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1. Introduction. In our joint paper with Inoue [7], we studied
holomorphic affine connections and affine structures on complex manifolds
and classified all compact complex surfaces admitting such structures.
In [12] we studied holomorphic projective connections and protective
structures and classified all compact complex surfaces admitting such
structures. The one case left open in [12] has been solved recently ([13]).
Both of our papers were partly based on Gunning's earlier work [4].

In the present paper we shall study holomorphic geometric structures
modeled after a hyperquadric. Leaving the precise definitions of holo-
morphic CO(n; C)-structure and quadric structure to § 2, we shall explain
them by the following diagram:

Model space

Affine space Cn

Projective space
Quadric Qn

PnC

Infinitesimal structure

Affine connection
Projective connection
C0{n\ C)-structure

Local structure

Affine structure
Projective structure
Quadric structure

By a quadric Qn we mean a non-singular hyperquadric in Pn+1C; it
is a holomorphic analogue of a sphere. A holomorphic CO{n\ (^-struc-
ture may be considered as a holomorphic conformal connection, and a
quadric structure as a flat holomorphic conformal structure.

In § 2, § 3 and § 4, we shall discuss general results valid for all
dimension. In the subsequent sections we determine all compact complex
surfaces admitting holomorphic CO(2; C)-structures and quadric structures.
The 2-dimensional case is somewhat exceptional as in the case of con-
formal differential geometry. This is because a non-singular quadric Q2

is isomorphic to PXC x Pfi, i.e., reducible. Hence, a holomorphic
CO(2; C)-structure is equivalent (modulo passing to a double covering) to
a splitting of the holomorphic tangent bundle into a direct sum of two
holomorphic line subbundles, which in turn, is equivalent to a pair of
mutually transversal holomorphic foliations of dimension 1. We take a
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full advantage of this special situation to achieve the following classifi-
cation.

The class of compact complex surfaces admitting holomorphic
CO(2;C)-structure consists of the following:

(1) the quadric PXC x P£;
(2) ruled surfaces of the form Δ x p P^C, where Δ is the universal

covering space of an algebraic curve Δ and p is a homomorphism of
πλ(Δ) into Aut {Pfi) = PGL(1), in other words, flat holomorphic fibre
bundles over Δ with fibre Pfi;

(3 ) bielliptic (or hyper elliptic) surfaces;
(4) complex tori;
(5) minimal elliptic surfaces with c2 = 0 and even first Betti

number;
(6) surfaces with universal covering space D x D (bidisk);
(7) Hopf surfaces (C2 — 0)//\ where Γ consists of linear transfor-

mations of the form

a 0\ /0 b

0 d) 0T \c 0

(8) Inoue surfaces Sσ associated with UeSLφ Z);
These surfaces admit not only holomorphic CO(2; C)-structures but

also quadric structures.

2. Holomorphic CO(n; C)-structures. Let M be an ^-dimensional
complex manifold. Let

(2.1) CO(n; C) = {cU; Ue O(n; C) and

where O(n; C) = {Ue GL(n; C); <UU= 1}. Let L(M) be the bundle of complex
linear frames over M; it is a holomorphic principal bundle with structure
group GL(n; C). A holomorphic principal subbundle P of L(M) with
structure group CO(n; C) is called a holomorphic CO(n; C)structure on M.

Given a holomorphic CO(n; C)-structure P on M, we can cover M by
small open sets Ua with local coordinate system z\, , zl and find a
holomorphic non-degenerate symmetric covariant tensor field

(2.2) ga = Σ Qaiό dzίdzi , det (gaiJ) Φ 0 ,

on each Ua in such a way that

(2.3) gβ = fβaga on UaΓiUβ,

where fβa is a holomorphic function on Ua Π Uβ (without zeros).
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Conversely, given {Ua, ga} satisfying the conditions above, we obtain
a holomorphic conformal structure P on M. Two such {Uaf ga} and {U'λ, g\]
correspond to the same structure P if and only if g\ = hXaga on Ua Π Uχ9

where hλa is a function holomorphic on Ua Π U'λ.
From (2.3) we obtain

(2.4) det {gM)(dz\ Λ Λ dzff = fβ

n

a det (gaiά)(dz\ Λ Λ dzlf .

If we denote the canonical line bundle of M by K and the line bundle
with transition functions {fβa} by F, then (2.4) implies

(2.5) Fn = if-2.

As an immediate consequence of (2.5), we have

PROPOSITION (2.6). For a compact complex manifold M of dimension
n to admit a holomorphic CO(n; C)-structure, it is necessary that 2d(Af)
be divisible by n.

Since we shall be working in one coordinate neighborhood Ua9 we
drop the subscript a temporarily in the following calculation. As in the
Riemannian case, to the given g — Σ 0a dzldz5 we associate a holomorphic
affine connection Γ)k in U by

(2.7) Γ% = (1/2) Σ 9ίh(dgJdzk + dgjdz' - dgέjdzk) .

Given a holomorphic CO(n; C)-structure P, g is defined only up to the
multiple of a non-vanishing holomorphic function. If we replace g by
g = fg = Σ fgiS dzιdz\ then the corresponding affine connection Γ*Jk is
related to Γ% by

(2.8) Γ)k = Γ}4 + (l/2)«Jft + (l/2)«ίA - (1/2) Σ ffrtfirΛft ,

where

(2.9) ft = 3(log/)/3s*.

The formula (2.8) is classical in conf ormal differential geometry and can
be verified by a direct calculation. We note that while log/ is defined
modulo 2πim, meZ, its derivatives ρk are well defined. Setting i — j
in (2.8) and summing over i, we obtain

(2.10) Σn = ΣΓUW%.

Eliminate ρk from (2.8) using (2.10) and use the fact that gagjk = gihgjk.
Then we obtain

Σ flrtffi»r»

+ (1/n) Σ r * Λ
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where

(2.12) Γk = Σ>Γh

hk a n d Γk = Σ*Γh

hk.

We denote the left side (and also the right side) of (2.11) by Cjk. Once
the coordinate system z1, , zn is fixed, Cjk depends only on the holo-
morphic CO(n; C)-structure P but not on the particular g.

We shall now study how Cjk changes under coordinate transforma-
tions. First, we note

(2.13) Γk = (1/2) Σ gih(dghi/dzk) = (l/2)(3(log G)/dzk) ,

where G = det (gi3) .

Now, we use two local coordinate systems zι

a, , zn

a and z\, , zn

β,
and we calculate QJk and Cβjk with respect to these coordinate systems.
Since g and fg give rise to the same C\k, we may assume gβ = gaf i.e.,
fβa = 1 for the purpose of calculating Cjk. Then

(2.14) Σ 9«ij dzidzi = Σ 9w Az\dz\

so that

(2.15) Gβ = det (gβti) = Jja det (g)ttii = J*βaGa ,

where

(2.16) Jβa = άet(dzi

a/dzi

β).

From (2.13) and (2.15), we obtain

(2.17) Γβk = Σ Γah(dzh

a/dzk

β) + 3(log Jβa)/dzk

β .

From the definition (2.11) of C)k and (2.17), it follows that

(2.18) Oh, = Σ (dzl/dza

a)CU5zl/dzi)(dzc

a/dzk

β) + Σ (dzydziXd*za

a/dz'dzh)

- (Xln){8)σβak + 8{σβcc5 -

where

(2.19) σ ^ = a(

We consider a non-singular hyperquadric Qn in Pn+1C defined in terms
of the homogeneous coordinate system ζ°, ζ1, , ζn + 1 by the following
equation:

(2.20) -2ζ°ζ»+1 + (ζ1)2 + + (ζ71)2 = 0 .

Let Q be the symmetric matrix of degree n + 2 corresponding to the
quadritic form of (2.20):
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(2.21)

Let G = 0(n + 2; C) be the group of complex matrices A of degree n + 2
such that

(2.22) *AQA = Q .

Its Lie algebra g = o(n + 2; C) consists of complex matrices A of degree
n + 2 satisfying

(2.23) *AQ + QA = 0 .

Then it can be easily verified that g is a graded Lie algebra

(2.24)

where

(2.25)

0

u
0

9 =

0

0

*u

9-i

o\]

°
0/

+ 9o

>

+ 9i »

9o = '

I

'la

°
\o

Qt, 9 ;

0

U

0

0

0

—a

βl =

where u and t; are complex %-vectors, U is a complex skew-symmetric
matrix of degree n and α is a complex number.

The group G acts transitively on the quadric Qn. Let H be the
isotropy subgroup leaving the point p0 = *(1, 0, •• , 0 ) e Q n fixed. Then
H consists of matrices of the form

a,b,ceC, ac = 1 , 'UU = In

v = a*Uw , 2bc = *ww .( a *v b

0 U w\, where

0 0c

Note that a, w, U determine 6, c, v.
To see the action of H on the tangent space at p09 i.e., the linear

isotropy representation of H, we use the inhomogeneous coordinate system
z\ ., z", zn+1 of Pn+1C defined by «« = ζ'/ζ0, i = 1, , Λ + 1. Then the
defining equation (2.20) for the quadric Qn becomes

(2.27) 2zn+1 = (z1)2 + + («")* = ιzz ,

where z denotes the vector \z1

9 •••, zπ). To see how the element of H
given by (2.26) acts on Qn, we calculate

( a *v b\/Ί \ la

0 U

o o c nzn

ιvz + δzn

z + wzn+1
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Hence, the transformation is given by

(2.29) z H-> {Uz + (l/2)Czz)w}{a + ιvz + {Il2)(ιzz)b}-1.

Its differential at p0, i.e., at z = 0, is given by

(2.30) dz\->cUdz.

Thus the linear isotropy representation λ of H is given by

/α *v b \

(2.31) λ : | 0 i7 w\^cU.

Its kernel iV consists of matrices of the form

(2.32) 0 ±7 n v], 6 = ±(l/2)('w) .

It is not hard to see that 9i is the Lie algebra of N and g0 + 9i is the
Lie algebra of H while g0 is the Lie algebra of the subgroup G0<zH
consisting of matrices of the form

(2.33) 0 U 0 , αc = l , *UU = In .

We shall now construct a holomorphic C0(w; C)-structure on the
quadric Qn. Let (e19 , βn) be the frame at ^>0e Qn given by (d/dz1)^, ,
(d/dzn)Po. Let P be the subbundle of the bundle L(Qn) of complex linear
frames of Qn consisting of those frames which are obtained from
(ei, , O by translation by elements of G = O(w + 2; C). Then P is a
principal subbundle of L(QJ with structure group H/N = CO(^; C), (see
(2.1) and (2.31)). Thus we have constructed a natural holomorphic
C0(n; C)-structure on the quadric Qn. The action of G on Qn lifts natu-
rally to the bundle L(Qn), and P is nothing but the G-orbit of the frame
(eu # , O It is then clear that the holomorphic C0(n; C)-structure P
is invariant by G. Moreover G is the largest group of holomorphic
transformations of Qn which leaves P invariant.

The homogeneous space G/N is a principal bundle over G/H with
structure group H/N. It is also clear that this bundle is naturally iso-
morphic to the bundle P.

We shall now construct a holomorphic non-degenerate symmetric
covariant tensor field (2.2) associated to the holomorphic conformal struc-
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ture P. Consider the tensor field

(2.34) / = ~dζ°dζn+1 - dζn+1dζ0 + dζ'dζ1 + + dζndζn

on Cn+2 — {0}. Let s be a local holomorphic section of the bundle Cn+2 — {0}
over Pn+ίC. Although s*/ depends on the section s, its restriction to
Qn is uniquely defined, independently of s, up to a multiplicative factor
of non-vanishing holomorphic function. In fact, let s' = Xs be another
local holomorphic section. Since

(2.35) -d(λζ°)d(λζ»+ 1) - d(Xζn+1)d(Xζ°) +

= X2(-dζ°dζn+1 - dζn+1dζ0 +

+ (xdx)d(~2ζ%n+1 + ΣC'C

we obtain

(2.36) β'*/k = λV/ la-

in the affine space An+1 c Pn+1C defined by ζ° Φ 0, we use the inhomo-

geneous coordinate system zι, , zn+1 given by z* = ζ'/ζ0. Let s be the

cross section An+1 —»Cn+2 — {0} defined by

(2.37) ζ° = 1, ζ1 = «S , ζ»+1 = ̂ n + 1 .

Since Qn Π An+1 is given by the equation (2.27), (z\ , zn) can be taken
as a coordinate system in Qn Π An+1. Then s*/ is given on Qn Π An+1 by

(2.38) dz'dz1 + + dzndzn .

Let M be an w-dimensional complex manifold and P{M) a holomor-
phic CO(n; C)-structure on M. Let P(Qn) be the natural holomorphic
C0(n; C)-structure on the quadric Qn defined above. We say that the
structure P(M) is flat if it is locally isomorphic to P(QJ, i.e., if, for every
point of M, there is a biholomorphic map h of a neighborhood U of that
point into Qn which induces an isomorphism P(M)\ϋ-*P(Qn)\k{U). A flat
C0(n; C)-structure P(M) is called a quadric structure on ilf. It can be
proved that M admits a quadric structure if and only if it is covered
by coordinate charts (Ua, <pa) such that

( i ) ψa maps Ua biholomorphically onto an open subset of Qn,
(ii) for every pair {a, β) with Ua Π UβΦ0f the coordinate change

9V9S1: 9>β(ϋα Π Uβ) -+ φβ(Ua Π ff,)

is given by (the restriction of) an element of G.
We shall now consider the noncompact dual of Qn. In Pn+ίC, consider

the domain B of Qn defined in terms of the homogenous coordinate sys-
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tern η\ •••, ηn+1 by

(2 39) B -
(2.39) B -

Let £ be the projective transformation of Pn+1C defined by

(2.40) tφf: : 9n+rl)

Set D = ί(J5). Then we have

(2.41) D

-2ζ°ζ* + 1 + (ζ1)2 + + (ζ»)2 = 0

— |C° - ζ n + 1 | 2/2 + Iζ 1 ! 2 + ••• + \ζn\2 - |ζ° + ζ n + 1 | 2/2 < Oj

Hence D is a domain in Qn. Actually D is in Qn Π -An+1. With respect
to t h e coordinate (21, , zn) of Qn Π ^4.n+i defined above, D can be identi-
fied wi th t h e bounded domain

Σ(2.42) (21,
k=l

We know Z) is a symmetric bounded domain, called the noncompact dual
of Qn. We write H for the subgroup of O(n+2; C) leaving the domain D
invariant. Then H is the largest group of holomorphic transformations
of the bounded domain D. The natural invariant quadric structure on
Qn constructed above induces a quadric structure on D which is clearly
invariant by the subgroup H. If Γ is a discrete subgroup of H acting
freely on Df then the quotient manifold M = D/Γ carries a natural
quadric structure induced from that of D.

3. Chern classes. Let M be an ^-dimensional complex manifold
with a holomorphic conformal structure {ga}. To calculate its Ghern
classes, we construct a C°° affine connection on M and compute its cur-
vature tensor.

Since d(logfβa) is a 1-cocycle, we can find a C°° form

(3.1) p. = Σy r t«

on each Ua such that

(3.2) d(logfβa) =φβ-φa

or equivalently

(3.3) pβak = φβh—φak.
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We set

(3.4) Γa% = CaU - (δ)φak + δlφaj - Σ ΰajkΰMP .

Then Γa)k defines an affine connection globally on M.
Since we shall work within one coordinate neighborhood in the

remainder of this section, we shall drop the subscript a in the following
calculation. The curvature tensor is given by

(3.5) &iΛB = drydzA - drydzB

Hence, (using the fact that Cjk are holomorphic), we obtain

(3.6) Λ' i Λ - 0 ,

and

(3.7) Λ*iAi = -dΠk!dzh = (δ)φk-h + δiφfh - Σ 9jkg
ίl9ιύl2 .

The curvature form is given by

(3.8) Ω) = Σ Λ'i*3E dzk A dzh +

= -(δfiφ + dφ5 Adz' - Σ 9jk9
ίld<Pι Λ dsfc)/2 + ,

where the dots indicate terms of degree (2, 0). (By (3.6), there is no
terms of degree (0, 2)).

The Chern forms cif i — 1, * 9n9 are given by (see, for example

[10])

(3.9) det (I + (i/^ϊ/2τr)J2) = 1 + c, + + cn .

It is clear from (3.6) that ct involves only forms of degree (i + m, i — m),
m ^ 0 and not those of degree (i + m, i — m) for m < 0. We shall cal-
culate, only the (i, i)-component c ! M ) of ct. We substitute (3.8) into (3.9)
and drop the terms indicated by dots. Then

(3.10) det [(1 - (i/^ϊ/4ττ)39>)δ5 - (V^ϊβπXδίdφj - gjk9
ildφt) A dzk]

= Σ (1 - ( V / ^ ϊ V ^ iΣ
p=0

where

(3.11) Φp = Σ δίι:::ί>(δ$φh - ghklg
hhdφh) A dz* A

Λ {δl$φh - 9Jpkp9
iplpd<Ph) A dzkp .

Given a point of M, we choose a local coordinate system so that giά = δiό

at that point. Then a straightforward calculation shows

[pi (dφ)p if p is even ,
( 3 1 2 ) * ' (0 i ί p is odd.
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If we set

(3.13) h = (Aπi/^ϊy'dφ ,

then (3.10) may be written as follows:

(3.14) 1 + c(1 » + + c(n n) = Σ (1 + h)n-2qh2q .

Since hn+1 = 0, this may be rewritten as follows:

(3.15) 1 + c(1 1} + + c M = (1 + h)n+2/(l + 2h)

In particular,

(3.16) c(1 1} = nh .

Substituting (3.16) back into (3.14) or (3.15), we can express c ( M ) in terms
of c ( M ) . Write

(3.17) Σ (1 + h)*-»h« = l + a,h + a2h
2 + + anh

n ,Σ
9=0

where aί9 •••, an are positive integers. (We can easily see that aλ = n
and an = m + 1, where n = 2w or 2m + 1). Then

(3.18) c ( r ' r ) =α r . f lΓ r (c ( 1 ' 1 ) ) r .

As we have stated above, cr involves only forms of degree (r + m,
r — m), m ̂  0. Hence, both c r — c(r>r) and c[ — (c(1>1))r involve only forms
of degree (r + m,r — m), m > 0. Hence, if Qn_r is a 2(n — r)-form
involving only forms of degree (n — r + k, n — r — k), k ̂  0, then

(3.19) crQn-r = o^Qn_r , c[Qn_ r = (β( M )) rQ.-r .

We have shown

THEOREM (3.20). Let M be an n-dimensional complex manifold with
a holomorphίc CO(n; C)-$tructure and c* e H2i(M, R) its i-th Chern class.
Then for every weighted homogeneous polynomial Qπ_r = Qn-r(cu , cn_r) e
H2n~2r(M9 R) in Chern classes, we have

crQn_r = arn-rdQn_r for r = 1, , n ,

where ar is the positive integer defined by (3.17). // M is moreover
Kahler, then

cr = arn~rd for r = 1, , n .

For surfaces, whether Kahler or not, the only relation we have is

(3.21) 2c2 = c\.

REMARK (3.22). Let D be the noncompact dual of Qn (cf. §2) and
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Γ a discrete subgroup of H acting freely on D. Then we have shown
in § 2, that the quotient manifold M = D/Γ carries the natural quadric
structure (and hence a holomorphic CO(n; C)-structure). In this case
Theorem (3.20) above is known as Hirzebruch's proportionality principle
([5]).

4. Einstein-Kahler manifolds. In this section we shall prove the
following

THEOREM (4.1). Let M be a compact n-dimensional Einstein-Kahler
manifold admitting a holomorphic CO(n; C)-structure. Then M is either
a hyperquadric, or flat, or covered by the noncompact dual of a hyper-
quadric as described in § 2 according as the Ricci tensor is positive, 0
or negative.

Let a holomorphic CO(n; C)-structure is given by {ga} as in (2.2).
Let SkT* denote the symmetric k-th tensor power of the cotangent bundle
T* = T*M. Let F be the line bundle defined by {faβ}, (see (2.3)). Then
{ga} may be considered as a holomorphic section of jP(g)S2Γ*. We shall
denote this section by g. Then gn = g ® ® g is a section of Fn (g)
(S2T*)Θn. By symmetrizing gn we obtain a section g{n) of Fn(g)S2nT*.
Since Fn = K"2 by (2.5) (where K is the canonical line bundle of M)f

g{n) is a section of i£~2(g) S2wT*. In particular, g{n) is a holomorphic tensor
field of covariant degree 2n and contravariant degree 2n. On a compact
Einstein-Kahler manifold such a holomorphic tensor field is parallel (by
Theorem 1 in [9]). We lift this parallel tensor field to the universal
covering manifold M of M and shall show that M is either a hyper-
quadric or its noncompact dual according as the Ricci tensor is positive
or negative. (The Ricci flat case will be considered separately).

We shall wite K~2(g)S2nT* for 2Γ"2® S2nT*(M) and denote the lift
of g{n) to M by the same symbol g{n). Let M = Mx x x Mr be the
de Rham decomposition of M into Kahler manifolds Mίf , Mr with
irreducible holonomy group. (Since the Ricci tensor is definite, there is
no Euclidean factor in the decomposion and the Ricci tensors of Mlf , Mr

are either all positive or negative definite.) If we write Tf = T*Mi and
denote the canonical line bundle of Mt by Ki9 then under a natural
identification we have

where the summation is taken over all partitions 2w = mj + + m r.
We shall now restrict (4.2) to one point of M. Thus we regard (4.2) as
an isomorphism between the fibres of the two bundles at one point. We
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consider gln) as an element of that particular fibre which is invariant by
the holonomy group rather than a parallel section of the tensor bundle.

Let Φ,ΦU '",Φr be the holonomy groups of M, Mu ---,Mr. Then
Φ = Φιx x Φr in a natural manner. If we denote in (4.2) the sub-
spaces consisting of elements invariant by these holonomy groups by the
superscript (•••)'> then we obtain

(4.3) (K~2 <g) S2nT*)τ = Σ CKf2 <8> SmiTfY (x) <g) CKr"2 (x) S^Γ*) ' .

We claim that (Kf2 (x) SmtT*y — 0 unless M* is a symmetric space. In
fact, (by the argument in [9]),

LEMMA (4.4). If M is a Kdhler manifold with irreducible holonomy,
then

(Kq <g> SmT*)r = 0 /or all q and m > 0

unless M is a symmetric space.

Since (4.4) is not stated exactly in this form in [9], we shall sketch
its proof. Since M is not symmetric and has nonzero Ricci tensor, its
holonomy group is either U{ri) or Sp(n/2) x Z7(l) by Berger's holonomy
theorem. But these groups act irreducibly on Kq®SmT*.

Now we claim that Ml9 , Mr are all symmetric. Since g = {ga} is
non-degenerate, the element g{n) of the left hand side of (4.3) involves
all factors Ml9 - >,Mr. If one of them, say M19 is not symmetric, then
there would be no terms involving (Kr2 ® SmiT?)τ in the right hand side
of (4.3). This is a contradiction.

We shall show now either M— Mlf i.e., M is already irreducible, or
M = Pfi x Pfi or M= DxD, where D denotes the unit disk. By (3.20),
the ratio between all Chern numbers of M with a holomorphic CO(n; C)-
structure depends only on the dimension n and does not depend on a
particular M. This ratio can be determined, for example, from the
hyperquadric. In particular, the ^-dimensional hyperquadric has

in + 1 if n is odd
arithmetic genus = 1 , cn = ]

[n + 2 if n is even .

We consider first the case where the Ricci tensor is positive so that
M itself is simply connected. In this case, the arithmetic genus of M
is 1 and hence the Euler number cn is n + 1 or n + 2. If we denote
the complex dimension of Mt by nt, then its Euler number is at least
n{ + 1 since Mt is of compact type. Hence n + 2 ^ (nx + 1) (nr + 1),
where n = nt + + nr. But this is possible only when r = 1 or r = 2
with nx = n2 = 1. When the Ricci tensor is negative we consider the
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compact dual of M and apply Hirzebruch's proportionality principle (cf.
Remark (3.22)). This proves our assertion that either M is irreducible
o r l = PλC x Pfi or M = D x D.

Assume that M is irreducible. Again we consider first the case the
Ricci tensor is positive. Then cn > n + 2 unless M is either the projec-
tive space PnC (in which case cn = n + 1) or the hyperquadric. The
protective space can be eliminated by considering the Chern class c2.
(For the hyperquadric c2 = {(n2 - n + 2)/2n2)cl while c2 = (n/2(n + l))c?
for PnC) The case of negative Ricci tensor can be reduced to the posi-
tive case by the proportionality principle.

We shall now consider the remaining case, i.e., the Ricci flat case.
Since cλ = 0, c2 = 0 by (3.20). But we know that a compact Kahler
manifold with vanishing Ricci tensor and c2 — 0 is flat, (see [7] as well
as [17]). This completes the proof of (4.1).

COROLLARY (4.5). Let M be a compact n-dimensional Kdhler mani-
fold admitting a holomorphic C0(n; C)-structure. If cλ < 0 (i.e., if the
canonical bundle is ample), then the universal covering space of M is
the noncompact dual of the hyperquadric. // cx = 0 in H2(M; R), then
M has a complex torus as a unramifίed covering space.

PROOF. The case cx < 0 follows from the theorem of Aubin [1] and
Yau [20] that such a manifold admits an Einstein-Kahler metric. The
case cx = 0 follows from the theorem of Yau [20] that such a manifold
admits a Ricci flat Kahler metric. q.e.d.

Although a compact Kahler manifold with cx > 0 may not admit an
Einstein-Kahler metric, we can still say something. Since a compact
Kahler manifold with c1 > 0 admits a Kahler metric with positive Ricci
tensor [20], it is simply connected, [8]. The standard argument using
the development (cf. § 4 of [12]) implies the following:

THEOREM (4.6). Let M be an n-dimensional compact Kahler mani-
fold with cx > 0. If it admits a quadric structure, it is biholomorphic
to a nonsingular hyperquadric Qn in Pn+1C.

When n is odd, we can say more.

THEOREM (4.7). Let M be an n-dimensional compact Kdhler mani-
fold with cx > 0. If n is odd and if M admits a holomorphic C0(n; C)-
structure, then M is biholomorphic to a nonsingular hyperquadric Qn in

PROOF. By (2.5), the canonical bundle K satisfies the relationship
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K~2 = Fn, where F is a line bundle. Let a be the characteristic class
of F. Then 2c1 = na (in Hlfl(M: Z)). If ?ι is odd, there is an element
β in H1Λ(M: Z) such that cx = nβ. Since cx is positive, so is β. By the
characterization of a nonsingular hyperquadric given in [11], M is biholo-
morphic to Qn. q.e.d.

It would be natural to raise the question whether a compact Kahler
manifold with cλ > 0 admitting a holomorphic CO(n; C)-structure is biholo-
morphic to Qn. In dimension 2, the condition c1 > 0 implies the rationality
and, as we shall see later, the only rational surface admitting a holo-
morphic C0(n; C)-structure is the quadric Q2 = PXC x Pfi.

5. Compact complex surfaces. Let If be a complex surface with
a holomorphic CO(2; C)-structure {ga}, where ga = Σ ffaijdzidzi in Z7α. At
each point xa e Ϊ7α c Λί, the equation

(5.1) flrβ(JΓ, X ) = 0

defines two lines L'x and L" in the tangent plane TXM. Since we cannot
distinguish L'x and L'J, we may not be able to choose L'x continuously
on M. However, on a double covering space M of M, we can obtain
holomorphic line subbundles U and L" of TM. Thus, a holomorphic
CO(2; C)-structure on Jkf gives rise to a splitting TM = V © L".

Conversely, given a splitting

(5.2) Γikf - U 0 L"

of the tangent bundle into line subbundles U and L", we can obtain a
holomorphic CO(2; C)-structure on M by setting

(5.3) ga(L', U) = firα(L"f L") = 0 , jr.^, e") = 1 ,

where e' and β" are arbitrarily chosen local holomorphic sections spanning
V and L" over Z7α. The structure is independent of the choice of e', e".

Since every 1-dimensional holomorphic distribution is integrable, V
and L" are integrable and define foliations. Hence,

LEMMA (5.4). A splitting TM = U 0 L" on a complex surface M is
equivalent to a pair of mutually transversal 1-dimensίonal holomorphic
foliations on M.

In other words, on such a surfance M we can choose a system of
coordinate charts {Ua; (z],, z2

a)} such that

(5.5) z\ - ftβ{z)) , zl = fU*2

β)

so that d/dZa and d/dzl span V and L", respectively. With respect to
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such a coordinate system, ga is of the following form (see (5.3)):

(5.6) ga = 2gM2d2ίd£.

Without loss of generality we may assume that galz = 1 so that

(5.7) ga = 2dz1

adz2

a.

LEMMA (5.8). Let M be a compact complex surface with a splitting
TM = U © L". // / ' and f" denote the characteristic classes of the line
bundles U and L", then

Cl(M) = / ' + / " , c2(M) = / ' . / " , p = f"2 = 0 .

PROOF. The first two equalities are obvious. The third follows from
the vanishing theorem of Bott for integrable distributions, [3].

We shall now show that a complex surface admitting a holomorphic
CO(2; C)-structure is free of exceptional curves. The following lemma
will be used also in studying Hopf surfaces.

LEMMA (5.9). Given a holomorphic CO(2; C)-structure {ga} on the
punctured unit ball

£ * = {(z\ z2) e C2; 0 < | ^ | 2 + I * Ί 2 < 1 }

in C2, there is a globally defined holomorphic quadratic form g = Σ ffijdzίdzj

on B* such that g — faga on Uaf where fa is a holomorphic function on

PROOF. Let F be the line bundle given by the transition functions
{faβ} defined by ga = faβgβ. By (2.5), F2 = K~2, where K is the canonical
line bundle of B*. Since K on B* is trivial, so is F2. From the simple
connectedness of 5* it follows that F itself is trivial. Hence, faβ = fάVβ,
where fa is an invertible holomorphic function on Ua. Then faga = fβgβ

on Ua Π Uβ, which defines a global form g. q.e.d.

LEMMA (5.10). Let M be a complex surface and M the surface
obtained by blowing up a point, say o, of M. If M admits a holomor-
phic CO(2; C)-structuref so does M.

PROOF. Let p: M-> M be the natural projection and C = p~\o). The
given holomorphic CO(2; C)-structure on M induces a holomorphic CO(2; C)-
structure on M — {o}. Let B be a neighborhood of o in M and B* =
B — {o}. By (5.9), the induced holomorphic CO(2; C)-structure on B* can
be given by a single quadratic form g = Σ giό dzldzu. Since g is holo-
morphic, it extends through o by Hartogs' theorem. Since both det (gtj)
and det (g^Y1 are holomorphic and extend through o, det (giό) remains
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nonzero even at the point o. Hence the extended g is ever where non-
degenerate, q.e.d.

THEOREM (5.11). A complex surface admitting a holomorphic
CO(2; C)-structure is free of exceptional curves of the first kind.

PROOF. Let M and M be as in (5.10). Assume that M admits a
holomorphic CO(2; C)-structure. With the notation in the proof of (5.10),
let g = Σ Qiύ dz*dzj be a form on B defining the induced CO(2; C)-struc-
ture on B c M. The pull-back p*(g) defines the given holomorphic CO(2;C)-
structure on p~\B*) = p~1(B) — C while it degenerates at each point of
C since p collapses C into a single point. This is a contrdiction. q.e.d.

REMARK (5.12). If we assume M to be compact, we can use (3.21)
to obtain (5.11). Since c2(M) = c2(M) + 1 and Cl(M)2 = c^M)2 - 1, (3.21)
cannot hold for both M and M at the same time. This is the argument
used by Gunning [4] for holomorphic affine and projective connections.

Using the splitting TM = U + L" we can strengthen (5.11).

THEOREM (5.13). Let M be a complex surface admitting a CO(2; C)-
structure. Let C be a nonsingular rational curve in M and Nc its
normal line bundle. Let H be the hyperplane line bundle over C (so
that every line bundle over C is of the form Hk, keZ). Then Nc = Hk,
where k ^ 2 or k = 0.

PROOF. Taking a double covering space M of M and lifting C to M
if necessary, we may assume that the CO(2; C)-structure on M gives rise
to a splitting TM = U 0 L". Consider first the case where C is tangent
to U (or L"). Then C is a leaf of the foliation defined by U. The
holonomy of the leaf G is discrete by the general theory. Since C is
simply connected, the holonomy of C is trivial. Hence the normal bundle
Nc is trivial. Assume that C is not tangent to U (nor to L"). Let X
be a holomorphic vector field of C with two isolated zeros. We write
X= X' + X" so that X'eZ/ and X " e L " . Let s be the section of the
normal bundle Nc obtained by projecting X' to JV̂ . Then s is a nontrivial
section with at least two zeros. Hence, Nc = Hk with k ^ 2. q.e.d.

COROLLARY (5.14). A complex surface Mwith a holomorphic CO(2; C)-
structure cannot contain a nonsingular rational curve with self-inter-
section C-C < 0 or CO = 1.

6. Elliptic surfaces. We shall determine the elliptic surfaces ad-
mitting CO(2; C)-structures. Let M be an elliptic surface with a CO(2; C)-
structure. Then it is free of exceptional curves of the first kind and
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hence c\ = 0. Therefore, c2 = 0 by (3.21). Since the Euler number c2 of
M is the sum of the Euler numbers of all singular fibres of M, it follows
that there are no singular fibres except multiple fibres, (see [14]).

LEMMA (6.1). Let Δ be a compact Riemann surface of genus g, and
alf , ar be r distinct points of Δ with multiplicities mlf , mr > 1.
Assume (g, r) Φ (0, 1), (0, 2). Then

(1) There exists a (ramified) covering τz\ Δ —> Δ = Δ/Γ such that
(a) 2 is simply connected and Γ is a group acting properly dis-

continuously on 2;
(b) π: 2 — π~\{at)) -* Δ — {αj is an unramified covering;
(c) π is ramified with ramification index mt — 1 at each point of

(2) There exists a normal subgroup Γo of Γ of finite index such
that

(d) Γo acts freely on 2;
(e) Δo = J/Γo-> Δ is a {ramified) covering satisfying (b) and (c).

PROOF. (1) Set U = Δ — {αj and ϋ-+ U be the universal covering
with covering group Γ. Then Γ is a group with generators au βu ,
ag, βg, Slf , Sr with one relation

( * ) a&aΓ'βΓ1 - a.β.aj'βjΉi Sr = 1 .

Let Γ be the group with the same set of generators and additional
relations

(**) sr = ••• =s?r = l .

Let JV be the kernel of the natural homomorphism Γ —> Γ; it is the normal
subgroup of Γ generated by Srι, , iSΓr. Let J be the Riemann surface
obtained from ϋ/N by filling r points corresponding to au , αr. Then
2 satisfies (a), (b) and (c). (We note that if (g, r) Φ (0,1), (0, 2) then U
is biholomorphic to the upper half-plane and the action of Γ on ϋ/N
extends to the compactification 2 by Picard's theorem).

(2) Given a group Γ with generators alt βlf , agf βgf Sl9 , Sr

and relations (*) and (**), the theorem of Bundgaard-Nielsen [22] and
Fox [24] conjectured by Fenchel [23] states that there exists a normal
subgroup Γo c Γ of finite index with no torsion (i.e., with no elements of
finite order). Since Γ acts properly discontinuously on 2, the torsion-
free subgroup Γo acts freely on 2. q.e.d.

LEMMA (6.2). If M-+ Δ is a holomorphic fibre bundle over a simply
connected Δ with an elliptic curve as fibre, then it is a principal bundle
with group T.
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PROOF. Let A be the group of holomorphic transformations of T.
The translations of T form a normal subgroup, denoted also by T, such
that A/T is finite. Since the base manifold Δ is simply connected, the
structure group A of the bundle M reduces to its identity component
T. Hence, M is a principal T-bundle. q.e.d.

LEMMA (6.3). Let Φ: M-* A be an elliptic surface, free of exceptional
curve of the first kind, with multiple singular fibres of multiplicities
ml9 , mr at al9 , ar e Δ and no other singular fibres. Assume that
c2(M) = 0 and exclude the case Δ = Pfi and r = 1 or 2. Then there
exists an elliptic surface Φ:M-+Δ with a commutative diagram

such that
(1) π: 2 -* Δ = Δ/Γ is a (ramified) simply connected covering as

described in (6.1);
(2) Φ: M-* 2 is a principal T-bundle;
(3) p:M-+M is an unramified normal covering with covering

group Γ, and the group Γ acts on M as bundle automorphisms (but not
necessarily as principal bundle automorphisms which commute with the
action of T);

(4) There exists a normal subgroup Γ cΓ of finite index acting
on 2 freely and on M as principal bundle automorphisms. (Set M =
M/f and Δ — Δ/f. Then Φ: M —» Δ is a holomorphic principal T-bundle
over a compact Riemann surface Δ).

PROOF. We construct π: 2 —> Δ as in (6.1). We consider the pull-back
Mr = π*M and the commutative diagram:

Φ'\ \φ

2 — Δ

Then M' has no singularities outside the curves obtained by pulling back
the singular fibres Φ'^α^. Each of these curves Φ~ι(a^) x biλ, (biλ e π~\ai)),
is a multiple curve of multiplicity mt. In fact in a neighborhood of each
point of Φ~1(aι) x ba, Mr is composed of mi non-singular sheets passing
through Φ~\a%) x biX. By separating these sheets, we obtain a non-
singular elliptic surface Φ:M-+2 with a commutative diagram:
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M >Λf — M
Φ\ Φ'\ \Φ

The action of Γ on 2 induces an action of Γ on Mr c l x M and then
an action of Γ on M. Let Γo be a normal subgroup of Γ of finite index
as described in (6.1). Then M/Γo-> 2/Γ0 is an elliptic surface over a
compact Riemann surface 2/Γ0 with no singular fibres. It follows that
it is a holomorphic fibre bundle (with a fixed elliptic curve T as fibre).
Hence, M is also a holomorphic fibre bundle over 2 with fibre T. Since
A is simply connected, M is a holomorphic principal Γ-bundle over 2,
(see (6.2)).

If 2 = PXC, then we take as Γ the trivial group consisting of the
identity only. If 2 = C or 2 = i ϊ (upper half-plane), then iίf is a product
bundle iίf = 2 x Γ. Since Aut (T)/T is finite, the subgroup Γ of Γ
consisting of elements which act as principal bundle automorphisms on M
is a normal subgroup of finite index in Γ. Let Γo be as in (6.1), and

set f = r n r0.
LEMMA (6.4). Lei Φ:Jkf—>J be a holomorphic principal bundle over

a compact Riemann surface Δ with structure group T, where T is an
elliptic curve. Let V be a vertical vector field on M defined by the
action of T.

(1) // bi(M) is even, then there exists a holomorphic 1-form
ω e H°(M, Ω1) such that ω(V) = 1, and

dim H°(M, Ωι) - 1 - genus (Δ) = dim H\M, Ω2)

(2) If b,(M) is odd, then

dim H°(M, Ω1) - genus (Δ) = dim H°(M, Ω2) .

PROOF. Let (x, t) be a local coordinate system for the bundle M,
where x is a local coordinate for the base Δ and t is a local coordinate
for the fibre Γ. Let θ = Adx + BdteH°(M, Ω1), where A and B are
holomorphic functions of (x91). Since B = Θ(V) is holomorphic on M, it
is constant. Since θ is closed, A is a function of x only. Hence,
Φ*(H0(4, Ω1)) consists of ΘeH\M,Ωι) with 5 = 0. This implies that
Φ*(H°(Δ, Ω1)) is either equal to H°(M, Ω1) or of codimension 1 in H°(M, Ω1)
so that

Λ1-0 - 1 = dim H°(M, Ω1) - 1 rg genus (zf) ^ dim Jϊ°(ilf, fl1) = hι>«.

Since Φ\M->Δ is a principal Γ-bundle, for every θ = AdxeΦ*H°(Δ, Ω1)
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we have a globally well defined 2-form ω = Adx ΛdteH°(M, Ω2). Con-
versely, every holomorphic 2-form ω = Adx Λdte H°(M, Ω2) comes from
a holomorphic 1-form θ = cvω = Adx e Φ*H°(Δf Ω

1). This establishes an
isomorphism between H°(Δ, Ω1) and H°(M, Ω2) so that

genus {A) = dim H°(M, Ω2) = h2>°.

By Noether ' s formula, 12(1 - h0Λ + h°>2) = c\ + c2 = 0. When bt is

even, h0'1 = h1'0 and h2'0 = h?>2 = hι>° - 1. When \ is odd, λ ι ° = Z^1 - 1

and h2>° = fe0'2 = Λι °. q.e.d.

LEMMA (6.5). Let Φ:M->Λ and Φr:Mf-+Δ' be two elliptic surfaces
such that Mr is a normal unramified covering of M. Then b^M') is
even if and only if bt(M) is even.

PROOF. According to Miyaoka [21], an elliptic surface admits a
Kahler metric if (and only if) its first Betti number bγ is even. If M is
Kahler, clearly Mf is also Kahler. If Mf is Kahler, by averaging its
Kahler metric by the action of the covering group, we obtain a Kahler
metric on M. q.e.d.

LEMMA (6.6). Assume in (6.3) that b2(M) is even. Then

M=Δ x T,

and there is a representation p: Γ —> Aut (T) such that the action of Γ
on M = Δ x T is given by

7(s, t) = (7(z), ρ(Ί)t) for (z,t)eΔ x T and Ύ e Γ .

PROOF. We exclude first the case where Δ — PXC and the number
r of singular (modified) fibres is at most 2. Then we have the following
commutative diagram described in (6.3)

M >M/f >M

Δ > Δ/f > Δ .

We consider the natural representation of the covering group Γ/f of
M/f -> M on H°(M/Γ, Ω1). Since Γ/f is a finite group, the invariant sub-
space Φ*(H°{Δ/Γ, Ω1)) has a complementary invariant subspace W:

H°(M/f, Ω1) = Φ*(jff°(J/f, Ω1)) + W .

Since M/f —> M is a finite unramified normal covering and bλ(M) is even,
b^M/f) is also even by (6.5). Since M/Γ-+Δ/Γ is a principal Γ-bundle
and b^M/Γ) is even, by (6.4) we have dim W = 1. Hence, there is a
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holomorphic 1-form ωeW such that ω(V) — 1 where V is the vertical
vector field on M/f defined by the action of T. Since W is invariant
by Γ/f, we have

(τ*α) = X(σ)ω for σ e Γ/f ,

where X: Γ/f —> C* is a character.
Since G>(F) = 1 and ^fvω : = d £Γα> + rrda> = 0, it follows that ω is a

connection form for the principal T-bundle M/f —> J/Γ. Since α> is
holomorphic and the base space is of complex dimension 1, the curvature
form vanishes, i.e., the connection is flat. Let ώ be the connection form
for the bundle M-+Δ induced by ω. Let (z,t) denote the coordinate
for Δ x T. Then M is isomorphic to the product bundle Δ x T in such
a way that ώ = dt. Let χ: Γ ->C* denote the character induced by
X:Γ/f-+C*. Then

7*ώ = Z(7)ώ for 7 6 Γ or Ί*dt = X{Ί)dt for 7 e Γ .

This implies

7(z, t) = (7(s)f |0(7)ί) for (z,t)eΔ x T , 7 e Γ ,

where p: Γ -* Aut (T) is a representation. q.e.d.

In order to consider the excluded cases (Δ = Pfi and r = 1, 2), we
use the following result of Kodaira [15]. (The definition of logarithmic
transformation is given later).

THEOREM (6.7). An elliptic surface M over a curve Δ with multiple
singular fibres of multiplicity mlf , mr at alf , ar 6 Δ and no other
singular fibres is obtained from a holomorphic bundle S over Δ with an
elliptic fibre T by logarithmic transformations at au •••, α r.

To explain what a logarithmic transformation at at is, we set a = at

and m = mt and take a neighborhood D = {\z\ < 1} in terms of a local
coordinate z such that z(a) = 0. We may further assume that D contains
no other α/s, and that S\D is a product bundle D x T. Let the elliptic
curve T be given by T = C/(l, τ), where (1, τ) denotes the lattice
generated by 1 and τeC with positive imaginary part. We use w as
coordinate in T as well as in C. Fix a complex number β such that [β]
is an element of T of order m. Let g: D x T -> D x Γ b e defined by

g(z, w) = (pz, w + [β]) , where p — e2πi/m .

Then g generates a cyclic group (g) of order m acting freely o n ΰ x T ,
The quotient space (D x T)/(g) is a fibre space over D with projection
Φ induced by Φ(x, w) = zm. We replace S\D by (D x T)/{g), using the
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following identification of Z>* x T with (Z>* x T)/(g)9 where D* = D - {0}.
Let i : ΰ * x T - > ΰ * x Γ b e defined by

Λ(z, w) = (zm, w — (mβ/2πί) log 3) .

Then Λί induces an isomorphism λ: (JD* X T)/(g) -> D* X Γ. This process,
denoted by Ltt(m, /3), is called a logarithmic transformation of S at α.

Suppose now that p: ikf—> A has multiple fibre at aά with multiplicity

m i (j = 1, , r). When J = PXC, Λf can be written as follows (see pp.
685-687 of [15] for the argument as well as for the notation):

M = Lar(mr, βr) Lai(mlt β^P'C x Γ) , (my ^ 2) ,

where Γ = C/(l, r). And b^M) is even if and only if /3i + + βr = 0.
Assume J = PiC, δi(ΛΓ) is even and ilί admits a holomorphic CO(2; C)-
structure. If r = 1, then /3X = 0 and M-^P^C is a fibre bundle, contra-
dicting the assumption that it has multiple fibres. If r — 2, set d =
g.c.d. (ml9 m2) with mx = m[d and m2 = mgcί. Then M has a finite covering
M given by

iίί = La2(m'2, β2d)Lai(m[, /31d)(P1C x Γ) ,

(see the argument given in [15, p. 689, lines 7-15]). Since amγ + bm2 = d
for some integers α, b and since βx + /32 = 0, we have /S^ = αjSA +
6/3^2 = αjSA — bβ2m2 e (1, τ) and /32d = — /2iώ 6 (1, τ). Hence, iίί is a fibre
bundle over Pfi. As we have shown above, the holomorphic connection
form ω given by (6.4) is integrable and, hence M = Pfi x T.

By the argument above and (6.5), we have established the following

THEOREM (6.8). Let Φ:M-*A be an elliptic surface free from excep-
tional curves of the first kind. If c2(M) = 0 and bx{M) is even, then

M=Δ xpT ,

where Δ ( = P1Cf C or the upper half-plane H) is a normal ramified
covering of A with covering group Γ so that (i) A = Δ/Γ, (ii) p: Γ —> Aut (Γ)
is a representation and (iii) Γ acts freely on Δ x T.

COROLLARY (6.9). Let Φ: M-* A be an elliptic surface satisfying the
assumption of (6.8). Then it admits a holomorphic CO(2; C)-structure.

Next, we shall show that if Φ:M->A is an elliptic surface with
bλ(M) odd, then M admits no holomorphic CO(2; C)-structure unless A =
PXC. At the same time, we shall obtain some information on CO(2; C)-
structures of M when bλ(M) is even.

Let Φ:M->A be an elliptic surface free from exceptional curves of
the first kind such that c2{M) = 0. Exclude the case A = PXC. In (6.3)
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we proved that there is an elliptic surface Φ:M—> / with the commu-
tative diagram

M >M

•I ι
Δ > A

where / = Δ/Γ and M = M/Γ in the notation of (6.3). Since M-+M is
an unramified covering, if M admits a holomorphic CO(2; C)-structure so
does M. Since Φ:M-+Δ is a principal T-bundle, we shall assume that
Φ:M-*Δ itself is a principal Γ-bundle.

LEMMA (6.10). Let Φ:M->Δ be a holomophic principal Ί'-bundle.
Then the tangent bundle TM admits a splitting TM = U 0 L" such that
U is the line bundle in the fibre direction and L" is a line bundle
transversal to L' if and only if the first Betti number 6X is even.

PROOF. Let V be the vector field defined by the T-action on M.
Given L", we define a holomorphic 1-form ω on M by ω(L") = 0 and
co(V) = 1. Conversely, given a holomorphic 1-form ω such that ω(V) = 1,
we define L" by ω = 0.

This gives a one-to-one correspondence between the set of L" trans-
versal to U and the set of holomorphic 1-forms ω satisfying ω(V) = 1.
From (6.4) it is clear that such a holomorphic 1-form ω exists if and
only if bλ(M) is even.

Lemma (6.10) does not mean that an elliptic surface M with odd bλ

admits no holomorphic CO(2; C)-structures since there might exist a
splitting TM = V 0 L" where neither 1/ nor L" is in the fibre direc-
tion. To look into this possibility, we prove the following.

LEMMA (6.11). Let M be as in (6.10). Let a and b be the Lie alge-
bras of holomorphic vector fields on M and Δ, respectively. Let t> be the
1-dimensional subalgebra of a generated by the vertical vector field V.
Then we have a natural exact sequence:

0->fc>-*a-*h .

If Ό = α, then for any splitting TM = V 0 L" either V or L" is
vertical.

PROOF. Given a holomorphic vector field X on M9 let ft = exp (tX)
be the 1-parameter group of holomorphic transformations generated by
X. For a small value of ί, each fibre Mu = Φ~\u), ueΔ,is mapped into
a coordinate neighborhood around u in Δ by Φ-ft. Since a holomorphic
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map of a compact complex space into a coordinate neighborhood is con-
stant, it follows that ft is fibre-preserving and induces a transformation
// on A. Let X' be the holomorphic vector field on A such that // =
exp(ίZ'). This defines a natural homomorphism Xeαh- Xr eh. The
kernel of this homomorphism consists of vertical holomorphic vector fields.
Since the vertical holomorphic vector field V never vanishes, every ver-
tical holomorphic vector field is a (function and hence constant) multiple
of V. This establishes the first half of (6.11).

If V is contained in neither lί nor L", the decomposition V = V + V"9

where V is in L" and V" is in L", yields two linearly independent vector
fields V and V", contradicting the assumption that dim α = dim t> = 1. q.e.d.

LEMMA (6.12). Let M be as in (6.10). // the genus of A is at least
2, then for any splitting TM = V 0 L", either V or L" is vertical. If
the genus of A is 1 and if there is a splitting of TM, then there is a
splitting TM = U 0 L" such that V is vertical.

PROOF. If the genus of A is at least 2, then b = 0 in (6.11) and
the result follows from (6.11). Assume that the genus of A is 1.
Given an arbitrary splitting TM = V 0 L", decompose V = V + 7",
where F' is in U and V" is in L". If neither 1/ nor L" is vertical at
some point, V" is not vertical at some point. Let W be the holomorphic
vector field on A induced by V". Then W is nonzero at some point since
V" is not vertical. Since A is a torus, W is nonzero everywhere. Hence,
V" is non-vertical everywhere. Then L" is transversal to the vertical
line bundle everywhere. So we have only to replace V by the vertical
line subbundle of TM. Then we have a desired splitting of TM. q.e.d.

The unramified covering space M = M/Γ of M in (6.3) admits a holo-
morphic CO(2; C)-structure if M does. Since the genus of A/Γ is greater
than or equal to that of A, combining (6.5), (6.10) and (6.12) we obtain

THEOREM (6.13). Let Φ: M—> A be an elliptic surface free from excep-
tional curves of the first kind such that c2(M) = 0 and b^M) is odd. If
the genus of A is positive, then M admits no holomorphic CO(2; C)-
structures.

We shall now consider the case where the genus of A is 0, i.e.,
A =

THEOREM (6.14). Let M be an elliptic surface over A = PλC with odd
first Betti number. If it admits a holomorphic CO(2; C)-structure, then
it must be a Hopf surface.
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PROOF. It suffices to show that M = 'M/Γ in (6.3) is a Hopf surface.
We may therefore assume that Λf-> Δ is a principal T-bundle. We con-
sider first the case r > 2. Let σ, b and Ό be as in (6.11). If dimα = 1,
i.e., Ό = α, then M admits no holomorphic CO(2: C)-structure by (6.10)
and (6.11). Hence, there is a holomorphic vector field Xe α, not contained
in t>. Its projection Xf to the base curve Δ — PλC is a nonzero holomor-
phic vector field. Being a holomorphic vector field on PxCy X

f vanishes
at some point but no more than two points of PXC.

Let ω be a holomorphic 1-form on M. Then ω(X) is constant. Since
ω(V) = 0 by (6.4), <*)(X) vanishes at a point where X is vertical, i.e.,
a point which projects to a zero of Xf. Hence, ω(X) vanishes identically
and ω = 0. This shows that h1*0 = 0. Since b, = 2k1*0 + 1 = 1, M belongs
to Class VΠ0 in Kodaira's classification of surfaces, [15]. (Class VΠ0

consists of minimal surfaces with bx = 1 and Pg = 0).
By integrating X we see that the fibre at a nonzero point of X' is

biholomorphic to all nearby fibres. Since Xf vanishes at no more than
two points of Δ = PxCf M has at most two singular fibres.

An elliptic surface of Class VII0 with at most two singular fibres is
a Hopf surface, i.e., has C2 — {0} as its universal covering space [15]. q.e.d.

In the next section, we shall study Hopf surfaces.

7. Hopf surfaces. Throughout this section we shall denote the
natural coordinate system (z\ z2) in C2 by (z, w) whenever convenient to
do so.

A compact complex surface M is called a Hopf surface if its universal
covering space is biholomorphic to C2 — {0}. A Hopf surface is said to
be primary if its fundamental group is infinite cyclic. Every Hopf sur-
face has a primary Hopf surface as a finite unramified covering. Every
primary Hopf surface M is biholomorphic to a surface of the form
(C2 — (0})/(σ), where (σ) denotes the infinite cyclic group of transfor-
mations genearated by a transformation σ of the form (see [15])

(7.1) σ(z, w) = (az + Xwm, βw)

with

(7.2) a,β,\eC, 0 < \a\ ̂  \β\< 1, (α - /3m)λ = 0 .

We shall determine which Hopf surfaces admit holomorphic CO(2; C)-
structure. Let M be a primary Hopf surface (C2 — {0})/(σ) with a holo-
morphic CO(2; C)-structure. A holomorphic CO(2; C)-structure on M may
be regarded as a σ-invariant holomorphic CO(2; C)-structure on C2 — {0}.
By (5.9), a holomorphic CO(2; C)-structure on C2 — {0} is given by a



612 S. KOBAYASHI AND T. OCHIAI

globally defined quadratic from g = Σ gtidz'dz* on C2 - {0}. Since C2 - {0}
is simply connected we can divide g by a globally defined (det (0iy))1/2

and assume that det (giά) = 1.
We represent g = Σ 0ϋ dz*dzi by a matrix

(7.3)

Since

(7.4)

σ*g is represented

(7.5) ί "
\\mwm

dw,

- 1

) -

fa
\921

' \o

\9li

gj '

mw'

β

gk\

1
'a

\dw)

Xmw

β

where gUQ = ff^CO), ζ = (*, w) = (^, z>).
The holomorphic CO(2; C)-structure on C2 — {0} defined by g is invari-

ant by σ if and only if σ*g = fg, where / is a holomorphic function
without zeros. Comparing the martrices (7.3) and (7.4) and using the
condition det {giβ) = 1, we obtain

(7.6) f2 = (α/3)2

and

(7.7) fgJQ = a2gn{σ{Q) .

Hence,

(7.8) (7u(ζ) = ±(

Iterating this process, we obtain

(7.9) gn(ζ) =

By Hartogs' theorem, gn extends through the origin o. Hence

(7.10) flru(O = Km±(α//8)-flru(^(O) = 0 if \a\<\β\.

We shall first consider the case gn = 0 (which is satisfied if | a \ < \ β \
by (7.10)). Then 1 = det (giS) = -gί2gn and g12 = ± i / : = Ί . Comparing
(7.3) with (7.5), we obtain

(7.11) f=aβ, cxg22 = 2g12k + βgσ

22 ,

where g12 = ± i / ^ ϊ and h = mwm~\ Hence,

(7.12) adgjdz = aβdgσ

22/dz .
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By iterating this process, we obtain

(7.13) dg22(ζ)/dz = β" dg22(σ\ζ))/dz .

Then, as in (7.10), we conclude

(7.14) dgjdz = 0 ,

i.e., g22 is a function of w only.
From (7.11) we obtain

(7.15) admg22/(dw)m = βm+1dmgj(dw)m .

Assume λ Φ 0 so that a — βm. Then

(7.16) dmgj(dw)m = βdmg22/(dw)m .

In the same way as we derived (7.14) from (7.12), we obtain

(7.17) dmgj(dw)m = 0 .

Hence, g22 is a polynomial of degree m — 1 in w, i.e.,

(7.18) 022 = α0 + aλw + + am_xw
m-χ .

Substituting (7.18) into (7.11), we obtain contradiction. We have thus
shown

LEMMA (7.19). If \oc\ < \β\ and λ Φ 0, then there is no σ-invariant
holomorphic CO(2; C)-structures on C2 — {0}.

We shall now consider the case where \a\ < \β\ and λ = 0. We
already know that / = aβ, gn = 0 and gί2 = ± v / ^ : ϊ . Since λ = 0 in
(7.5), the σ-invariance σ*g = fg implies

/ 0 aβgΛ = / 0 fgΛ

\aβg2ί β2g22) \fg21 fgσj '

Hence,

(7.20) 0 2 2 = (β/a)gσ

22.

By differentiating (7.20) with respect to z, we obtain

(7.21) dgjdz = βdg°22/dz.

As in (7.14) we conclude that dgjdz — 0, i.e., g22 is a function of w only.
Let n be a larger integer such that \β\n+1 <\a\. Then from (see (7.15))
dng2J(dw)n = (/3n+1/α) dng22/(dw)n we conclude that g22 is a polynomial of
degree at most n — 1 in w. Substitute that polynomial into (7.20). Then
we see that g22 is a monomial g22 = awk in w if a = βk+1 and 022 = 0 if
there is no such relation between a and β. Hence,
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LEMMA (7.22). If \a\ < \β\ and λ = 0, then there exist σ-invariant
holomorphίc CO(2; C)-structures on C2 — {0}. They are given by

9n = 0 , #i2 = #2i = constant Φ 0 ,

(α monomial of degree k in w if a = βk+1

(0 otherwise .

We shall now consider the case | α | = \β\. By (7.2) we have either

λ = 0 or m = 1. From (7.8) we have

(7.23) Iffiil = Iflfίil .

Hence, \gn\ may be considered as a function on M and is constant by
the maximum principle. Hence, gn itself is constant.

Assume λ = 0. The σ-invariance σ*g = fg implies

(7.24) t „

From (7.6) and (7.24) we obtain \g22\ = \g22\. By the same argument as
above, g22 is constant. Similarly, gι2 is also constant. Thus we have

LEMMA (7.25). If \a\ = \β\ and X = 0, then there exist σ-invariant
holomorphic CO(2; C)-structures on C2 — {0}.

( i ) If a = β, then any non-degenerate constant matrix (gtj) gives
such a structure.

(ii) If a = —β, then {gi3) must be a constant matrix of the form

(9n 0\ ^ /0

(iii) If a Φ ±β, then (gtj) must be a constant matrix of the form
#12\

0/'

These exhaust all σ-invariant holomorphic CO(2; C)-structures on C2 — {0}
when \a\ = \β\, X = 0.

We shall consider the last remaining case where | α | = \β\, m = 1
and λ Φ 0. By (7.2) we have a = β. In this case, the σ-invariance
0*9 — fg is equivalent to

(7.26) P " f9ή = [ι °Ψ: 9°ψ y
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We have shown already that gn is constant. Assume gn Φ 0. Then
/ = a2 from (7.26). Also from (7.26) we obtain

(7.27) gl2 = (X/a)gn + g°12 .

Differentiating (7.27), we obtain

(7.28) dgjdz = adgσ

12/dz , dgjdw = adσ

12/dw .

By the argument we have used several times, these partial derivatives
are zero and g12 is constant. This contradicts (7.27). Hence, gn = 0.

Since 1 = άet(gtj) = — gi2g2ί, we obtain gl2 = g2ί = ± v / : r ϊ . From (7.26)
we obtain / = a2 and

(7.29) g22 = (2X/a)g12 + gσ

22 .

In the same way as we proved that g12 is constant, we can show that
g22 is constant. This contradicts (7.29). Hence,

(7.30) If \a\ = |/31, m —1 and λ Φ 0, ίftew there is no σ-ίnvariant
holomorphic CO(2; C)~structures on C2 — {0}.

We have shown that a primary Hopf surface (C2 — {0})/(σ) admitting
a holomorphic CO(2; C)-structure must satisfy λ = 0, i.e., σ is of the
form

(7.31) σ(z, w) = (az, βw) with 0 < | α | ^ | / 3 | < l .

It is clear that such a primary Hopf surface admits an obvious holomor-
phic CO(2; C)-structure (which is, in fact, a quadric structure and gives
rise to a splitting TM = 1/0 L"). We shall now examine Hopf surfaces
covered by such a primary Hopf surface.

Let M = (C2 — {0})/Γ be a Hopf surface covered by a primary Hopf
surface M = (C2 - {0})/(σ), where σ is of the form (7.31). Then (σ) is a
subgroup of finite index in Γ. Moreover, a suitable power σq of σ is in
the center of Γ, [15].

Let τ be an element of Γ given by

(7.32) τ(z, w) - (f\z, w), f\z, w)) .

If n is a multiple of q, then τ commutes with σn and we have

(7.33) f\anz, βnw) = anf\z, w) , f\anz, βnw) = βψ(z, w) .

By differentiating the first equation with respect to z, we obtain

(7.34) (dfi/dz)(a*z, βnw) = {?fldz)(z, w) .

Letting n —> °°, we see that the right hand side is equal to the constant
, 0). Similarly, df2/dw is also constant. Hence,
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(7.35) f\z, w) = A(w)z + B(w) , f\z, w) = C(z) + D(z)w .

Since τ commutes with σn (where n is a multiple of q), we obtain

A{βnw)anz + B{βnw) = ctnA(w)z + aπB(w) ,
(7 .36)

C{anz) + D{anz)βnw = βnC{z) + βnD{z)w .

From (7.36) we see immediately that both A and D are constant. Ex-
panding B{w) and C(z) into power series and using the condition 0 <
| α | ^ 1/31 < 1> we arrive at the following possibilities:

(7.37) τ(z, w) = {ad, dw) if aq Φ βqk for all integers k > 0 ,

(7.38) τ(z, w) = (az + bw\ dw) if aq = βqk for some integer k ^ 2 ,

(7.39) τ(z, w) = {az + bw, cz + dw) if aq = βq .

In case (7.37), the natural splitting for the tangent bundle of C2 — {0}
given by the coordinate system is invariant by the group Γ.

In case (7.38), we shall show that if b Φ 0, then C2 — {0} admits no
holomorphic CO{2; C)-structures invariant by the element τ. Since (σ)
is a subgroup of finite index in Γ, some power of τ, say τ\ is equal to
σ\ (replacing τ by τ" 1 if necessary we may assume that t is positive
and s is non-negative). Then

(7.40) a1 = a8 , d* = β8 .

Since aq = /39λ: with fc ^ 2 in this case, we have | α | < \β\. Since 6 ^ 0 ,
r* cannot be the identity element and hence s is positive. From (7.40)
we obtain \a\ < \d\. Thus we are almost in the same situation as in
(7.19). The difference here is that we have

(7.41) atq = dtqk

instead of a — βm. Following the computation from (7.3) through (7.14),
we see that if the CO{2; C)-structure is invariant by τ, then gn = 0,
0i2 = 02i = ±V — 1 and g22 is a function of w only. As in (7.15), we
obtain

(7.42) a dkgj{dw)k = dk+1 dkgl2/{dw)k .

From (7.41) and (7.42) we obtain

(7.43) {dkgj{dw)h)qt = dqt{dkgl2/{dw)k)qt .

In the same way as we derived (7.14) from (7.12), we obtain

(7.44) dkgj{dw)k = 0 .

Hence, g22 is a polynomial of degree k — 1 in wf i.e.,
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(7.45) g22 — a0 + axw + + α^w*-1 .

Now, we are in the same situation as in (7.18) and obtain the desired
result that there is no holomorphic CO(2; C)-structures on C2 — {0} invari-
ant by τ.

We have shown that in case (7.38) a holomorphic CO(2; C)-structure
exists on M = {C2 — {0})/Γ if and only if every element τ of Γ is of
the form

(7.46) τ{z, w) = {ad, dw) ,

i.e., 6 = 0.
We consider now case (7.39). Let 7 be the vector field on C2 — {0}

defined by

(7.47) V = zd/dz + wd/dw .

Since it is invariant by any linear transformation of C2, it may be
considered as a vector field on M = (C2 - {0})/{σ) or M = (C2 - {0})/Γ.
Assuming that M admits a holomorphic CO(2; C)-structure, consider the
induced holomorphic CO(2; C)-structure on C2 — {0} invariant by Γ. Since
C2 — {0} is simply connected, this CO{2; C)-structure is given by a split-
ting T{C2 - {0}) = L' © L" of the tangent bundle of C2 - {0}. Then
every element of Γ leaves both 1/ and L" invariant or interchanges
them.

We claim that 7 is neither in U nor in L". Assume that V is in
ZΛ Since σ leaves V invariant, it leaves both 1/ and L" invariant
(instead of interchanging them). Hence we obtain the induced splitting
TM = L' © L" denoted by the same symbols as the splitting T{C2 - {0}) =
Lf © L". On the other hand, M is an elliptic surface over PXC with odd
first Betti number and, by (6.8), does not admit a splitting TM = V 0 L"
such that V is in the fibre direction, i.e., in the direction of V in this
case. This is a contradiction.

Since V is neither in V nor in L", the decomposition

(7.48) V = 7 ' + 7 " , (7 ' e L\ 7 " e L")

yields two nonzero vector fields 7 ' and 7 " on C2 — {0}. Every element
of Γ either leaves both 7 ' and 7 " invariant or interchanges them.

We shall prove next that 7 ' is of the following form:

(7.49) 7 ' = (\z + X2w) d/dz + {μλz + μ2w) d/dw .

We write 7 ' = ξ\z, w) d/dz + ξ\z, w) d/dw. Since σ either leaves 7 ' and
7 " invariant or interchanges them, σ2 leaves 7 ' and 7 " invariant. Let
n = 2q so that <7n leaves 7 ' invariant and an = βn. Then
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(7.50) anξ\z, w) = ξ\anz, βnw) , βnξ\z, w) = ξ\anz, βnw) .

Differentiating (7.50) with respect to z and w, we obtain (using an = βn)

z, w) =

(βξ'/dwXz, w) = (de/dw)(anz, βnw) .

Hence

52) OfV3«)(«, w) (de/dz)(az, βTw) , = 1 2

Letting p-+ oo, we see that the left hand side of (7.52) is constant. It
follows that ξ* is linear in z, w, i.e., F' is of the form (7.49).

We associate to vector fields F, F', V" the following matrices or
linear transformations of C2:

(7.53) V:l \, Vii1 , F" :
\0 1/ \ft ft/ \ - f t 1 - ft

Then a linear transformation of C2 leaves the vector fields V and F "
invariant if and only if it commutes with the corresponding linear trans-
formations given in (7.53). By a linear change of coordinates, we reduce
the matrics in (7.53) into the following canonical forms:

(7.54, F':(;j), V"^-\-_^.

or

/λ 0\ /I — λ 0 \
(7.55) F': ί I , F": with \Φμ.

We note that λ Φ μ since F' is not a scalar multiple of F.
In case (7.54), a linear transformation of C2 leaves V and F " invari-

ant if and only if it is of the form

(7.56) (J

while it interchanges F' and V" if and only if it is of the form

la b\
(7.57) with λ = 1/2 .

\0 -a I

By (7.30), in order for a matrix of the form (7.56) or (7.57) to leave a
holomorphic CO(2; C)-structure on C2 — {0} invariant, it is necessary that
6 = 0. Hence, every element of Γ must be of the form
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( a 0\ fa 0

0 α) « (o _ .
according as it leaves V and V" invariant or interchanges them. It is
clear that, conversely, if every element of Γ is a matrix of the form
(7.58), then the natural CO(2; C)-structure on C2-{0} is invariant by Γ.

In case (7.55), a linear transformation of C2 leaves V and V" invari-
ant if and only if it is of the form

c *
while it interchanges V and V" if and only if it is of the form

/0 b\
(7.60) with λ + μ = 1 .

\c 0/

Hence every element of Γ must be of the form (7.59) or (7.60) according
as it leaves V and V" invariant or it interchanges them. It is clear
that, conversely, if every element of Γ is of the form (7.59) or (7.60),
then the natural CO(2; C)-structure on C2 — {0} is invariant by Γ.

We have established

THEOREM (7.61). A Hopf surface M = (C2 - {0})/Γ admits a holo-
morphic CO(2; C)-structure if and only if every element of Γ is a linear
transformation of the form

b\
) or (

0 d) \e 0
8. Surfaces of Class VII0. Throughout this section we shall denote

the natural coordinate system (z\ z2) in C2 by (z, w) whenever convenient
to do so. A compact complex surface M is said to be in Class VΠ0 if it
is free of exceptional curves of the first kind, bt = 1 and pg = 0. Then
q = 1. (In general, 2q = bx + 1 when δi is odd, [15]). By Noether's
formula,

(8.1) c\ + c2 = 12(1 - ?) = 0 .

Since c2 is the Euler number and &r = 1,

(8.2) c2 = δ2 .

Hence,

LEMMA (8.3). If a surface of Class VII0 satisfies c\ = 2c2, in par-
ticular, if it admits a holomorphic CO(2; C)-structure, then
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The surfaces of Class VΠ0 with 62 = 0 can be classified as follows:
( i ) Hopf surfaces;
(ii) non-Hopf, elliptic surfaces with bx = 1, b2 = 0;
(iii) non-Hopf, non-elliptic surfaces with δx = 1, 62 = 0 and a line

bundle F such that H\M, Ω\F)) Φ 0;
(iv) non-Hopf, non-elliptic surfaces with bx = 1, b2 = 0 such that

H\M, Ω\F))) = 0 for all line bundles F.
Moreover the above classification is invariant under passing to an unrami-
fied covering.

We have already considered Case (i) in § 7 and Case (ii) in § 6.

LEMMA (8.4). A surface of Class VΠ0 satisfying (iv) above admits
no holomorphic CO(2; C)-structures.

PROOF. Assuming that M admits a holomorphic CO(2; C)-structure,
let TM = 2 / 0 L" as in § 5 (taking a double covering if necessary). Then
the cotangent bundle is given by I / " 1 © ! / ' " 1 . Hence,

Ω\L') = ^((L'-1 © I/'"1) <g) L') = ^(1) 0 ^(L"" 1 (g) L') ,

which clearly admits a non-trivial holomorphic section. This contradicts
the last condition in (iv). q.e.d.

We shall now consider Case (iii). According to Inoue [6], a surface
M satisfying (iii) belongs to one of the following three classes:

(a) Surfaces Sσ. Let U — (uiά) 6 &L(3; Z) be a unimodular matrix
with eigenvalues a, βt β such that a > 1, β Φ β. Choose a real eigen-
vector (al9 a2, α8) and an eigenvector (6^ 62, δ8) of U corresponding to a
and β, respectively. Let Gv be the group of holomorphic transformations
of H x C generated by

σ0: (z, w) H> (az, βw) ,

Oi\ (z, w)\-*(z + a*, w + 6t) , i = 1, 2, 3 .

Let M = Su = (H x C)/Gσ. From the construction of If it is clear that
TM admits a splitting TM = 1/ 0 L", where 1/ and L" are spanned by
3/3z and 3/dw, respectively. It is also clear that this CO(2; C)-structure
comes from a quadric structure.

We shall show that M admits no other CO(2; C)-structure. In fact,
let g = ΣQjkdzjdzk define a holomorphic CO(2; C)-structure on M, i.e., a
(zcrinvariant CO(2; C)-structure on H x C so that

(8.1) σfg =ftg, i = 0, 1, 2, 3 ,



HYPERQUADRICS 621

where each f{ is a holomorphic function with no zeros. Because of the
simple connectedness of H x C, we may assume as in § 7 that

(8.2) det (gjk) = 1 .

Then the invariance condition (8.1) is equivalent to

fa 0\/g'J g2\/a 0\ Jgn gΆ\

(8.1)' '° &
(g'd g'A

gT

1

t
(9n

\g*ι

Vβ)

9n\

ΰd '

/o
lull

From these and (8.2) it follows

(8.3) (aβ)2 = (/o)2, 1

From (8.3), we see that \gn\ is invariant by Gσ and hence g12 is a con-
stant function. From (8.1)' it then follows that

(8 1)" α2ffή° = Λ & i , gli=fi9n (i = l , 2 , 3 ) ,

β 2^ 0 = fQg22, ίjr2 = /^ 2 2 (i = 1, 2, 3) .

Differentiating (8.1)" with respect to w, we obtain

° = fod2gjdw2, ( a 2 ί > T ° = fid2gjdw2 (i = 1, 2, 3) .

Hence ((d2gjdw2)dz Λdw)2 is invariant by (?^ and hence is a section of
if2 on M. On the other hand, H°(M; K2) = 0 by Inoue [6]. Hence
d2gjdw2 — 0. Similarly, we have d2g22/dz2 = 0. So put

flTu(«, w) = A(z)w + B(z) , g22(zf w) = C(w)« + JD(w) ,

where A(«), B(z) (resp. C(w), 2?(w)) are holomorphic on H (resp. C).
From (8.1)" we obtain

a2{A{az)βw + B{az)} = /0{A(2i)^ + B{z)} ,

A(β +

Hence,

a2βA(az) = /0(s) ,

- fQB(z) , M ( «

Without loss of generality, we may assume aλ = 1. From (8.1)^ we obtain

A(akz + 2αfc) = (fo/a2β)hA(z + 2) = (/0/α2/3)feA(z) - A(αfc^) for i e Z .

Hence, A{z + 2ak) = A(») for & e Z. This means that A is constant on
the infinite sequence {z + 2αfc}, fc = — 1, —2, , converging to z. Hence,
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A is constant on H. From (8.1)^, we have (a2β - fo)A = 0. If A Φ 0,
then α4/32 = fi = a2β2 and hence α2 = 1, contradicting the assumption
a > 1. We conclude A = 0. From (8.1)B, we have

B(z

and obtain "J3 = constant" in a similar manner. If B Φ 0, then α4 =
/0

2 = a2β2 and hence a2 = β2, contradicting the assumption a > 1 and
α/3/3 = 1. Hence, B — 0. This proves βrn = 0.

Similarly, from (8.1)" we obtain

β2{C(βw)az + D(βw)} = /o{C(^)2; + D{w)} ,

C(w + b,){z + a,) + D(w + δ j = fι{C(w)z + D{w)} ,

and hence

(8.1)^ aβ2C{βw) = f0C(w) ,

(8.1),, C(w + δx)

Without loss of generality, we may assume bx = 0. In the same way as
above, we conclude C = D = 0, i.e., g22 — 0. q.e.d.

(b) Surfaces Sjί1;!,,,,,;*. Let iSΓ = (wifc) € SL(2; Z) be a unimodular matrix
with two real eigenvalues α, 1/α with a > 1. Choose real eigenvectors
(&i, α2)> (δi, δ2) of N corresponding to α and 1/α respectively and fix inte-
gers p, q,r (r Φ 0) and a complex number t. Let (cx, c2) be the solution of

fec2) = (clf c2) *N + (elf e2) + (1/rXb^ - b.aJip, q) ,

where

e< = ( 1 / 2 ) ^ ! ^ ! - 1 ) ^ ^ + (l/2)ni2(ni2 - l)α2δ2 + n^n^b^ .

Let G = Gifjp^rx be the group of holomorphic transformations of HxC,
generated by

σ0: (z, w) ι-> (az, w + t) ,

c*: (2, w) H+ (z + aiy w + biZ + ct) , ί = 1, 2 ,

and define ikf = Sift,,,,., = (HxC)/G.
We shall show that ilί admits no holomorphic CO(2; C)-structures.

Let g = Y^gjkdz5dzk define a holomorphic CO(2; C)-structure on l ί , i.e.,
a G-invariant holomorphic CO(2; C)-structure on H x C so that

(8.4) σfg = f<g , i = 0,1, 2, 3 ,

where each ft is a holomorphic function with no zeros. Because of the
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simple connectedness of H x C, we may assume as in § 7 that

(8.5) άet(gik) = l .

Then the in variance condition (8.4) is equivalent to

la 0\ Igl? gσ

12\ la 0\ / # n gl2\

\0 l]\gll g\lf \0 1/ \# 2 1 #22/

(8.4)' ( Ί ( " " ) ( ) = ,
\0 1/ \flr2ί 022/ \bi 1/

1 J/12 i /» / ** H ί'12 i

021 022/ \021 022/

From these and (8.5) it follows that

(8.6) a2 = fo , 1 = ft t (i = 1, 2) , 1 = /3

2.

We see now easily that (#22 dz A dw)2 is invariant by G and hence is a
section of K2 on M. On the other hand, jff°(ikf; K2) = 0 by Inoue [6].
Hence, #22 = 0. Similarly, the function (g12)

2 is invariant by G and hence
is constant on M. From (8.4)' it then follows that

From (8.4)' we obtain

Differentiating (8.7) with respect to w, we obtain

dgjdw = a dglί/dw , dgjdw =• dglΐ/dw , dgjdw = dgli/dw .

Hence, (dgjdw)(d/dz Ad/dw) is a globally defined holomorphic section of
K~\ But, according to Inoue [6], K~γ has no holomorphic sections.
Hence, dgjdw = 0, i.e., gn is a function of z only. Now differentiating
(8.7) with respect to z, we obtain

dgjdz = a2dg°n/dz , dgjdz = d</n/

It follows that (dgjdz)(d/dz A d/dw)2 is a globally defined holomorphic sec-
tion of K~~2 and hence dgjdz = 0. We have shown that gn is constant.
In particular, g[l = gn. From (8.7) and a > 1, we obtain srn = 0. Since
bt ψ 0 for i = 1 or 2, (8.7) implies #12 = 0. This is a contradiction.

(c) Surfaces S£j,fff,r. Let JSΓ = (%it) 6 GL(2; Z) be a matrix with
detiV= —1 having real eigenvalues α, — 1/α such that α > 1. Choose
real eigenvectors (αx, α2), (δx, ί>2) of iV corresponding to a and — 1/α,
respectively, and we fix integers p, q, r (r Φ 0). Define (clf c2) to be
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the solution of

-(ci, c2) = (clf c2) *N + (el9 e2)(l/r)(61α2 - M ^ p , q) ,

where

et = (lβJttuCw,! - l)α1δ1 + (l/2)w<2(w<2 - l)α2δ2 + n^n^b^ .

Let G = Gk;),,^ be the group of holomorphic transformations of H x C
generated by

σ0: (z, w)\-*(azt —w) ,

σt: (z, w)\-*(z + aif w + btz + c<) ,

σ3: (z, w) h-> (z, w + (X/rXφ^ - Mi))

Define M = S{fX,q,r = (fΓ x C)/G. Since S^, g i r has S^^,^,,..̂  with suitable
plf qλ as its unramified double covering [6] and since the latter has no
CO(2; C)-structures, it follows that the former admits no holomorphic
CO(2; C)-structures.

9. Ruled surfaces. Since we are interested only in surfaces free
from exceptional curves of the first kind, by a ruled surface of genus g,
we mean a holomorphic fibre bundle over a non-singular algebraic curve
Δ of genus g with fibre Pfi and structure group PGL(1; C). Then

(9.1) q = g, pg = 0, c2 = 4(1 - g) , c\ - 8(1 - g) .

LEMMA (9.2). Let M be a ruled surface over a curve Δ of genus g.
If TM = U φ L" is a splitting such that Lr is in the fibre direction,
then M comes from a representation p of π^Δ) into PGL(1;C), i.e.,

M = Δ X

where Δ is the universal covering space of Δ, and L" is the horizontal
subspace of the natural flat connection in the bundle M.

PROOF. Consider L" as the horizontal subspace for a generalized
connection in the bundle M; since L" is transversal to fibres everywhere,
we can define the notion of parallel displacement of a fibre along a curve
on the base Δ. Since L" is an integrable distribution, the parallel dis-
placement depends only on the homotopy class of the curve and maps
the initial fibre holomorphically onto the terminal fibre. Hence, we
obtain the holonomy representation p\πx(Δ)-* PGL(l C). The remainder
of the proof is obvious. q.e.d.

LEMMA (9.3). Let D be a small disk in C and p: D x PXC-> D be
the canonical projection. Then for every splitting TN = 1/0 L", either
Lf or L" is in the fibre direction of p, where we set N = D x PXC.
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PROOF. Let z be the natural coordinate in D so that a = dz is a
holomorphic 1-form on N. For each tangent vector V of N, write
V = V + F", where V e U and F " e ZΛ Define a new holomorphic
1-form a! on N by setting α'(F) = α(F'). Assume neither 1/ nor L" is
vertical at some point we N. Let F be a nonzero vertical vector at w.
Then a'(V) = α(F') = d z ^ F ' ) Φ 0 since p*F' is nonzero. Hence the
restriction of a! onto the fibre p~\p(z)) — PλC is a nonzero holomorphic
1-form. This is a contradiction. q.e.d.

The ruled surfaces of genus 0 can be classified as follows. Let H
and 1 denote, respectively, the hyperplane line bundle and the trivial
line bundle over PXC. For each nonnegative integer n, let Fn = P(Hn 0 1 )
be the ruled surface associated to the vector bundle Hn 0 1 of rank 2.

LEMMA (9.4). Fo = P^C x PXC ΐs ίfee only ruled surface of genus 0
admitting a holomorphic CO(2; C)-structure.

PROOF. We represent a point of Fn by a pair (uQ, Uj)f where uoeHn

and i ^ e l . The bundle FTC has two natural sections s0 and s^ given by

So = K = 0} and s^ = {u0 = 0} .

Let the group C* = C — {0} act on Fn by λ: (u0, uλ) ^ (\uOf uλ) for λeC*.
Let F be the holomorphic vertical vector field induced by this action of
C*. Since C* leaves the section s^ fixed, F vanishes at s^.

Let ΓFn = 1/ 0 L" be a splitting. (Remark Fn is simply connected.)
Assume that neither V nor L" is in the fibre direction at some point
of Fn. Decompose V = V + F", where F ; e V and F " e L". Since F
vanishes at s*,, so do F' and F". On the other hand, as we have seen
in the proof of (6.11), every holomorphic vector field on Fn projects to
a holomorphic vector field on the base space. In particular, V' and F "
project to holomorphic vector fields on the base space. Since they vanish
at the section Soo, their projections must be zero. In other words, F'
and V" are vertical vector fields. This is a contradiction. Hence, either
L' or L" is vertical. Now our assertion follows from (9.2). q.e.d.

THEOREM (9.5). A ruled surface M over a curve Δ of genus g ^ 1
admits a holomorphic CO(2; C)-structure if and only if M = Δ xP Pfi,
where Δ is the universal covering space of Δ and p: π^Δ) —> PGL(1; C) is
a representation, and the CO(2; C)-structure is the natural one arising
from the natural quadric structure on Δ x P^C. The quadric PtC x Pfi
is the only ruled surface of genus 0 admitting a holomorphic CO(2; C)-
structure.
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PROOF. Let p: M-> Δ be the fibration. Take a sufficiently fine cover-
ing Δ = U Ua by small disks Ua so that p~\ Ua) = Da x PXC. By restricting
the CO(2; C)-structure onto P-\Ua), we have the splitting T(M) \ P~ι(Ua) =
L ' φ L " . From Lemma (9.3) we may assume V is in the fibre direction.
From this we see the CO(2; C)-structure on M gives rise to the splitting
TM = V φ L". Then our assertion follows from Lemma (9.2) and Lemma
(9.4). q.e.d.

10. Surfaces with holomorphic CO(2; C)-structures and quadric
structures. Let M be an algebraic surface and ΦmK the pluri-canonical
map associated with the pluri-canonical system \mK\; it is a rational
map of Minto PNC, where N — dim \mK\. The Kodaira dimension κ(M)
of M is the maximum dimension of the image ΦmK{M) for m ^ 1. If
\mK\ — 0 , we set dim ΦmK(M) = — oo. Then the classification theorem
of Enriques may be stated as follows:

THEOREM (10.1). (1) A minimal algebraic surface M with tc(M) =
— oo is either the protective plane P2C or a ruled surface;

(2 ) A minimal algebraic surface M with tc(M) = 0 satisfies AK — 0
or 6K = 0, and it is either a K3 surface (ifq = 0 and pg = 1), an
Enriques surface {if q — 0 and pg = 0), α bielliptic (or hyper elliptic)
surface (if q = 1), or αw Abelian surface (if q = 2);

(3) A minimal algebraic surface M with /c(M) — 1 satisfies c\ = 0
is elliptic.

If /c(M) = 2, then If is called a surface of general type.
By (3.21), the projective plane P2C admits no holomorphic CO(2; C)-

structures. From (9.5) we conclude:

THEOREM (10.2). An algebraic surface M with tc(M) = — oo admits
a holomorphic CO(2; C)-structure if and only if it is one of the following:

(1) A ruled surface over a curve Δ of genus ^ 1 such that
M = Δ xp Pfi, where Δ is the universal covering space of Δ and
p: πγ(Δ) —> PGL(1; C) is a representation. (In this case, the CO(2; C)-
structure is the natural one coming from the natural quadric structure
on 2 x PXC).

(2 ) The quadric Pfi x PXC.

THEOREM (10.3). An algebraic surface M with κ(M) = 0 admits a
holomorphic CO(2; C)-structure if and only if it is one of the following:

(1) A bielliptic (or hyper elliptic) surface.
(2 ) An Abelian surface.
In both casesy it admits a quadric structure.
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PROOF. In this case, c, = 0 in H\M; R). By (3.21) a necessary
condition for the existence of a holomorphic CO(2; C)-structure is c2 = 0.
This eliminates the KS surfaces and the Enriques surfaces (which are
doubly covered by ϋΓ3 surfaces).

A complex torus C2/Γ admits a quadric structure coming from the
natural quadric structure on C2 invariant under the translation.

It is known (see, for example, [19]) that a bielliptic surface can be
expressed as the quotient of an Abelian surface A by the group generated
by an automorphism g of A of the following form: g(z\ z2) — (z1 + 1/m, ζz2),
where ζ is an m-th root of 1 and m — 2, 3, 4, or 6. It is clear that the
natural quadric structure on A induces a quadric structure on the quotient
bielliptic surface. q.e.d.

THEOREM (10.4). An algebraic surface M with κ(M) = 1 admits a
holomorphic CO(2; C)-structure if and only ifcl = 0 (which is equivalent
to minimality for an elliptic surface) and c2 = 0. In this case, it admits
a quadric structure.

PROOF. The first part follows from (3.21), (5.11) and (6.8). The
second half follows from (6.15). q.e.d.

THEOREM (10.5). An algebraic surface M of general type admits a
holomorphic CO(2; C)-structure if and only if its universal covering
space is biholomorphic to the bidisk D x D. In this case, it admits a
quadric structure.

PROOF. According to Kodaira [16], an algebraic surface of general
type M has an ample canonical bundle if and only if it contains no non-
singular rational curve C with self-intersection CC — —1 or —2. Our
assertion now follows from (4.5) and (5.14). q.e.d.

Kodaira [15] classified the compact complex surfaces without excep-
tional curves of the first kind into seven classes Io to VII0. We shall
now examine his classification table to determine the surfaces which
admit holomorphic CO(2; C)-structures and quadric structures.

Class Io. This is the class of minimal algebraic surfaces with pg = 0.
The algebraic case was dealt with in (10.2)-(10.5).

Class Πo. This is the class KZ surfaces. Since c\ — 0 and c2 = 24
for a K2> surface, there is no holomorphic CO(2; C)-structure on a KS
surface by (3.21).

Class IΠ0. This is the class of complex tori. Clearly, every complex
torus admits a natural quadric structure.

Class IV0. This is the class of minimal elliptic surfaces with even
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Betti number, pg > 0 and c\ = 0 (but c, Φ 0 in H\M; Z)). By (6.10), a
surface in this class admits a holomorphic CO(2; C)-structure. By (6.15)
it actually admits a quadric structure.

Class Vo. This is the class of minimal algebraic surfaces with pg > 0
and c\ > 0. The algebraic case was dealt with in (10.2)-(10.5).

Class VI0. This is the class of minimal elliptic surfaces with odd
first Betti number, pg > 0 and c\ = 0. By (6.13) an elliptic surface with
odd first Betti number, fibred over a curve of positive genus, admits no
holomorphic CO(2; C)-structures. By (6.14), an elliptic surface over Pfi
with odd first Betti number cannot admit a holomorphic CO(2; ̂ -struc-
ture unless it is a Hopf surface (which is in Class VΠ0). Hence, no
surface of Class VI0 admits a holomorphic CO(2; C)-structure.

Class VΠ0. This is the class of minimal surfaces with pg = 0 and
δi = 1. In § 6, § 7 and § 8, we have shown that a surface of Class VII0

admitting a holomorphric CO(2; C)-structure is either an Inoue surface
Su in the notation of § 8 or a Hopf surface (C2 — {0})/Γ, where Γ contains
only elements of the form

la 0\ /0 6\

[o d) °r \c 0/

and that such a surface actually admits a quadric structure.
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