any X e XP(G)K such that δ(X,)lf , δ(X)n ^ 0, we obtain

Φf(P*(x, grady*)/*; s) = (-ΐ)d^6*(iy^b*(8)Φΐ(f*; s + δ*QL))

PROOF. Integrating by parts, we can easily derive the formulas
from Lemma 3.1.

For fe^(VR) and f*ef(VΪ), put fg(x,y) = f(p(g)(x,y)) and
fffa V*) = f*(P*(ff)(Xf V*)) (geGt)- It is easy to check the following
lemma.

LEMMA 5.4.

(i) Φt(fβ; a) = I Z ω Π d e t ̂ ) | - W / ; 8),
(ϋ) Φΐiff; s) = IZ foOMdet p^g^KΓ; s) (g eGi, 1 ^ i ^ y).

LEMMA 5.5. Tfee functions Φ^f s), •• ,Φv(/;β) αwώ Φi*(/*;s),
/*J β) satisfy the following functional equation:

; s) = c(-s)(-2τri/^ϊr(8)7(s)A(s)Φ*(/*; (β

where A(s) is a v x v matrix whose (i, j)~entry Aiά{s) is a product of
ε*(j)8Uε(i)~* and an entire function iiy(s) o/ s wiί/t ίfeβ period lattice Zn:

PROOF. Consider the continuous linear forms Γ8 and Γ8* on Co°°(F*) de-
fined by Γ.(/*) = Φ4(^jΓ*; β) and Γ?(/*) = Φ?(/*; β). Since ^ ( / )(a?f ») =
|det/o2(flr)|(^y*)/α?, y), we have, by Lemma 5.4 (i),

TW) = I det ftte) ΓΊ Z(fir) |-8Γβ(/*) (βr 6 GJ) .

On the other hand, it follows from (3-1) and Lemma 5.4 (ii) that

ΓS+W(Λ*) = I det Pι(g) H Z(fir) |-Γ c + i ) l 7 (/ ) (̂  6 Gί) .

Therefore, by a theorem of Bruhat (see, e.g., [22, Theorem 5.2.1.4]),
there exists a constant Λo (s) independent of /* such that Γβ(/*) =
M«)Γ*.+w(/*) for any /*eC0°°(F?). The meromorphy of /^(s) is an
immediate consequence of Lemma 5.2 (i). This equality implies that

(5-6) Φ « W ; s) = ± M O W ; (̂  + λ)l7)

for all /* 6 C?(V% - Si). If we define a tempered distribution T', on Fί
by setting

Σ
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then the support of T', is contained in the hypersurface S%. For a
16 XP(G)K with δ*ζX)u ••-, δ*(X)n ̂  0, let Q*(χ, gradj be the partial dif-
ferential operator introduced in §3. Then

^{Qχf*){x, y) = (2πι/=ϊ)-'"WQKx, grady)jTf*(x, y) .

Hence Lemma 5.3 (i) yields that

+ δQC))

\)U).
3=1

Let D = Do + V — lRn be as in Lemma 5.2 (iii). There exists a constant
M such that the order of T'8 does not exceed M for all seD. If
δ*(X)lf , δ*(%)n ^ Λf, we have by [16, Lemma 1.3]

(5-7) (QχT;)(/*) = 0 (seD)

for any / * e ^ ( F J ) . Comparing (5-6) with (5-7) for /*eC0

o o(Fί - Si),
we obtain

(5-8) hid(s + δ(X)) = (~2πi/^ϊr(χ)ε*(i)^(Z)ε(i)-^Z)6χ(S)-1feίi(S) .

The equalities (5-7) and (5-8) imply that the functional equation (5-6) is
valid for any / * 6 ^ ( F S ) and for any s in D + δ(X). By the principle
of analytic continuation, we see that (5-6) holds for any s in C\ Making
use of the cocycle property of bχ(s) (cf. Lemma 3.2), we can easily check
that (5-8) holds for any XeXP(G)κ. Hence the functions

tij(s) = c(s)(-27rv/^l)-d*^τ(s)-1ε*(i)-^ε(ΐ)^i(s) (1 £ i, j £ v)

are periodic functions with the period lattice Zn = δ(Xp(G)κ). We have
by (5-6)

tφ) = c(s)(-27n/^ϊ)-d*^7(s)-1ε*(i)-8^ε(i)8Φi(^jr*; β)Φ?(/*; (β

for /*eC0°°(F*). By Lemma 3.3 (ii), the function Ύ(s)"1 is holomorphic
if Resx, « ,Res n are sufficiently large. Moreover, for a given s, we
can choose an / * such that Φf(f*; (s + X)U) Φ 0. Therefore t4i(β) is
holomorphic if ReSi, •• ,Res n are sufficiently large. Since tu{j£) is peri-
odic, this implies that t^is) is an entire function for any ί, j.

The rest of this paragraph is devoted to the proof of the fact that

tij-is) is a polynomial of exp(±2τπ/—lsx), , exp(±2ττv/—lsn).
Take bases of ER and F£ and identify them with Rp and Rg respec-

tively (p = dimJS?, q = dimF*). Put

II*, V* II = ( a ϊ + + 4 + 2/Γ + • • • • + VΓ)1/2
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for (x, y*) 6 VR = ER © F£. For a multi-index a = (alf , aq)9 set

la, _ Λ l + . . . + aq , — - — . . . ^

as usual. We define a semi-norm vMtN on 5^(V«) by

»*.*(/*) = Sup 1(1 + \\χ9 y*\\)" Σ - T Ϊ Γ / * ( * , »*)!}

(ikf, iSΓ = 0, 1, 2, . . . ) .

Denote by CMtN(Vt) the subspace of C°°(Vi) consisting of all functions
/ * such that vM>N(f*) < + oo.

The following lemma is easily proved.

LEMMA 5.6. Let Do be a compact subset of R% — {(ulf --, un)eRn;
Ui > 0 (1 ̂  i ^ n)} and put D = DQ + i/— lR n . Then there exist positive
integers M, N, ilί* and positive constants c, c* such that

IΦ*W*; β) I < c^,*(/*), I Φf (/*; β) I < c*iW/*)

( l ^ ΐ ^ v , / * 6 ^ ( 7 5 ) , seD).

As is already noticed in the proof of Lemma 5.5, we can find a con-
stant β such that TCS)""1 is holomorphic in the domain

Ωβ = {s 6 Cn; Re β* > /3 (1 £ i £ ri)} .

Take two points ί = (tu •••,<«) and r = (n, , rn) in JBJ J7"1 satisfying
the conditions

;R\U-^ [tlf tx + l] x x [ίn, ίn + l ] ,

(5-9) tt - λ£ - r £ > β (l£i£n),

Ti, . . , r n 6 Z .

Set B = {s eCn; U ̂  Re Si + Xt ^ U + 1 (1 ̂  i ^ w)}.

LEMMA 5.7. Γfcere eccisί positive integers M and N such that the
functional equation in Lemma 5.5 holds for any / * 6 CM*N(VR) and for
any seB.

PROOF. Let X be a character in XP{G)K such that δ(X) = r. Since

£*Wi» , S*(X)n ̂  0, it follows from Lemma 3.3 and Lemma 5.3 (i) that

TOO-^OT*; 8) = (-l)d*(Z)s(i)l(Z)c(Z-l)7(8 - δ(Z))"1

x Φ*(QZ(», gradJ^jΓ*; s - «(%)) .

By (5-9), B — δ(X) is contained in Ωβ. Hence, by Lemma 5.6, we have

(5-10) I Ίisy'ΦlάTf *; a) I < cx\ Ύ(s - δ(X)) ΓvM,N(Γ) (8 6 5)
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for some constant cx. Since (B + X)Uis contained in R+, we may assume
that

IΦJ (/*; (β + λ) U) | < CΛ, ,*(/*) (β e f?)

for some constant c2. For any i; > 0, put 2?(v) = {s eB; \Ims\ <̂  v}. The
set 2?(v) — δ(X) is a compact subset of Ωβ. Therefore we obtain

; s) - c(-s)(-2τrv / ^ϊr ( s ) Σ δ W e ( i ) Λ

where c3 is a constant depending only on v. For any /* e CM>N(VR), there
exists a sequence {//}JLi in S^{VR) such that vM,N(f? — /*) -^ 0 as i -> CXD.

Hence the functional equation in Lemma 5.5 holds for any /* e C ^CVί)
and for any seB(v). Since i; is an arbitrary positive number, we con-
clude that the functional equation holds for and /* 6 CM>N(VR) and for
any seB.

Now we construct functions contained in CMiN(Vκ) explicitly. Let
t\ R\ —> Gi be an analytic homomorphism such that

and define a mapping cQ: Vf —> Gi by putting

Φ, 2/*) = (̂IQi(», v*)!"1, , \Qn(χ, v*)n .
Set

# / = {(x, V*) 6 7?; Q.fe ?/*) = ε*(i) (1 ^ ΐ ^ Λ)} .

We choose a differential form θ on F* such that
dx1/\ - - Λ dx9 A dyί A Λcfo/* = dQx Λ Λ ώQn Λ θ .

Denote by \θ\ the measure on K* determined by θ. Take a ψf in Cs°(K?)
such that

Let ήf(%) be a function in C°°(R) satisfying the following conditions:

(5-11) All the derivatives of q(u) are bounded functions on R and the
support of q(u) is contained in [1, ©o).

(5-12) Put

q(z) = Γ uz~ιq{u)du (Re z < 0) .
Jo

For every pair of positive numbers a19 a2 (αx > α2), ίfeere msί s α constant
c > 0 sttcfo ίfeαί

19(s)I ^ c exp(-|Im2|1 / 2) ( - ^ < Re^ < -a2) .



462 F. SATO

The existence of such a function q(u) is guaranteed by [16, Lemma

1.4]. We define a function f*L{x, y*) by the formula

0 if (x,y*)$Vf,

fL(x, V*) = ix, v*)\-LΠq(\Qi(χ, y*)\)Ψΐ(P*(Φ, y*))b, v*))

if (x,v*)eVf.

It is obvious that the support of f£L is contained in the set

For given M, N, if L is sufficiently large, fd*L e CMtN(Vt). By the assump-
tion (5-3), we can find a μ = (μly , μn) eQn such that <Z μ = ̂ ((detiO^).

LEMMA 5.8. Lβί λfc (1 ^ & ̂  ^) be the k-th component of (μ — λ)ϊ7.

When L > Res1 + \ u , Resn + λnf

j
o (i =*= i).

PROOF. It is clear that Φ;(/^; S) = 0 for ί Φ j. Since ^-^((det p*)d) =
μ — λ for some positive integer d, we have

L\ 8)=\ Π ίl QΛz, ?/*) |"-Lg(| <?*(», »*) \)}tfip*{φ, v*)){χ, y*))dχdy

= Π Γ ^ ^ - ^ ( w j d w ( t * ( ^ v*)l*l = Π $(«* + λfc - L ) .
fc=l JO JK*. * = 1

Let Jkf, JV and 5 be as in Lemma 5.7. Take an L such that
/ tz, e CM>N(VR) and L is larger than the real parts of all the components
of the vector (s + μ)U for seB. Then, by Lemma 5.7 and Lemma 5.8,
we obtain

x Φi^filz.; s) Π $ ( Σ («* + A K * - ^ ) (β e B)

where wΛfc is the (A, &)-entry of U. It follows from (5-10) and (5-12) that

\Uiifi)\ < c|c(s)(
n / I n

x I γ(β - δ(%)) r 1 Π exp ( I Σ Im β»itω

l/2\

) (βeB)

for some constant c. Hence the Stirling formula yields the following

estimate:

I ί,,(β) I < c' exp (θχ| Im β! I + + αB| Im sn |) (s e 5)
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where al9 -—,an and cr are some positive constants. Since tiά(s) is a
periodic function with the period lattice Zn and B is a fundamental region
of Cn for Zn, this inequality holds for any seCn. This implies that the
function £iy(s) is a polynomial in exp(±2τπ/ —lsj, , exp(±2πτ/^ls n).
Theorem 1 is now completely proved.

REMARK 1. The assumption (5-2) can be replaced by the following
assumption:

For a generic point x of (G, plf E), the singular set Sx o/(G°, p2, F)
is a hyper surf ace.

REMARK 2. The condition (5-3) is assumed for the sake of simplicity.
We are able to avoid it. In the application to functional equations of
zeta functions in the next section, this condition is satisfied.

REMARK 3. Let H be a subgroup of XP(G)R containing the character
det ρ2(gf. Put m = rank H. Let Plf - , Pm (resp. Qίf , Qm) be relative
invariants with real coefficients of (G, p, V) (resp. (G, p*, V*)) such that
the characters corresponding to Pu - , P m (resp. Qu •• ,QW) generate
the group H. Then if we modify the definitions of U, λ, Φt(f; s) and
Φ*(f*\ s), an analogue of Theorem 1 remains valid.

REMARK 4. An algorithm to calculate A(s) explicitly is obtained
for a fairly wide class of p.v.'s by the method of micro local calculus
(see [10] and [19]).

5.2. For a later application, we shall prove a lemma which enables
us to reduce the calculation of partial Fourier transforms to the special
case where E = {0}, F = V and p = p2.

Put r = n — rank XPl(G)κ. As is observed in § 2, we may assume that
Pr+lf , Pn (resp. Qr+lf , Qn) are independent of the second component
y e F (resp. y* e F*) and

(5-13) Pt(x, y) = Pt(x) - Qt(x) = Qt(x9 y*) (r + 1 ̂  i £ n) .

In this case, the matrix U is of the form
fu0 υ

where Z70 6 GL{r)ZJ U1 e M(r, n — r; Z) and J5r

n_r is the identity square
matrix of size n — r. By Lemma 2.4 (iii), the group XplP2(GZ)κ coincides
with Xp*lP*(G2)κ for any irrational generic point x of (G, pl9 E). It fol-
lows from Corollary to Lemma 2.2 that Xil^, , 5ίr |β. and Zf |β«., , X* |^
form two systems of generators of this group. The matrix UQ gives
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the relation between these two systems of generators, namely,

Z* k = Π at I*;)"" ( Uo = (tttfWsr) .

By (5-4), we have

pγ\: m

Put λ° = (λ1# , λr, 0, , 0) 6 (2-1Z)\ Let S1 be the singular set of
(G, plf E). Consider the projection mappings

p : VR - SR -> ER - SR and p * : FΛ* - S%-> ER - SR .

These mappings are G^-equivariant and surjective. Let ER — SR =
ωλ U U cot be the Gί-orbit decomposition. For an x e ωu put Gt =
GχΓ\GR. For simplicity, we assume that

(5-15) Gίc(G.°) β .

There exists a one to one correspondence between GJ-orbits in p~ι(<ΰt)
(resp. p*"^©*)) and Gί-orbits in F Λ — SXiJI (resp. ί ϊ — S*Λ). Hence by
Lemma 5.1, the number kt of GJ-orbits in v~\(O%) is equal to that of
Gέ-orbits in p*"\ωt) (1 ̂  i ^ <). We have Λx + + kt = v. We may
assume that

p"\ωt) = Vkl+...+k._1+1 U U Vkl+...+k._1+k.

and

p*-\ωt) = V?1+...+4<_1+1 U U 7**+...+*^+*, (1 ̂  ί ^ ί) .

For an xeωi9 set

( ) / = {tf 6 ̂ « ; (a, 2/) e F,1+...+fci_1+i}

and

TO,* = fo e i^Λ*; (a?f »*) 6 Vk*1+...+ki_1+j} (1 £ j £ k) .

Then the Gί-orbit decompositions of FR — SX}R and F% — S*R are given

by

FR - SΛ,Λ - F(a?)I U U TO*, and FΛ* - S*R = F{x)* U U

We set

i(x,f;s)= \ \P(x,y)\ f(y)dy

= Π \P&)\'A ίl\P,(χ,v)\'>f(y)dy
3=r+l JF(x)i 3=1

and
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Φϊ(χ, /*;*) = ί IQ(χ, v*) \°f*(y*)dy*
JFix)}

= Π |P,(*)| ' ( Π
+1 J F ( ) J i l

The Fourier transform /* of /* 6 ̂ (Fi) is defined to be

f*(y) = j ^ f*(v*)e[(yf y*}]dy* .

Set

Φ(x, /*; 8) = *m%9 /*; * ) , - . - , Φ4|(a, /*; β)) ,

φ*(χ, /*;«) - '(«?(», /*; 8), , Φ* (*, /*; β))
and

Since the condition (5-1) implies that (G°, |02, F) is regular over ίΓ,
by Theorem 1 and Remark 3, there exists a kt by kt matrix A(x; s) of
meromorphic functions of s, which is independent of /*, such that

(5-16) Φ(x, /*; s) = A(x; s)Φ*(x, /*; (s + λ°) UQ) .

Note that the matrix A(x; s) depends only on slt , sr.

LEMMA 5.9. Let xw, • • , xm be points in ωu , ωt respectively. If
|P r + 1 (a ; ( i ) ) | = = |P n (a; ( i ) ) | = 1 for every % = l, ,t, then

/A(xw;s) \

= c(-s)(-2π\/-l)d'w7(s)A(s) .

A(xw;s)l

PROOF. For / 6 £*(F
R
) and /* e ̂ (Fί), we put f

g
(y) = f(p

2
(g)y) and

V*) = f*(P?(9)v*) (geGϊ). Then,

and

Φ (l«>,(flr)x, / * ; β) = |Z*(fir) | - ^ * ( ! r f /,*; β)

for any x e ER — Sk and any gr e (T«. The following identity is an im-
mediate consequence of these formulas: Aip^x; s) = \%(g)\zA(x; s) where
2 = s + λ — (s + X°)U0U~ι. Hence, for any xeω{, we have

(5-17) A(x;s) = \P(x)\*A(xw;s).

Since z1 = = zr = 0, we write \P(x)\z here for |P(a;, y)\". Suppose
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that Re s1( , Re sn > 0 and /* 6 Co°°( V% - Si). Then

(5-18) ΦiJTf*; S) = Yί φ(x> (jTf«%; s)dx,-- ,\ Φ(x, (jrf*)x; s)dx)

and

(5-19) Φ*(/*; s) = Y( Φ*(aj, /*; *)cte, , ( Φ*(α, /*; s)dx)

where (*^Y*)9 and /* stand for the functions on FR and FR defined by
f *).(») = ^y*(&, 2/) and /•(»•) = /*(«, »*) respectively. We get

*)x = /*. Denote by A'(s) the left hand side of the equality in the
lemma. Then the identity

«) - A'(8)Φ*(/*; 2 + (β + λ°) ϋo) (/* e Co°°( Fκ* - Si))

follows from (5-16), (5-17), (5-18)_and (5-19). Since z + (s + λ°) C/Ό = (s + λ) U,
we have A'(s) = c(-s)(-2πv/-l)d*{s)Ύ(s)A(s).

6. Functional equations of zeta functions. Throughout this section,
in addition to the conditions (5-1) for K = Q and (5-2), we assume
that

(6-1) for any z = (as, y) e VQ — SQ, the group X(GO

Z)Q is trivial, namely,
V'Q = VQ - SQ (for the definition of V'Q, see (4-1)).

By Lemma 2.4 (iii), this assumption is also satisfied by the p.v.
((?, p*, V*) = (G, ̂ 0 ^ * , J ϊ φ ί 7 * ) . The condition (5-3) follows immedi-
ately from (6-1) (cf. Lemma 4.1).

As in the previous section, let Gi be a subgroup of GR containing
the connected component of the identity element and let

VR - SR = V, U U Vv and FΛ* - SΛ* = V? U U V*

be the Gi-orbit decompositions.
We fix a matrix expression of G and bases of E and F compatible

with the given Q-structures of (6, pl9 E) and ((?, p2, F) such that
ρ1(Gz)Ezc:Ez and p2(Gz)FzaFz. We define a Q-structure on (G, pf, F*)
by taking the basis dual to that of F. Let M and N be ft(Gz)- and
|O2(Gz)-stable lattices in EQ and .Pg respectively. Denote by iV* the
lattice dual to N:

ΛΓ* = {2/* e F * ; <y, 2/*> e Z for all y eN} .

It is obvious that i\P is ft (Gx)-stable. Put L = M@ N and L* = Λf 0 i\Γ*.
Then L and L* are p(Gz)- and |θ*(Gz)-stable lattices in VQ and F^
respectively.
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Set

Γ = {g e Gz n GJ JCfor) = 1 (1 ^ i £ n)} .

By (6-1), applying the argument in § 4 to (G, p, V) (resp. (G, <o*, F*)),
we can define zeta functions ξt{L; s), , ςXL; s) (resp. ξf(L*; s), ,

#(£*;«)).
We further assume that

(6-2) the Dirichlet series ξ^L; s), ••, ξXL; s) {resp. ξ*(L*\ s), •••,

£?(£*; s)) a re absolutely convergent for ReSi > a^ , Resn > an {resp.

Re 81 > a*, , Re sn > a?) for some positive real numbers alf , an

{resp. aϊ, •••, a*).

As in § 4, let δ and δ* be the elements in Qn such that

{άet p{g)J{g)-y = X

and

(det/o*

for some integers d and d*. Then we have δ* = (S — 2λ)ί7. Put

B = {s 6 Cn; Re s< > Max (α,, δt) (1 ^ i ^ n)}

and

ΰ * = {seCw; Reβ, > Max(α*, δf) (1 ^ ΐ ^ n)} .

By Lemma 3.2, we have the following integral representations:

(6-3) Z{fL;s) = \+ \X{g)\s Σ

= Σ ξi(L; *)#*(/; s-δ) {fe^{ VΛ), s e B)

and

(6-4) Z*(/*, L*; β) = ( + |Z*(^)I8 Σ f*{p*(g)**)dg
JG^/Γ z*eL*-S*Q

i=l

Denote by D (resp. D*) the convex hull of (5* C7"1 + λ) U B (resp.
(B - λ)?7U J5*) in C\ Notice that {D - X)U = D*.

LEMMA 6.1. Lei /* be a function in &>{V£) such that /* and
J^f* vanish on the singular sets S* and S respectively. Then
Z(^y*9 L; s) and Z*{f*, L*; s) have analytic continuations to holomorphic
functions of s in D and D* respectively. Moreover they satisfy the
functional equation
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Z*(f*> L*; (s -\)U) = v{N^ΓZ{^r, L; s) (s eD)

where v(N*) = \ dy*.
JF*R/N*

PROOF. Take points b e Zn Π B and 6* 6 Zn Π (B* U'1 + λ). Put β =
(β» •> βn) = 6 - δ* and F = Zf1 - %£*. We define four domains D+, Ώ_y

D% and ί)ΐ as follows:

D+ = {s e Cn; s + tβ 6 B for some £ ̂  0} ,

2)_ = {s 6 Cn; s - tβ 6 β for some t ^ 0} ,

Dΐ = {s eCn; s - tβUeB* for some £ ̂  0} ,

D* = {s 6Cn; β + tβUeB* for some t ̂  0} .

Set

ί Σ f(p(g)*)dg,
zeL-S

ZJJ, L;s) = \ \X(g)\> Σ

and

Z*(f*,L*;s) = \ \X*(g)\ Σ f*(P*(g)**)dg

Zϊ(f*, L*; s) - I |Z*(g)|8 Σ f*(P*(g)**)dg
J\β{)\> z*eL*-S*

Since Z(/, L; s) (resp. Z*(f*, L*; s)) is absolutely convergent in I? (resp.
£*), Z±(f, L; s) (resp. Zϊ(f*f L*; s)) is absolutely convergent in D± (resp.
i?ί) and we have

Z(f, L; s) = Z+(/f L; s) + Z_(f, L; s) (s e £)

and

Z*(/*, L*; s) = Z*(f*, L*; s) + Z*(f*, L*; s) (s e B*) .

We are assuming that /* and ̂ ~f* vanish on S* and S respectively.
Hence the Poisson summation formula yields the following equality:

\Άg)\x Σ Jff*{p{g)z) = v(N*) Σ f*(p*(g)z*) (g
zeL—S z*eL*-S*

By this formula, we obtain at least formally

(6-5) Z*(/*, L*; (s -X)U) = v{N*ΓZ+{^f\ L; s)

and

(6-6) Zϊ(f*, L*; (s - λ) 17) = v{N*ΓZ_{jTf\ L; s) .
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The right (resp. left) hand side of the equality (6-5) is absolutely con-
vergent in D+ (resp. DIU'1 + λ). By the choice of β, the segment joining
6 and 6* is contained in D+ and the set D+ Π (Dl U~ι + λ) is a non-empty
connected open set containing the neighbourhood of 6*. Hence the func-
tions Z+(^~f *, L; s) and Zϊ(f*, L*; (s — λ) U) are continued holomorphically
in D+ U (DIU'1 + λ) and the equality (6-5) actually holds in this domain.
The same argument shows that the functions Z_(^~f*, L; s) and
Z*(f*, L*; (s - X)U) are continued holomorphically in D_ U (DfU-1 + λ)
and the equality (6-6) also holds. Thus we get the functional equation

(6-7) Z*(/*, L*; (s - X)U) = Z%(f\ L*; (s - X)U) + v(N*ΓZ+(jrf*f L; s)

= viN^ZijTf*, L; s)

and both sides of the equation are holomorphic functions of s in
{D+UiDZU-1 + X)}f){D_U(DtU-1 + λ)}. This domain contains the union
of B, B*U~ι + X and the segment joining 6 and 6*. Hence, by [5,
Theorem 2.5.10], the identity (6-7) holds for seD.

We shall construct rapidly decreasing functions with the property
mentioned in the lemma above by the method indicated in [14, p. 169,
Additional remark 2]. We may assume that (5-13) holds for Plf ••, Pn

and Qlf , Qn. Put 1F = 1, - Xr and XF* = Z* - %?.

LEMMA 6.2. (i) For an ft eCΌ°°(Ff), put /* = Pz* (x,
Then the function ^~f* vanishes in SR.

(ii) For an feCo^V,), put /* = ^~-\Qτ* (x, gradf)/<) where
stands for the inverse transformation of the partial Fourier transform
^ 7 Then the function f* vanishes in S%.

PROOF, (i) Integrating by parts, we have

^7*(x, y) = (-2π}/=ϊ)dPχF(x, y)jTf*(x, y)

where d — degy Px + + degy P r . The assumption (5-13) implies that
SR = Sk x FR U {(x, y) 6 VR, P^x, y)--- Pr(x, y) = 0}. Since ^ft*(x, y) = 0

for any (x, y)eSR x FR, ^~f* vanishes in SR.

(ii) We omit the similar proof to that of (i).

Put bF(s) = bXF*(s) and bF*(s) = b%F(s). We call bF(s) (resp. bF*(s)) the
partial b-function of (G, p, V) (resp. ((?, p*, V*)) with respect to the
Q-regular subspace F (resp. ί7*).

THEOREM 2. ( i ) The Dirichlet series ξ X(L; s), , ξ XL; s) (resp.
ξϊ(L*; s), , £?(!/*; s)) have analytic continuations to meromorphic func-
tions of s in D (resp. D*).
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( i i ) The functions bF(s - δ)ξ1(L; s), -••, bF(s - δ)ζXL; s) (resp.

bF.(s — δ*)ξ*(L*; s), , bF.(s — δ*)ξ*(L*; s)) are holomorphie in D {resp.

D*).

(iii) Put

and

ξ*(L*; s) = •(£?(£,*; β), , f?(L*; «)) .

Then the following functional equation holds for s in D:

(6-8) v(N*)ξ*(L*;(s-X)U)

= c(δ - s)(-2πv /^ϊ)< ί* (- ί )γ(s - δ) (A(s - δ)ξ(L; s) .

PROOF. Let ft and / * be as in Lemma 6.2 (i). By (6-3), (6-4) and
Lemma 6.1, we have

(6-9) ξ*(L*; (s - λ)U)ΦΪ(f*; (s-X)U- 8*)

= v(N*Γ Σ ξiiL; s)Φi(jrf*; s - δ)
i

where both sides of the equality are holomorphie functions of s in ΰ .
We are able to take an ft such that the support of /<* is contained in
a connected component of V? and ***(/**; (s - X)U - δ* + δ*(XF)) Φ 0.
Then the sign of any relative invariant does not change in the support
of /Ϊ*. Lemma 5.3 (ii) implies that

Φΐ(f* Λ8-X)U-δ*)

= (-ly^εr^bAis - λ)tf - δ*)ΦΪ(fϊ; (s - X)U - S* + δ*(XF)) .

Hence the function bF*((s — X)U — δ*)ξf(L*; (s — λ)Z7) is holomorphie in
D. Since (D — X)U — JD*, this proves the assertions (i) and (ii) for ξf.
The similar argument applied to /< and / * given in Lemma 6.2 (ii) shows
that ξl9 -—,ςv have the analytic properties asserted in (i) and (ii). Since
(δ — 2x)U = δ*, the functional equation (6-8) is an immediate consequence
of (6-9) and Theorem 1.

COROLLARY 1. Let (G, p, V) is a p.v, with a reductive algebraic
group G satisfying the conditions (5-1), (6-1) and (6-2) for E = {0}, F — V
and K = Q. Then the zeta functions ξ^L; s), , fv(L; s) have analytic
continuations to meromorphίc functions of s in Cn. Moreover the func-
tions bv(s — δ)ξ1(L; s), , bv(s — δ)ξv(L; s) are entire functions of s.

PROOF. When G is reductive, the condition (5-2) is derived from
the condition (5-1) for E = {0} and F = V (see [13, §4, Remark 26]).
Hence we are able to apply Theorem 2 to ((?, p, V) and our task is only
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to show that the convex hull D of (2?*U~ι + λ ) U δ coincides with C\
By [13, § 4, Proposition 24], we may assume that U = —En. This implies
that D = C\

Corollary 1 is generalized as follows:

COROLLARY 2. Lei (G, |0, V) fee α regular p.v. defined over Q with
a reductive algebraic group G. Assume that (G, p, V) is decomposed into
a direct sum (G, ̂ i© p2, Wi© W2) over Q. Further assume that the con-
ditions (5-1), (6-1) and (6-2) ftoίd for E = Wlf F = Wi9 K = Q and for
E = W2, F = WΊ, K = Q. Tftew i/ L is decomposed into a direct sum
°f a Pι{Γyinvariant lattice L1 in W1Q and a p2(Γ)-invariant lattice L2

in W2Q, the zeta functions ξ^L; s), , ξv(L; s) multiplied by bWl(s — δ) x
bW2(s — δ) are entire functions of s.

PROOF. Since (G, p, V) is regular and G is reductive, the condition
(5-2) is automatically satisfied. The matrix U and the vector λ are defined
for each of two Q-regular subspaces Wt and W2. We denote them by
Ulf U2, λ

(1) and λ(2). For sufficiently large positive numbers au , αn, put

B = {seCn; Re st > alf , Re sn > an} .

Let Di (i = l, 2) be the convex hull of (BUr1 + χ{i)) [J B. Then, by
Theorem 2 (ii), the functions 6^(8 — δ)ξs (L; s) (i = 1, 2, 1 <̂  j ^ v) are
holomorphic in Dt. Hence 6^(8 — δ)bW2(s — δ)ξj(L; s) (1 <Z j ^ v) are holo-
morphic functions of s in the convex hull of

B U {BUr1 + λ(1)} U {BUf1 + λ(2)} .

Since G is reductive and p* φ |O2 is the contragredient representation of
Pi®P*> by [13, §4, Proposition 24], we may assume that Ux= —U2.
Therefore the convex hull of the set above is equal to Cn.

REMARK 1. When G is not reductive, the author does not know
whether the zeta functions have analytic continuations to meromorphic
functions of s in Cn.

REMARK 2. If (G, p, V) does not satisfy the condition (6-1), namely,
V'Q is a proper subset of VQ — SQ, the study of zeta functions becomes
extremely difficult. An example of zeta functions of this kind is the
Siegel zeta function of a ternary zero form (cf. [17], [18] and [25]).

REMARK 3. Theorem 2 was previously proved for some special cases.

If G is reductive and S is an absolutely irreducible hypersurface,
Theorem 2 was already established by Sato and Shintani in [14].

The Eisenstein series of the group SL(n) can be viewed as an example
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of zeta functions associated with p.v.'s. Arithmetic approaches to the
Eisenstein series given in Langlands [8], Maass [9], Selberg [15] and
Terras [21] are well-understood from our point of view (cf. [24]).

In [20], Suzuki showed Theorem 2 for certain zeta functions in two
variables related to quadratic forms (cf. § 7 Remark 2 to Example B).

In [17, Chapter 1], Shintani studied certain Dirichlet series in two
variables which we shall reexamine in the next section.

7. Examples. In this section we frequently use the symbols intro-
duced in the previous sections without any special reference.

7.1. Example (A). Let G = SL(2) x GL(1)3, Va) = V{2) = V(S) =M(2,1)
and V = Va) © F (2) © F ( 3 ). We define a representation p of G on V by
setting

P(9)v = ρ(h, tl9 t2, ts)(x, y, z) = (hxtϊ1, hyt2~\

Put

P,(v) = P^x, y, z) = det (y, z) ,

P2(v) = P2(ίc, y, z) = det (a?, z) ,

and

(7-1) S=U{«;e7

It is easy to check that the triple (G, p, V) is a p.v. with the singular
set S. Hence the condition (5-2) is satisfied by (G, p, V). The polynomials
Pu P2 and Pz are irreducible relative invariants which correspond to the
characters

(7-2) Ug) =

\Ua) =
respectively. There exists a natural Q-structure on (G, p, V):

GQ = SL(2)Q x Qx x Qx x Qx ,

VQ = M(2, 1; Q) 0 M{2, 1; Q) φ M(2, 1; Q) ,

Gz = SL(2)Z x {±1} x {±1} x {±1} ,

Vz = M(2, 1; Z) 0 M{2, 1; Z) © M(2, 1; Z) .

We put G£ = GR = SL(2)R x Rx x Rx x Rx. Then the set VR - SR is
the union of two G«-orbits V+ and V_:

F + = {ve VR; Pι(v)Pt(v)Pt(v) > 0} , F_ = {«€ VR; P^P^P^v) < 0} .
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The group Γ is given by

Γ = {(h, tlf t2, Q 6 Gz; t1 = tt = t9= ± 1 } .

The isotropy subgroup Gv at a generic point v e V — S is independent of
the choice of v and coincides with {±(E2,1, 1, 1)}. This implies the con-
dition (6-1): V'Q = VQ - SQ. For any ve VQ, Gi = ΓV = {±(E2,1,1,1)}.
The character άet p is in XP(G)Q and δ = δ(άetp) = (1, 1, 1). Let dv =
dxdydz be the standard Euclidean measure on VR. We can normalize a
Haar measure dg on Gi such that

\ F(p(g)vQ)dg = 2 ί F(v)\ P{v) \~δdv (v0 e V±, F e L\ V±, \ P(v) \~sdv)) .
}G+ JV±

The normalization of dg is independent of v0. Then, for the Haar measure
dμv on Gi normalized by (4-2), we have

\ + dμυ = 2 and μ(y) = ( dμυ = 1 (v e V'Q) .

Let L be a Γ-invariant lattice in VQ and set L± = L f)V±. The zeta
functions associated with (G, |0, F) are defined by the formula

(7-3) ξ±(L;8)= Σ l ^ ) | - s (seC*).
veΓ\L±

For the lattice L = F z , these Dirichlet series are easily calculated
and we get

(7-4) ξ±(s) = ξ±(Vz; s) = C(βi)C(«OC(β.)C(βi + s2 + sΆ - 1) .

This implies that the series ξ±(L; s) are absolutely convergent for
Re su Re s2, Re s3 > 1. Since δ = (1,1,1),

δ = {seC3; Resx, Res2, Res3 > 1} .

The p.v. (G, |0, F) has the following seven Q-regular subspaces:

Ύ,
(2) ^ D T/ ( 3 ) T7 ( 1 ) ^ D T7{ 3 ) 17 ( 1 ) ί^D T/^2)

ω y(2) y(3)

Since (G, |0, F) has obvious symmetry for the permutations of the indices
1, 2, 3, we shall calculate the explicit forms of the functional equations
obtained by the partial Fourier transforms with respect to V, E = Vω

and F= P ' φ F 3 1 .
The notions such as p*, U, X are defined for each Q-regular subspace.

In order to indicate the dependence on Q-regular subspace, we use the
subscripts E, F and V. For example, the symbols p$9 p% and p* stand
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for the representations of G (partially) contragredient to p with respect
to V, E and F respectively.

Put J=(ι^\ and identify the vector spaces F*, E* and F* with

F, E and F via the non-degenerate bilinear forms

<(α?, y, z\ (a?*, y*, s*)> - *α? Jz* + *yjy* + <s Js* , (x, x*) = 'a

and

respectively. Then the representations p*, p%9 pf are realized on V as
follows:

P*(g)v = (hxtl9 hyt2, hzt3) ,

= (hxtί9 hytϊ\

l1, hyt2,

The singular sets of the p.v.'s (G, ̂ of, F) (X = E, F, V) coincide with
S and the polynomials Plf P2, P3 are also irreducible relative invariants
of (G, p*, V). Since p\Γ = |θ j | r = /oj|r = /0*|Γ, the zeta functions associ-
ated with (G, |0$, F) (X = E, Fy V) are also given by the formula (7-3).
Therefore the conditions (5-1) for K = Q, (5-2), (6-1) and (6-2) are satisfied
in the present three cases.

By an easy calculation, we get

uv = ί
\

Moreover

For ar

1
—

Λty —-

1/6.

1

(1,

\

\
- 1 /

1 , 1 ) ,

VR), set

A

\l

0

0

- 1

1,D

°\
o/

, λ f

UF =

• = ( 2 , 1,

( - ]

\ - ]

i ) .

L 0

L 0

. 1

0
1

0

Φ±(f;s)= \P{v)\*f{v)dv .
iv±

Let ^yf9 ^Έf a n d «-^/ be the (partial) Fourier transforms of / with
respect to F, E and F respectively.

The explicit forms of the functional equations in Theorem 1 are given
by the following lemma.

LEMMA 7.1.

( i )
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y S1 ? S2, S3)/

•2(81+82+83)-5Γ'/<5 -4- " Π Γ Y Q 4- Ή Γ Y Q 4- " Π Γ Ύ Q -4- Q -I- Q 4- 9\
x yo^ — -L/jt \o 2 — -Lyi \ o 3 — J-JJ \®ι I o 2 Π"̂  03 T" **)

sin (Si + s2)ττ + sin (s2 + s3)ττ + sin (s3 +

v — sin (sx + s2 + s3)π — sin πst — sin ττs2 — sin ττs3

— sin (Si + s2 + s3)ττ — sin πs, — sin τrs2 — sin τrs3

sin (sx + s2)ττ + sin (s2 + s3)π- + sin (s3 + st)π

{φ+(f; - 1 - *i, - 1 - β8, - 1 - β,y
Φ.C/ -l-s,, -l-s 2, - 1 -

(ϋ)
, 8l9 s 2 , s 3 ;

/ - c o s ((s2 + s3)π/2) cos ((s2 - s3)π/2)\

\ cos ((s2 - s3)ττ/2) - c o s ((s2 + 88)ττ/2)/

(Φ+(f; sλ + s2 + s5 + 1, —s 3 — 1, —s 2 — 1)

\Ψ — \J 9 " 1 I «>2 "T" «>3 - f -L, O 3 X, i>2

(iii)

/ —sin ((s2 + s3)τz:/2) sin ((2sx + s2 + s3)π/2)

\sin ((2sx + s2 + s3)ττ/2) —sin ((s2

+(/; - s x - s2 - s3 - 2, s3, s2)

Φ-(/; - s x - s2 - s3 - 2, s3, s2)

By Lemma 5.9, we are able to reduce the lemma to the following
well-known formula (cf. [4, p. 360]):

/(|j/|;e

2^(Z2/\ _

\J \y\le™*»dy
πs v '_i / 2 Λ β V-i/2

* 1+

We omit further detail of the proof of Lemma 7.1.
The polynomials 6F(s), bE(s) and bF(s) are easily computed by (5-8)

and the lemma above:

LEMMA 7.2.

bv(s) = — SiSAfai + S2 + S3 + 1)(SX + S2 + SsXS! + S2 + S3 — 1) ,

bE(s) = s2s,, bF(s) = -s^s, - l)(sx - 2)(sx + s2 + s3 + 1) .
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Let L(1), L(2), L(3) be SL(2)z-invariant lattices in Λf(2, l Q) and put

L{i)* = {ίc* e y™; *xJx*eZ for all zeL ( i )} .

We set

L = L(1) 0 L(2) © L(3) , U = £ ( 1 ) * Θ £ ( 2 ) * θ £ ( 3 ) * ,

LI = Lw * 0 L<2) 0 L(3) , and Lf = L(1) © L(2) * © L(3) * .

THEOREM 3. ( i ) The Dirichlet series ξ±(L;s), ξ±(L$;s), ξ±(Li;s),
ξ±(L*; s) have analytic continuations to meromorphic functions of s in
C\

(ii) These functions multiplied by (sj. — l)(s2 — l)fe -~ l)(^i + s2 + s3 — 2)
entire functions.
(iii) Tfcei/ satisfy the following functional equations:

/ sin (βi + s2)π + sin (s2 + s3)ττ + sin (s3 +

\sin (8ί + s2 + s3)7Γ + sin πsx + sin πs2 + sin πs3

sin (8X + s2 + s3)7r + sin πβi + sin πs2 + sin πs3

sin (8X + s2)π + sin (s2 + s3)π + sin (s3 +

Λ-"> 1̂> 2̂> #3/

+ S2 + S3 1, 1 S3, 1 S2)

+ S2 + S3 1, 1 S3, 1 S2)

/cos ((s2 + sz)π/2) cos ((s2 — s3)τr/2)\ ίζ+(L; slf s2, s3)
yc I 1 1

\cos ((s2 — s3)ττ/2) cos ((s2 + s3)π/2)) \ζ_(L; su s2, s3)

φ W
\ί_(L?; 2 - βi - s2 - s8, 88, s2).

•f β, + 8. - 1;

sin ((s2 + 88)7r/2) sin ((2s, + s2 + ss)π/2)\ (ζ+(L; su s2, 88)\

\sin ((2sx + s2 + s3)τr/2 sin ((s2 + s3)7r/2) / \f _(L; 8X, s2, 88)/ '

PROOF. Since G is reductive, the first assertion is a special case of
Corollary 1 to Theorem 2. The third assertion follows from Theorem 2
(iii) and Lemma 7.1. By Corollary 1 and Corollary 2 to Theorem 2, the
functions bv(s — ϊ)ξ±(L; s) and bE(s — l)bF(s — l)ξ±(L; s) are entire func-
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tions. Here s — 1 = (sx — 1, s2 — 1, s3 — 1). Hence Lemma 7.2 implies the
second assertion.

REMARK. For L — Vz, the results in Theorem 3 are consistent with
the functional equation of the Riemann zeta function.

7.2. Example (B). Let A(m, n) be the number of distinct solutions
of the congruence x2 = n (mod m). We define four Dirichlet series ξt(8lf s2)
and ξf(slf s2) (i = 1, 2) by the following formulas:

ί Ί* ( \ — v '

i \"1> *>2/ — s j
m,n=l

These Dirichlet series were closely investigated by Shintani in [17, Chap-
ter 1]. In particular he proved that:

THEOREM 4 (Shintani). ( i ) The Dirichlet series ςt(8lf s2) and ζ*(slf s2)
(i = 1, 2) multiplied by

Γifa + l)/2)~1s1(2s1 - I)ζ(2s1)(s2 - l)(s x - l)2(2sx + 2s2 - 3)

have analytic continuations to entire functions in C2.
(ii) They satisfy the following functional equations:

/£i(βi, 3/2 - βx - s2)\

U(8 l f 3/2 - 8 l - s2)]
= 2-1π1/2(2/π)Sί+282Γ(s2)Γ(s1 + s2 - 1/2)

/sin ((β l + 2s2)π/2) sin (πsJ2) \ ^ /ξf(8ι, s2)\
X \ cos (πsJ2) cos ((8X + 2s2)πj2)J \ζi(βl9 s2)) '

(iii) Tfee functions

(2π)-»Γ(81)ζ(281)ί1(β l f s2) ,

8 l , s2)

aϊί invariant under the substitution (slf s2) —> (1 — sx, sx + s2 — 1/2).

We shall give a proof of the theorem above as an application of the
results in § 6.

Let E be the vector space of 2 by 2 symmetric matrices and set
F = C2. In the following we consider an element y of F as a column
vector y = \yu y2). Put G = GL(2) x GL(1) and F ^ S φ F . Define a



478 F. SATO

representation p of G on V by setting

p(g9 t)(xf y) = (gχ*g, t W )

The triple (G, |0, V) is a p.v. with irreducible relative invariants

and the singular set S is given by

S = {(x, y); Px(%, y) = 0} U {(a?, 2/); P,(a?) = 0} .

The characters Xx and X2 defined by

X1(gf t) = ί2 and X2(g, t) — det #2

correspond to Px and P2 respectively.

We consider the standard Q-structure on (G, p, V):

GQ = GL(2)C? x GL(1)<, , VQ = {E n Jlf(2; Q)} 0 Q2 ,

Gz = GL(2)Z x {±1} , Vz = {E n M(2; Z)} 0 Z2 .

Then the p.v. (G, p, V) has the three Q-regular subspaces E, F and V.
Identify E and F with their dual vector spaces via the bilinear forms

(x, ίc*> = tr (x Jίc* *J) (x, cc* 6 £?) and (y, y*} = *yt/"|/ (y, 2/* 6 F)

where J = ( 1 o ) . The representations pi, ^ί and p$ (partially) con-

tragredient to |O are given by

P%(g, t)(x, y) = (detg-2 gx*g, t-'g^y) ,

ρf(g, t)(x, y) = (gx*gf detg t^^g^y)

and

Pv(g, t)(x, y) = (det g-2 gx*g9 det g fx ιg~xy) ,

respectively. Here the subscripts E, F and V have the same meaning
as in Example (A). These formulas show that the triple (G, p%f V)f

(G, pϊ, V) and (G, |O*, V) are p.v.'s with the same relative invariants and
the same singular set as those of (G, p, V).

The matrix U and the vectors λ, δ are easily calculated and we get

/I - 1 \ _ / - I 1\ _ / - I 0\

^ ~ \ o - i j ' f ~ \ o l ] ' F ~ \ o - 1 / '
XE = (0, 3/2) , λ^ - (1, -1/2) , Xv = (1, 1) ,

Let Gi be the connected component of the identity element of GΛ.
The Gi-orbit decomposition of VR — SR does not depend on the represen-
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tations p, p%, p% and p$, and is given by

VR - SR = V+ U Vr U F2

+ U F Γ

where

, y) = ( - 1

The group Γ coincides with SL(2)Z x {1}.

For any (x, y) e VR — SΛ and for any representation of |0, pf, ρ}9

and |0?, the group GitV = Γx,y are trivial. Let άto = dxndxadxΆ for a? =
fei)i,i=i,2 and ώ̂ / = άVidy* for /̂ = \yl9 y2). Then we can normalize a Haar
measure cΪ0c£x£ on Gi such that

S ±Aχ9

= ( +f(pi(g,t)(xQtyo))dgd*t

(X = £7, F, 7 , (a*, »o) 6 V?, / 6 L\ V?f

The normalization is independent of the choice of (#0, l/o)
Notice that /t)|r = pίlr = |0*|r = jθ*|r Hence, for any Γ-invariant

lattice L in Vc, the zeta functions associated with (G, p, V), (G, p*, V),
(G, pt, V) and ((?, |O*, V) are given by

ff(L; 8lf s2) = Σ

Since the mapping (x9y)t-+(—x,y) induces a one to one correspondence
between Γ\L Π Vt and JΓ\L Π VΓ» we obtain

ξt(L; su s2) = ξϊ(L; su s2) (ί = 1, 2) .

From now on, we simply write ξt(L; su s2) for ξΐ(L; su s2).
Let Ez = Ef) Λf(2; Z) and F z = Z 2 . Then

is the lattice dual to Ez. It is easy to check that

(7-5) UEZ θ Fz; 8U s2) = 22%(2s1)ξf(s1, s2) ,

(7-6) ξt(Eί 0 Fz; slf s2) = 2t*ζ(2β1)&(*1, β2) (i = 1, 2) .

This shows that the Dirichlet series ξt(L; slf s2) are absolutely convergent
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for Re 8lf Re s2 > 1. Thus we can see that the conditions (5-1) for K = Q,
(5-2), (6-1) and (6-2) are satisfied by the Q-regular subspaces E, F and V.

For an fe^(VR), put

Φt(f; s) = \ I P&, y) M P2(x) \°>f(x, V)dxdy (i = 1, 2) .

Denote by J ^ / , J^/, J ^ / the (partial) Fourier transforms of / e
with respect to E, F and V respectively.

LEMMA 7.3. The functions Φ^f; s) satisfy the following functional
equations:

(7-7)

f - cos ((«! + 2s2)π/2) - sin (πsJZ)

cos (πsJZ) sin (fo + 2s2)τr/2),

; S l , - 3 / 2 - S l - s 2 ) \

βlf - 3 / 2 - S l - βθ/ '

• ^ ' ^ " " —sin

' • • - ' 1/2)/'

(7-9) ( Φ l ( ^ / ; S )

\ΦJ^f β).

+ iyr(Sΐ -
— 2 sin2 (πSj/2) cos ((Sj+2s2)π/2) sin (JΓSJ) sin (πsJ2)

sin (πsO sin (πsJ2) — sin ((«!+2s2)π/2) sin i

W ; - i - βlf - l - s2)

PROOF. The functional equation (7-7) follows easily from Lemma 5.9
and [17, Chapter 1, Lemma 1 (i)]. By Lemma 5.9, the functional equation
(7-8) is reduced to the formulas for the Fourier transforms of | x2 ± y2 \s

(cf. [4, Chapter III 2.6]). Combining (7-7) with (7-8), we obtain the last
functional equation (7-9).

The partial δ-functions with respect to the regular subspaces E, F
and V are easily computed.

LEMMA 7.4. We have, up to non-zero constant multiples,
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bE(s) = «,(«, - !.)(«! + s2 + 1/2) , bF(s) = si ,

by(s) = βfofo + s2 + l/2)(s1 + s2 - 1/2) .

Let M and iSΓ be Γ-invariant lattices in EQ and FQ respectively. We
denote by M* (resp. N*) the lattice dual to M (resp. JV). Set

L = M@N, L% = M*®N, Lί = Λfφ.W*, L? = M* 0 W* .

THEOREM 5. (i) The Dirichlet series ξ^L s), ξtiLt s), ζt(Lί;s) and
ξi(L*; s) (i = 1, 2) multipled by (Sj — l)2(s2 — l)(Si + s2 — 3/2) have analytic
continuations to entire functions in C2.

(ii) They satisfy the following functional equations:

%; slt 3/2 - S l - s2)\

ϊ; s1; 3/2 - β l - s,))

-121-'i-2^π1/2-i-2^Γ(s2)Γ(s1 + s2 - 1/2)

/sin ((βx + 2s2)τr/2) sin (πsJZ) \ fa(L; su s2)\

cos (πβi/2) cos ((s! + 2s2)π/2)) \ξt(L; slf s2)}

I; 1 - su S l + s2 - l/2)\

ψ \ JL Sj_, Sĵ  ~i~ S2 *-/^*//

-«i, 1

x ί 2

* - 1

( ) π \

• - * ) \

- "- s2;/

cos2 (πsχ/2)

sin (TΓS

3 ί l - , 2 ,

sin (7

Jcos

/2 cos2 {n

\ o

:(s, + 2s

"Si/2)

2)/2)

sin

•(•,+

sin

0
(πs

• s2

sin

•i)/ ' U ( i

-1/2)
(7ΓS!) COS

[) COS (?r(ί

• »i, s2),

(7ΓSl/2)

ΪI + 2s.

\

) '

d/2)

A Si, s2)

PROOF. AS in the proof of Theorem 3, Corollaries 1, 2 to Theorem
2 and Lemma 7.4 imply the first assertion. The functional equations are
immediate consequences of Theorem 2(iii) and Lemma 7.3.

Now the theorem of Shintani is easily derived from (7-5) (7-6) and
Theorem 5. Moreover Shintani's result on singularities of ζ{ and ξf is
improved in our Theorem 5 (i).

REMARK 1. Shintani's method for proving Theorem 4 (ii) is essentially
the same as ours. For the functional equations in Theorem 4(iii), he
reduced them to the functional equation of the Legendre function (see
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the proof of [17, Lemma 1 (ii)]). We note that the functional equation
of the Legendre function is derived from (7-8) which is the base of the
functional equations of ^(L; s) with respect to the Q-regular subspace F.

REMARK 2. Suzuki gave a generalization of this example to the
vector space of n by n symmetric matrices for n ^ 4 in [20]. Another
generalization will be seen in [24, §4]. More precise investigation of
zeta functions associated with the p.v. treated here will be made in
[25, §2].
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