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1. Introduction. In our joint paper with Inoue [7], we studied
holomorphic affine connections and affine structures on complex manifolds
and classified all compact complex surfaces admitting such structures.
In [12] we studied holomorphic projective connections and projective
structures and classified all compact complex surfaces admitting such
structures. The one case left open in [12] has been solved recently ([13]).
Both of our papers were partly based on Gunning’s earlier work [4].

In the present paper we shall study holomorphic geometric structures
modeled after a hyperquadric. Leaving the precise definitions of holo-
morphic CO(n; C)-structure and quadric structure to § 2, we shall explain
them by the following diagram:

Model space Infinitesimal structure Local structure
Affine space C* Affine connection Affine structure
Projective space P,C Projective connection Projective structure
Quadric Q. CO(n; C)-structure Quadric structure

By a quadric Q, we mean a non-singular hyperquadric in P,,,C; it
is a holomorphic analogue of a sphere. A holomorphic CO(n; C)-struc-
ture may be considered as a holomorphic conformal connection, and a
quadric structure as a flat holomorphic conformal structure.

In §2, §3 and §4, we shall discuss general results valid for all
dimension. In the subsequent sections we determine all compact complex
surfaces admitting holomorphic CO(2; C)-structures and quadric structures.
The 2-dimensional case is somewhat exceptional as in the case of con-
formal differential geometry. This is because a non-singular quadric Q,
is isomorphic to P,C x P,C, i.e., reducible. Hence, a holomorphic
CO(2; C)-structure is equivalent (modulo passing to a double covering) to
a splitting of the holomorphic tangent bundle into a direct sum of two
holomorphic line subbundles, which in turn, is equivalent to a pair of
mutually transversal holomorphic foliations of dimension 1. We take a
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full advantage of this special situation to achieve the following classifi-
cation.

The class of compact complex surfaces admitting holomorphic
CO(2;C)-structure consists of the following:

(1) the quadric P,C x PC;

(2) ruled surfaces of the form d X o P,C, where 4 is the universal
covering space of an algebraic curve 4 and p 18 a homomorphism of
7w, (4) into Aut (P,C) = PGL(1), in other words, flat holomorphic fibre
bundles over 4 with fibre P.C;

(3) bielliptic (or hyperelliptic) surfaces;

(4) complex tori;

(5) minimal elliptic surfaces with ¢, =0 and even first DBetti
number;

(6) surfaces with universal covering space D X D (bidisk);

(7) Hopf surfaces (C* — 0)/I", where I' consists of limear transfor-

mations of the form
(a 0 (0 b .
0o a) " ¢ o’

(8) Inoue surfaces Sy associated with Ue SL(8; Z);
These surfaces admit mot only holomorphic CO(2; C)-structures but
also quadric structures.

2. Holomorphic CO(n; C)-structures. Let M be an n-dimensional
complex manifold. Let

2.1) CO(n; C) = {cU; UeO(n; C) and ceC*},

where O(n; C)={Ue GL(n;C);'UU=1}. Let L(M) be the bundle of complex
linear frames over M; it is a holomorphic principal bundle with structure
group GL(n;C). A holomorphic principal subbundle P of L(M) with
structure group CO(n; C) is called a holomorphic CO(n; C)-structure on M.
Given a holomorphic CO(n; C)-structure P on M, we can cover M by
small open sets U, with local coordinate system z., ---, 22 and find a
holomorphic non-degenerate symmetric covariant tensor field

2.2) Oy = 2, Oosj A2LAZ5 det (g.:;) = 0,
(2%

on each U, in such a way that

(2.3) 9s = fpude on U,NU;,

where f;, is a holomorphic function on U, N U, (without zeros).
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Conversely, given {U,, g,} satisfying the conditions above, we obtain
a holomorphic conformal structure P on M. Two such {U,, g,} and {Uj}, g3}
correspond to the same structure P if and only if g} = hug,0n U, n U,
where h;, is a function holomorphic on U, N Uj.

From (2.83) we obtain

(2.4 det (gp)(dz A <+ - ANdzp)? = fr det (gai)(dz A -+ Ad22)?.

If we denote the canonical line bundle of M by K and the line bundle
with transition functions {f;,} by F, then (2.4) implies

(2.5) F~= K™,

As an immediate consequence of (2.5), we have

PROPOSITION (2.6). For a compact complex manifold M of dimension
n to admit a holomorphic CO(n; C)-structure, it is necessary that 2¢,(M)
be divisible by n.

Since we shall be working in one coordinate neighborhood U,, we
drop the subsecript a temporarily in the following calculation. As in the

Riemannian case, to the given g = 3 g,; dz'dz’ we associate a holomorphic
affine connection "%, in U by

2.7 i = (1/2) 3 9"(00,,/02" + 09,./02° — 0g,/02") .

Given a holomorphic CO(n; C)-structure P, g is defined only up to the
multiple of a non-vanishing holomorphic function. If we replace g by
g = fg = 3, f9,;dz'dz?, then the corresponding affine connection fj.,, is
related to I'i; by

(2.8) Iy, = I, + (1/2)5%0, + (1/2)050; — (1/2) 3 9904 »
where
(2.9) 0, = d(log f)/oz" .

The formula (2.8) is classical in conformal differential geometry and can
be verified by a direct calculation. We note that while log f is defined
modulo 27im, m € Z, its derivatives p, are well defined. Setting 7 =j
in (2.8) and summing over i, we obtain
(2.10) > f‘ik =Tl + (n/2)p; .
Eliminate o, from (2.8) using (2.10) and use the fact that §*g; = 99
Then we obtain
(2.11) 4 — A/m)oir, — Um)oil; + (L/n) 35 9™ gul's

= [ — An)3il, — Um)dils + (1m) . §7Gul's
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where
(2.12) =3It and [,=3T11.

We denote the left side (and also the right side) of (2.11) by Ci. Once
the coordinate system z', ..., 2" is fixed, C;, depends only on the holo-
morphic CO(n; C)-structure P but not on the particular g.

We shall now study how C!, changes under coordinate transforma-
tions. First, we note

(2.18) Iy = (1/2) X2 9™(094:/97") = (1/2)(6(log G)[dz") ,
) where G = det (g;;) .

Now, we use two local coordinate systems =z, ---, 22 and 2}, -, 2},
and we calculate C}; and Cj; with respect to these coordinate systems.
Since g and fg give rise to the same C}, we may assume g; = g,, i.e.,
Jfia =1 for the purpose of calculating Cj. Then

(2.14) S Gai A24d2E = 3 gp; d2id2]

so that

(2.15) G, = det (94:;) = J3. det (9)wi; = J3.Gy »
where

(2.16) Js. = det (02:/023) .

From (2.13) and (2.15), we obtain

@.17) Lo = 3 T(924/025) + 8(log J,.)/o2; .

From the definition (2.11) of C, and (2.17), it follows that

(2.18)  Cju = X, (025/022)C.(022/0725)(0%:/025) + 3. (025/023)(0%25/0270%")
- (l/n)(afiaﬁak + 3;:1:0',50:1' - Z géhgﬁjkaﬂah) ’

where
(2.19) O, = 0(log J o) /075 .

We consider a non-singular hyperquadric @, in P,,,C defined in terms
of the homogeneous coordinate system ¢°, ', ---, ("' by the following
equation:

(2.20) =200 + (@Y 4+ -+ E)=0.

Let @ be the symmetric matrix of degree m + 2 corresponding to the
quadritic form of (2.20):
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00 -1
(2.21) Q= ( 0 I, O) .
-1 0 0

Let G = O(n + 2; C) be the group of complex matrices A of degree n + 2
such that

(2.22) ‘AQA = Q.

Its Lie algebra g = o(n + 2; C) consists of complex matrices A of degree
n + 2 satisfying ‘

(2.23) ‘AQ + QA =0.
Then it can be easily verified that g is a graded Lie algebra
(2.29) §=6.+8%+8, I8 8]1Cgu,
where
0 0 ¢ a 0 0 7 (0 v 0 }
(2.25) g,=1{»w 0 0}, g=4{0U 0}, g =140 0 w»
0w 0 OO—aS 000),

where w and v are complex nm-vectors, U is a complex skew-symmetric
matrix of degree #» and ¢ is a complex number.

The group G acts transitively on the quadric @,. Let H be the
isotropy subgroup leaving the point p, = 1,0, ---,0)€Q, fixed. Then
H consists of matrices of the form

o ' b a,bcecC, ac=1, ‘UU=1I
y 0, C ’ c=1, =4,,
(2.26) 0 U w], where . .
00 o v=a'Uw, 2bc="‘ww.

Note that a, w, U determine b, ¢, ».

To see the action of H on the tangent space at p, i.e., the linear
isotropy representation of H, we use the inhomogeneous coordinate system
2, -+, 2", 2" of P, C defined by 2=/ ¢ =1, ---,n + 1. Then the
defining equation (2.20) for the quadric @, becomes

(2.27) 2" = (@) + -+ (7)) ="22,
where z denotes the vector (2, ---, 2"). To see how the element of H
given by (2.26) acts on @,, we calculate
a ‘v b\/1 a + wz + bzt
(2.28) 0 U w (z ) = Uz + wz"**
0 0 ¢/'z" ezt
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Hence, the transformation is given by

(2.29) z2—{Uz + (1/2)(*zz)wH{a + vz + (1/2)(*zz)b}~* .
Its differential at p,, i.e., at z =0, is given by
(2.30) dz—cUdz .
Thus the linear isotropy representation \ of H is given by
a ' b
(2.31) N (0 U w) —cU.
0 0 ¢
Its kernel N consists of matrices of the form
+1 ) b
(2.32) ( 0 I, v) , b= x£1/2)(w).
0 0 =1

It is not hard to see that g, is the Lie algebra of N and g, + g, is the
Lie algebra of H while g, is the Lie algebra of the subgroup G,Cc H
consisting of matrices of the form

a 0 O
(2.33) <0 U 0) , ac=1, UU=1,.
0 0 ¢

We shall now construct a holomorphic CO(n; C)-structure on the
quadric Q,. Let (e, ---, e,) be the frame at p, € @, given by (3/02"),,, -+,
(0/0z™),,. Let P be the subbundle of the bundle L(Q,) of complex linear
frames of @, consisting of those frames which are obtained from
(e, +--, e,) by translation by elements of G = O(n + 2;C). Then P is a
principal subbundle of L(Q,) with structure group H/N = CO(n;C), (see
(2.1) and (2.381)). Thus we have constructed a natural holomorphic
CO(n; C)-structure on the quadric @,. The action of G on Q, lifts natu-
rally to the bundle L(Q,), and P is nothing but the G-orbit of the frame
(e, ---,e,). It is then clear that the holomorphic CO(n; C)-structure P
is invariant by G. Moreover G is the largest group of holomorphic
transformations of @, which leaves P invariant.

The homogeneous space G/N is a principal bundle over G/H with
structure group H/N. It is also clear that this bundle is naturally iso-
morphic to the bundle P.

We shall now construct a holomorphic non-degenerate symmetric
covariant tensor field (2.2) associated to the holomorphic conformal struc-
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ture P. Consider the tensor field
(2.34) f= —dd{™ — dg*Hdl® + dgdlt + - -+ + dgrdg”

on C*** — {0}. Let s be a local holomorphic section of the bundle C*** — {0}
over P,.,C. Although s*f depends on the section s, its restriction to
@, is uniquely defined, independently of s, up to a multiplicative factor
of non-vanishing holomorphic function. In fact, let s’ = \s be another
local holomorphic section. Since

(2.35)  —dLHAAL) — dALTHANL) + g dALHAMNL)

— NZ(_dCOan+1 —_ an+ldC0 + Z dCdet)
+ (WA (=200 + 2589 + (dhdn)(—28°C + 3,000,

we obtain

(2.36) 8'*f[Qﬂ = NQ(s*fIQ”) .

In the affine space A,.,c P,,,C defined by ¢ # 0, we use the inhomo-
geneous coordinate system z', ---, 2" given by z' = {/{°. Let s be the
cross section A,,, — C"™* — {0} defined by

(2.37) C=10=2 ., " =2,

Since @, N A,,, is given by the equation (2.27), (2!, ---, 2") can be taken
as a coordinate system in @, N A4,,,. Then s*f is given on Q, N 4,,, by

(2.38) dz'dz' + -+ + dz"dz" .

Let M be an n-dimensional complex manifold and P(M) a holomor-
phic CO(n; C)-structure on M. Let P(Q,) be the natural holomorphic
CO(n; C)-structure on the quadric @, defined above. We say that the
structure P(M) is flat if it is locally isomorphic to P(Q,), i.e., if, for every
point of M, there is a biholomorphic map % of a neighborhood U of that
point into Q, which induces an isomorphism P(M)|, — PQ,)|,@x. A flat
CO(n; C)-structure P(M) is called a quadric structure on M. It can be
proved that M admits a quadric structure if and only if it is covered
by coordinate charts (U,, #,) such that

(i) o, maps U, biholomorphically onto an open subset of Q,,

(ii) for every pair (a, 8) with U, N U,# @, the coordinate change

Ppo Pt P (U, N Up) = @p(U, N Up)

is given by (the restriction of) an element of G.
We shall now consider the noncompact dual of Q,. In P,.,C, consider
the domain B of Q, defined in terms of the homogenous coordinate sys-
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tem 7° ..., p*** by
__(7]0)2 + (7]1)2 + c oo +(nn)2_(77n+1)2 — 0
___10012_]_]7]1]2_'__..+]vn|2_|77n+1|2 < 0
Let t be the projective transformation of P,,,C defined by
2.40) e D _
— [(7:7]0 + 7]n+1)/l/2 :771: e :771; : (—’i7]° + 77n+1)/]/2] .
Set D = t(B). Then we have

(2.39) B= {[77"3 ceitle PG

2.41) D= 1{C:---:0*]eP,,C;

=200 + (@) A+ e+ () =0 }
== P2+ (CP + e + =+ M2 <0
Hence D is a domain in @,. Actually D is in @, N A,,,. With respect

to the coordinate (2, ---, 2") of Q, N A,,, defined above, D can be identi-
fied with the bounded domain
1

We know D is a symmetric bounded domain, called the noncompact dual
of @,. We write H for the subgroup of O(n+2; C) leaving the domain D
invariant. Then H is the largest group of holomorphic transformations
of the bounded domain D. The natural invariant quadric structure on
@, constructed above induces a quadric structure on D which is clearly
invariant by the subgroup H. If I' is a discrete subgroup of H acting
freely on D, then the quotient manifold M = D/I" carries a natural
quadric structure induced from that of D.

(2.42) @@, mecs Sler <14 |3 @y

3. Chern classes. Let M be an n-dimensional complex manifold
with a holomorphic conformal structure {g,}. To calculate its Chern
classes, we construct a C~ affine connection on M and compute its cur-
vature tensor.

Since d(log f;.) is a l-cocycle, we can find a C* form

(3'1) ¢a = Z g’ak dzz
on each U, such that
(3.2) d(10g fra) = Ps — P

or equivalently

3.3) Opare = Pp = Pk «
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We set
(3'4) u;.'k = Ca;:'k - (5;¢ak + 6}:?0{1' - Z gaijﬁ@al)/z .
Then I',%. defines an affine connection globally on M.
Since we shall work within one coordinate neighborhood in the

remainder of this section, we shall drop the subscript « in the following
calculation. The curvature tensor is given by

(3.5) R'jup = o@'j5/02" — 05'5,/02° + 3A(I'6ul"5 — I'osl5,)
Hence, (using the fact that C:, are holomorphic), we obtain
(3.6) R =0,

and

3.7 Ry = —0l/02" = 0iPu + 0ipin — X 959" Pu)/2
The curvature form is given by

(3.8) Qi =3 Ry d* NdZH + - - -

= — (050 + op; N dz' — 3. gug"op N dZF)2 + -,
where the dots indicate terms of degree (2,0). (By (3.6), there is no
terms of degree (0, 2)).
The Chern forms ¢, i =1, ---, n, are given by (see, for example

[10])
(8.9) det(I+ 0/ =120)Q2) =1+¢,+ -+ +¢,.

It is clear from (8.6) that ¢; involves only forms of degree (¢ + m, 1 — m),
m = 0 and not those of degree (47 + m, ¢ — m) for m < 0. We shall cal-
culate, only the (4, i)-component ¢** of ¢,, We substitute (3.8) into (3.9)
and drop the terms indicated by dots. Then

(8.10)  det[(1 — (V =1/47)dp)0i — (V' —1/47)(0:0p; — 9:,9"09:) A dz*]
=3 (1 — (V' =1/4n)ag)*(—V =1/4z)(1/p!)®, ,
p=0
where
@B.11) 0, = 3000009, — 0;4,0"0P) NdZN -+
A (352095, — 9i,1,9'770P1,) \ dz*s .

Given a point of M, we choose a local coordinate system so that g,; = d,;
at that point. Then a straightforward calculation shows

p! @Gp)? if p is even,
8.12) 2 = 0 if p is odd.
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If we set

(3.13) h = (4m/ —=1)"9p ,

then (3.10) may be written as follows:

(3.14) 14" 4+ oo ™ = os%n 1 + h)~"*h*.
Since A" = 0, this may be rewritten as follows:

(3.15) 1+ce™ 4 «oo ¢ =1 + k)" + 2h)
In particular,

(3.16) ¢ =mnh .

Substituting (3.16) back into (8.14) or (3.15), we can express ¢*? in terms
of ¢V, Write

(3.17) S+ )R =1+ ah + @b + o-e + b,
q=0
where a,, -+, a, are positive integers. (We can easily see that a, =n
and a, = m + 1, where n = 2m or 2m + 1). Then
(3.18) c(r,f) — ar.n—r(c(l,l))'r .
As we have stated above, ¢, involves only forms of degree (» + m,
r —m), m = 0. Hence, both ¢, — ¢ and ¢! — (¢™")" involve only forms

of degree (r +m,r —m), m > 0. Hence, if Q,_, is a 2(n — r)-form
involving only forms of degree (n —» + k, n — r — k), k = 0, then

(3.19) ¢,Q,, =¢""Q,_,, Q. = (¢")Q,_, .
We have shown

THEOREM (3.20). Let M be an n-dimensional complex manifold with
a holomorphic CO(n; C)-structure and c,€ H*(M, R) its i-th Chern class.
Then for every weighted homogeneous polynomial Q,_, = Q,_.(¢,, -+, €,_,) €
H>™*(M, R) in Chern classes, we have

chn—r = arn—_rchn—r fO')’ r= 19 e, M,

where a, 8 the positive integer defined by (3.17). If M 1is moreover
Kahler, then

c.=amn"cf for r=1,.---,m.
For surfaces, whether Kahler or not, the only relation we have is
(3.21) 2¢, =ci.
REMARK (3.22). Let D be the noncompact dual of @, (cf. §2) and
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I' a discrete subgroup of H acting freely on D. Then we have shown
in §2, that the quotient manifold M = D/I" carries the natural quadric
structure (and hence a holomorphic CO(n; C)-structure). In this case
Theorem (8.20) above is known as Hirzebruch’s proportionality principle

([5D.

4. Einstein-Kahler manifolds. In this section we shall prove the
following

THEOREM (4.1). Let M be a compact n-dimensional Einstein-Kahler
manifold admitting a holomorphic CO(n; C)-structure. Then M is either
o hyperquadric, or flat, or covered by the moncompact dual of a hyper-
quadric as described in §2 according as the Ricci tensor is positive, 0
or mnegative.

Let a holomorphic CO(n; C)-structure is given by {g.} as in (2.2).
Let S*T* denote the symmetric k-th tensor power of the cotangent bundle
T* = T*M. Let F be the line bundle defined by {f,,}, (see (2.3)). Then
{9.} may be considered as a holomorphic section of F® S*T*. We shall
denote this section by g. Then g"=9gQ® -+ Qg is a section of F* R
(S*T*)®", By symmetrizing g we obtain a section g™ of F" S*T*.
Since F" = K~* by (2.5) (where K is the canonical line bundle of M),
g™ is a section of K*® S*T*. In particular, g is a holomorphic tensor
field of covariant degree 2n and contravariant degree 2n. On a compact
Einstein-Kahler manifold such a holomorphic tensor field is parallel (by
Theorem 1 in [9]). We lift this parallel tensor field to the universal
covering manifold I of M and shall show that I is either a hyper-
quadric or its noncompact dual according as the Ricei tensor is positive
or negative. (The Ricei flat case will be considered separately).

We shall wite K> ® S*T* for K—*@® S*T*(M) and denote the lift
of g™ to M by the same symbol g™. Let M = M, x --- X M, be the
de Rham decomposition of I into Kahler manifolds M, ---, M, with
irreducible holonomy group. (Since the Ricci tensor is definite, there is
no Euclidean factor in the decomposion and the Ricei tensors of M,, ---, M,
are either all positive or negative definite.) If we write T} = T*M, and
denote the canonical line bundle of M; by K,, then under a natural
identification we have

42 EK?*Q@S"T*"=3E *QS"THQQ - Q&K QST ,

where the summation is taken over all parEitions 2n=m, + -+ +m,.
We shall now restrict (4.2) to one point of M. Thus we regard (4.2) as
an isomorphism between the fibres of the two bundles at one point. We
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consider g™ as an element of that particular fibre which is invariant by
the holonomy group rather than a parallel section of the tensor bundle.

Let 0,9, ---, ®, be the holonomy groups of M, M,, ---, M,. Then
®=@, X --- Xx @, in a natural manner. If we denote in (4.2) the sub-
spaces consisting of elements invariant by these holonomy groups by the
superseript (---)’, then we obtain

(4.3) (K*Q8"T*)' = (K QSMTH' Q-+ ® (K2 Q S™T) .
We claim that (K;*® S™T})" = 0 unless M, is a symmetric space. In
fact, (by the argument in [9]),
LemMMA (4.4). If M is a Kahler manifold with irreducible holonomy,
then
(K*QS™"T*) =0 for all ¢ and m >0

unless M is a symmetric space.

Since (4.4) is not stated exactly in this form in [9], we shall sketch
its proof. Since M is not symmetric and has nonzero Ricei tensor, its
holonomy group is either U(n) or Sp(n/2) x U(l) by Berger’s holonomy
theorem. But these groups act irreducibly on K& S™T*.

Now we claim that M, ---, M, are all symmetric. Since g = {g,} is
non-degenerate, the element g™ of the left hand side of (4.3) involves
all factors M, ---, M,. If one of them, say M, is not symmetric, then

there would be no terms involving (K;*® S™T*) in the right hand side
of (4.3). This is a contradiction.

We shall show now either M = M,, i.e., M is already irreducible, or
M = PCx PC or il =D x D, where D denotes the unit disk. By (3.20),
the ratio between all Chern numbers of M with a holomorphic CO(n; C)-
structure depends only on the dimension » and does not depend on a
particular M. This ratio can be determined, for example, from the
hyperquadric. In particular, the n-dimensional hyperquadric has

. . n+1 if n is odd
arithmetic genus =1, ¢, = . ]

n+2 if n is even.

We consider first the case where the Ricci tensor is positive so that

M itself is simply connected. In this case, the arithmetic genus of M
is 1 and hence the Euler number ¢, is #n + 1 or » + 2. If we denote
the complex dimension of M; by =, then its Euler number is at least
n; + 1 since M, is of compact type. Hence n +2=(m, +1)--- (n, + 1),
where n =n, + -+ + n,. But this is possible only when » = lor+ =2
with n, = n», = 1. When the Ricei tensor is negative we consider the
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compact dual of M and apply Hirzebruch’s proportionality principle (cf.
Remark (3.22)). This proves our assertion that either M is irreducible
or M =PC x PC or M=D x D.

Assume that M is irreducible. Again we consider first the case the
Ricei tensor is positive. Then ¢, > n + 2 unless M is either the projec-
tive space P,C (in which case ¢, = % + 1) or the hyperquadric. The
projective space can be eliminated by considering the Chern class c,.
(For the hyperquadric ¢, = ((n* — n + 2)/2n*c¢? while ¢, = (n/2(n + 1))c?
for P,C.) The case of negative Ricei tensor can be reduced to the posi-
tive case by the proportionality principle.

We shall now consider the remaining case, i.e., the Ricei flat case.
Since ¢, =0, ¢, =0 by (3.20). But we know that a compact Kahler
manifold with vanishing Ricei tensor and ¢, = 0 is flat, (see [7] as well
as [17]). This completes the proof of (4.1).

COROLLARY (4.5). Let M be a compact n-dimensional Kdahler mani-
fold admitting a holomorphic CO(n; C)-structure. If ¢, <0 (i.e., 1if the
canonical bundle is ample), then the wuniversal covering space of M is
the moncompact dual of the hyperquadric. If ¢, =0 in H*(M; R), then
M has a complex torus as a unramified covering space.

PrOOF. The case ¢, < 0 follows from the theorem of Aubin [1] and
Yau [20] that such a manifold admits an Einstein-Kdhler metric. The
case ¢, = 0 follows from the theorem of Yau [20] that such a manifold
admits a Ricei flat Kahler metric. q.e.d.

Although a compact Kdhler manifold with ¢, > 0 may not admit an
Einstein-Kdhler metric, we can still say something. Since a compact
Kahler manifold with ¢, > 0 admits a Kahler metric with positive Ricei
tensor [20], it is simply connected, [8]. The standard argument using
the development (cf. §4 of [12]) implies the following:

THEOREM (4.6). Let M be an m-dimensional compact Kdahler mani-
fold with ¢, > 0. If it admits a quadric structure, it is bitholomorphic
to a nonsingular hyperquadric Q, in P, ,C.

When 7 is odd, we can say more.

THEOREM (4.7). Let M be an n-dimensional compact Kahler mani-
fold with ¢,>0. If m is odd and if M admits a holomorphic CO(n; C)-
structure, then M is biholomorphic to a monsingular hyperquadric Q, in
Pn+1C'

Proor. By (2.5), the canonical bundle K satisfies the relationship
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K= F", where F is a line bundle. Let a be the characteristic class
of F. Then 2¢, = na (in H**(M: Z)). If n is odd, there is an element
B in H“\(M: Z) such that ¢, = nQ. Since ¢, is positive, so is 3. By the
characterization of a nonsingular hyperquadric given in [11], M is biholo-
morphic to Q,. q.e.d.

It would be natural to raise the question whether a compact Kahler
manifold with ¢, > 0 admitting a holomorphic CO(n; C)-structure is biholo-
morphic to @". In dimension 2, the condition ¢, > 0 implies the rationality
and, as we shall see later, the only rational surface admitting a holo-
morphic CO(n; C)-structure is the quadric @, = P,C x PC.

5. Compact complex surfaces. Let M be a complex surface with
a holomorphic CO(2; C)-structure {g,}, where g, = 3, 9.;; d2id?} in U,. At
each point z,€ U, C M, the equation

(5.1) 9.X, X) =0

defines two lines L, and L. in the tangent plane T,M. Since we cannot

distinguish L, and L), we may not be able to choose L/ continuously

on M. However, on a double covering space M of M, we can obtain

holomorphic line subbundles L’ and L” of THi. Thus, a holomorphic

CO(2; C)-structure on M gives rise to a splitting T/ = L' @ L".
Conversely, given a splitting

(5.2) TM =L & L"

of the tangent bundle into line subbundles L' and L”, we can obtain a

holomorphic CO(2; C)-structure on M by setting

(53) ga(L': L’) = ga(L"; L") =0 ’ ga(e': 6") =1 ’

where ¢’ and ¢” are arbitrarily chosen local holomorphic sections spanning
L’ and L"” over U,. The structure is independent of the choice of ¢, e".

Since every 1-dimensional holomorphic distribution is integrable, L’
and L"” are integrable and define foliations. Hence,

LEMMA (5.4). A splitting TM = L' P L"” on a complex surface M is
equivalent to a pair of mutually transversal 1-dimensional holomorphic
foliations on M.

In other words, on such a surfance M we can choose a system of
coordinate charts {U,; (2., 22)} such that

(5.5) Ze = fus(®8) »  %a = fap(2h)
so that 9/0z, and 0/02% span L' and L”, respectively. With respect to
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such a coordinate system, g, is of the following form (see (5.3)):

(5.6) 9o = 201, d2,d7, .
Without loss of generality we may assume that g,, = 1 so that
6.7 g, = 2dzLdz% .

LEMMA (5.8). Let M be a compact complex surface with a splitting

TM =L@ L". If ' and f" denote the characteristic classes of the lime
bundles L' and L, then

o) =f"+rf", e@M=f-f", fr=r"=0.

ProorF. The first two equalities are obvious. The third follows from
the vanishing theorem of Bott for integrable distributions, [3].

We shall now show that a complex surface admitting a holomorphic
CO(2; C)-structure is free of exceptional curves. The following lemma
will be used also in studying Hopf surfaces.

LEMMA (5.9). Given a holomorphic CO(2; C)-structure {g.} on the
punctured unit ball

B* = {(z,2)eC*;0 < |2 + |2°] < 1}

in C?, there is a globally defined holomorphic quadratic form g = >, g,;dz'dz

on B* such that g = f.g9, on U,, where f, is a holomorphic funmction on
U.,.

PROOF. Let F' be the line bundle given by the transition functions
{fas} defined by g, = f.s9,. By (2.5), F? = K2, where K is the canonical
line bundle of B*. Since K on B* is trivial, so is F>. From the simple
connectedness of B* it follows that F' itself is trivial. Hence, f.; = fi'fs,
where f, is an invertible holomorphic function on U,. Then f,g9, = f:9:s
on U, N U, which defines a global form g. q.e.d.

LEMMA (5.10). Let M be a complex surface and M the surface
obtained by blowing up @ point, say o, of M. If M admits a holomor-
phic CO2; C)-structure, so does M.

PROOF. Let p: M1 — M be the natural projection and C = p~'(0). The
given holomorphic CO(2; C)-structure on M induces a holomorphic CO(2; C)-
structure on M — {o}. Let B be a neighborhood of o in M and B* =
B — {0}. By (5.9), the induced holomorphic CO(2; C)-structure on B* can
be given by a single quadratic form g = 3| g,;dzdz’. Since g is holo-
morphie, it extends through o by Hartogs’ theorem. Since both det (g,;)
and det (g,;)"* are holomorphic and extend through o, det (g;;) remains



602 S. KOBAYASHI AND T. OCHIAI

nonzero even at the point o. Hence the extended g is everwhere non-
degenerate. q.e.d.

THEOREM (5.11). A complex surface admitting a holomorphic
CO(2; C)-structure is free of exceptional curves of the first kind.

PrROOF. Let M and I be as in (5.10). Assume that 7 admits a
holomorphie CO(2; C)-structure. With the notation in the proof of (5.10),
let g =3 g,;dz'dz’ be a form on B defining the induced CO(2; C)-struc-
tureon BC M. The pull-back p*(g) defines the given holomorphic CO(2;C)-
structure on p7'(B*) = p~'(B) — C while it degenerates at each point of
C since p collapses C into a single point. This is a contrdiction. q.e.d.

REMARK (5.12). If we assume M to be compact, we can use (3.21)
to obtain (5.11). Since ¢,(M) = (M) + 1 and ¢, (M) = ¢,(M)* — 1, (3.21)
cannot hold for both M and I at the same time. This is the argument
used by Gunning [4] for holomorphic affine and projective connections.

Using the splitting TM = L’ + L"” we can strengthen (5.11).

THEOREM (5.13). Let M be a complex surface admitting a CO(2; C)-
structure. Let C be a monsingular rational curve in M and N, its
normal line bundle. Let H be the hyperplane line bundle over C (so
that every line bundle over C is of the form H*, ke Z). Then N, = HF,
where k=2 or k = 0.

PrROOF. Taking a double covering space I of M and lifting C to M
if necessary, we may assume that the CO(2; C)-structure on M gives rise
to a splitting TM = L' @ L”. Consider first the case where C is tangent
to L' (or L”). Then C is a leaf of the foliation defined by L’. The
holonomy of the leaf C is discrete by the general theory. Since C is
simply connected, the holonomy of C is trivial. Hence the normal bundle
N, is trivial. Assume that C is not tangent to L’ (nor to L”). Let X
be a holomorphic vector field of C with two isolated zeros. We write
X=X 4 X" so that X'e L' and X" e L"”. Let s be the section of the
normal bundle N, obtained by projecting X’ to N,. Then s is a nontrivial
section with at least two zeros. Hence, N, = H* with &k = 2. q.e.d.

COROLLARY (5.14). A complex surface M with a holomorphic CO(2; C)-
structure cannot contain a nonsingular rational curve with self-inter-
section C-C <0 or C-C=1.

6. Elliptic surfaces. We shall determine the elliptic surfaces ad-
mitting CO(2; C)-structures. Let M be an elliptic surface with a CO(2; C)-
structure. Then it is free of exceptional curves of the first kind and
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hence ¢ = 0. Therefore, ¢, = 0 by (3.21). Since the Euler number ¢, of
M is the sum of the Euler numbers of all singular fibres of M, it follows
that there are no singular fibres except multiple fibres, (see [14]).

LEMMA (6.1). Let 4 be a compact Riemann surface of genus g, and
a, -+, a, be r distinct points of 4 with multiplicities m,, ---, m, > 1.
Assume (g, r) # (0, 1), (0,2). Then

(1) There exists a (ramified) covering n:4 — 4 = 4T such that

(a) 4 is simply connected and I' is a group acting properly dis-
continuously on 4;

®) w4 — 7 '({a}) — 4 — {a;} is an unramified covering;

(e) = is ramified with ramification index m; — 1 at each point of
Y (a,).

(2) There exists a normal subgroup I'y of I' of finite index such
that

(d) I, acts freely on 4;

() dy=d|I'y— 4 is a (ramified) covering satisfying (b) and (c).

PROOF. (1) Set U= 4 — {a;} and U — U be the universal covering
with covering group I'. Then I' is a group with generators o, 83, * -,
&, By Sy, - -+, S, with one relation

() BBt - B0 6708, - S, =1,

Let I be the group with the same set of generators and additional
relations

(**) S;”l:...:S:‘r-—_—l.

Let N be the kernel of the natural homomorphism I — I'; it is the normal
subgroup of I* generated by S™, ..., S*-. Let 4 be the Riemann surface
obtained from U/N by filling » points corresponding to a,, - -+, a,. Then
J satisfies (a), (b) and (¢). (We note that if (g, 7) = (0, 1), (0, 2) then U
is biholomorphic to the upper half-plane and the action of I' on U/N
extends to the compactification 4 by Picard’s theorem).

(2) Given a group I with generators ay, B, ---, @, B, Sy, -+, S,
and relations (x) and (*x), the theorem of Bundgaard-Nielsen [22] and
Fox [24] conjectured by Fenchel [23] states that there exists a normal
subgroup I',C I" of finite index with no torsion (i.e., with no elements of
finite order). Since I" acts properly discontinuously on 4, the torsion-
free subgroup I, acts freely on 4. q.e.d.

LEMMA (6.2). If M — 4 is a holomorphic fibre bundle over a simply
connected 4 with an elliptic curve as fibre, then it is a principal bundle
with group T.
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ProoF. Let A be the group of holomorphic transformations of T.
The translations of T form a normal subgroup, denoted also by T, such
that A/T is finite. Since the base manifold 4 is simply connected, the
structure group A of the bundle M reduces to its identity component
T. Hence, M is a principal T-bundle. q.e.d.

LEMMA (6.3). Let @: M — 4 be an elliptic surface, free of exceptional
curve of the first kind, with multiple singular fibres of multiplicities
My v+, Mm, at a, +-+,a,€4 and no other singular fibres. Assume that
(M) =0 and exclude the case 4 = PC and r =1 or 2. Then there
exists an elliptic surface @: M — 4 with a commutative diagram

m-um

b o

4 — 4
such that

(1) m:d—4=4|T is a (ramified) simply connected covering as
described in (6.1);

(2) @:M— 4 is a principal T-bundle;

(3) p:M— M is an unramified mormal covering with covering
group I'y, and the group I' acts on M as bundle automorphisms (but not
necessarily as principal bundle automorphisms which commute with the
action of T);

(4) There exists a normal subgroup I’ CI' of finite index acting
on 4 freely and on M as principal bundle automorphisms. (Set M=
M and 4= JJ'. Then &: M — 4 is a holomorphic principal T-bundle
over a compact Riemann surface zf).

PROOF. We construct 7: 4 — 4 as in (6.1). We consider the pull-back
M' = n*M and the commutative diagram:

M u

oo
/Ny

Then M’ has no singularities outside the curves obtained by pulling back
the singular fibres ®~'(a,). Each of these curves @(a,) X by, (b; € 77%(a,)),
is a multiple curve of multiplicity m,. In fact in a neighborhood of each
point of & a,) X b;, M’ is composed of m,; non-singular sheets passing
through &7 '(a;) X b;;. By separating these sheets, we obtain a non-
singular elliptic surface @: i/ — 4 with a commutative diagram:
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M—m M

ol o o

4dI— 4 -5 4
The action of I" on 4 induces an action of I on M'c 4 x M and then
an action of I" on M. Let I', be a normal subgroup of I" of finite index
as described in (6.1). Then M/I'y— 4/I', is an elliptic surface over a
compact Riemann surface 4/I', with no singular fibres. It follows that
it is a holomorphic fibre bundle (with a fixed elliptic curve T as fibre).
Hence, I is also a holomorphic fibre bundle over 4 with fibre T. Since
4 is simply connected, 7 is a holomorphic principal 7T-bundle over 4,
(see (6.2)).

If 4 = P,C, then we take as I" the trivial group consisting of the
identity only. If 4 = C or 4 = H (upper half-plane), then I is a product
bundle M =4 x T. Since Aut(7T)/T is finite, the subgroup I of I
consisting of elements which act as principal bundle automorphisms on M

is a Pormal subgroup of finite index in I'. Let I, be as in (6.1), and
set '=I"nr,.

LEMMA (6.4). Let @: M — 4 be a holomorphic principal dbundle over
a compact Riemann surface 4 with structure group T, where T is an
elliptic curve. Let V be a wvertical wvector field on M defined by the
action of T.

(1) If b(M) 1is even, then there exists a holomorphic 1-form
we H (M, 2") such that o(V) =1, and

dim H°(M, 2') — 1 = genus (4) = dim H°(M, 2%

(2) If b(M) is odd, then

dim H°(M, 2*) = genus (4) = dim H°(M, 2% .

ProOF. Let (x,t) be a local coordinate system for the bundle M,
where 2z is a local coordinate for the base 4 and ¢ is a local coordinate
for the fibre T. Let 6 = Adx + Bdte H°(M, 2'), where A and B are
holomorphic functions of (x, ). Since B = (V) is holomorphic on M, it
is constant. Since 4 is closed, A is a function of z only. Hence,
O*(H°(4, 2%)) consists of 6e¢ H°(M, 2') with B=0. This implies that
O*(H°(4, 2Y) is either equal to H°(M, 2') or of codimension 1 in H°(M, 2"
so that

B — 1 =dim H(M, 2') — 1 < genus (4) < dim H°(M, Q") = h*°.
Since @: M — 4 is a principal T-bundle, for every 6 = Adx e @*H*(4, 2"
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we have a globally well defined 2-form @ = Adx A dte H'(M, 2%). Con-
versely, every holomorphic 2-form @ = Adx A dt € H(M, 2*) comes from
a holomorphic 1-form 8 = ¢,w = Adx € @*H(4, 2*). This establishes an
isomorphism between H°(4, 2*) and H°(M, 2% so that

genus (4) = dim H°(M, 2*) = h*".

By Noether’s formula, 12(1 — A*' + b*%) =¢} + ¢, = 0. When b, is
even, h™ = h** and A** = h%? = h"* — 1. When b, is odd, A'® = %t — 1
and h*° = h%% = h'°, q.e.d.

LEMMA (6.5). Let @: M — 4 and @': M' — 4" be two elliptic surfaces

such that M' is a nmormal unramified covering of M. Then b(M’') is
even if and only if b (M) is even.

PROOF. According to Miyaoka [21], an elliptic surface admits a
Kahler metric if (and only if) its first Betti number b, is even. If Mis
Kahler, clearly M’ is also Kahler. If M’ is Kahler, by averaging its
Kahler metric by the action of the covering group, we obtain a Kahler
metric on M. q.e.d.

LEMMA (6.6). Assume in (6.3) that by(M) is even. Then
M=4xT,
and ~tkm’g 18 a representation p: I — Aut(T) such that the action of I'
on M=4 x T is given by
(2, t) = (V(2), o(Mt) for (,t)ed x T and vel .
PROOF. We exclude first the case where 4 = P,C and the number

r of singular (modified) fibres is at most 2. Then we have the following
commutative diagram described in (6.3)

M— M — M
o, o |
We consider the natural representation of the covering group I'/[" of
M| — M on H°(M|[, 2"). Since I'/[" is a finite group, the invariant sub-
space O*(H°(/I", 2")) has a complementary invariant subspace W:
He(M|T, 9 = &*(H T, ) + W .

SinSeAM/f — M is a finite unramified nozmal covering and b,(M) is even,
b(MI') ~isf, also even by (6.5). Since M/I" — 4/ is a principal T-bundle
and b,(M/I") is even, by (6.4) we have dim W = 1. Hence, there is a
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holomorphiec 1-form AweW such that w(V) =1 where V is the vertical
vector field on M|’ defined by the action of T. Since W is invariant
by I'/I', we have

o*w = X(o)w for gerl|l,

where X: I'/I' — C* is a character.

Since (V) =1 and LKw:=d-t,w + ¢,dw = 0, it follows that w is a
connection form for the principal 7T-bundle M/f -4 /f’. Since w is
holomorphic and the base space is of complex dimension 1, the curvature
form vanishes, i.e., the connection is flat. Let & be the connection form
for the bundle M — 4 induced by w. Let (z, t) denote the coordinate
for 4 x T. Then If is isomorphic to the product bundle 4 x T in such
a way that & = dt. Let J:I' — C* denote the character induced by
X: /[ — C*. Then

Y*@® = X(M@d for yeI' or 7v*dt = X(v)dt for veI .
This implies
(2, t) = (Y(2), p(Mt) for (2, t)ed x T, vel,
where p: I’ — Aut (T') is a representation. g.e.d.

In order to consider the excluded cases (4 = P,C and » =1, 2), we
use the following result of Kodaira [15]. (The definition of logarithmic
transformation is given later).

THEOREM (6.7). Amn elliptic surface M over a curve 4 with multiple
singular fibres of multiplicity m, ---, m, at a,, -+, a, €4 and no other
singular fibres is obtained from a holomorphic bundle S over 4 with an
elliptic fibre T by logarithmic transformations at a,, -, a,.

To explain what a logarithmic transformation at a, is, we set ¢ = q,
and m = m, and take a neighborhood D = {|z| < 1} in terms of a local
coordinate z such that z(a) = 0. We may further assume that D contains
no other a,’s, and that S|D is a product bundle D x T. Let the elliptic
curve T be given by T = C/(1,7), where (1,7) denotes the lattice
generated by 1 and 7€ C with positive imaginary part. We use w as
coordinate in T as well as in C. Fix a complex number @ such that [g]
is an element of T of order m. Let g:D X T — D x T be defined by

g(zy W) = (pz, w + [B]) , Where p — e21r15/m .

Then g generates a cyclic group (¢9) of order m acting freely on D x T.
The quotient space (D x T)/(g9) is a fibre space over D with projection
¢ induced by &(x, w) = 2z". We replace S|D by (D x T)/(g), using the
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following identification of D* x T with (D* x T)/(g), where D* = D — {0}.
Let A4: D* x T — D* x T be defined by

Az, w) = (2™, w — (mB[2n7) log z) .

Then 4 induces an isomorphism \: (D* x T)/(g) — D* x T. This process,
denoted by L,(m, B), is called a logarithmic transformation of S at a.

Suppose now that p: M — 4 has multiple fibre at a; with multiplicity
m; (j=1,---,7). When 4 = PC, M can be written as follows (see pp.
685-687 of [15] for the argument as well as for the notation):

M = L, (m,, B,) - -+ Lg,(m,, B)(P'C x T), (m;=2),

where T = C/(1, 7). And b,(M) is even if and onlyif 8, + --- + 8, = 0.
Assume 4 = P,C, b, (M) is even and M admits a holomorphic CO(2;C)-
structure. If » =1, then B8, =0 and M — P,C is a fibre bundle, contra-
dicting the assumption that it has multiple fibres. If » =2, set d =
g.c.d. (m,, m,) with m, = m;d and m, = m,d. Then M has a finite covering
M given by

M = Le(m;, B.4)L,(mi, BA)(P'C x T),

(see the argument given in [15, p. 689, lines 7-15]). Since am, + dm, = d
for some integers a, b and since B, + 8, =0, we have Bd = aBm, +
bgm, = aBfm, — bBm, e (1, 7) and B.d = —B.de (1, v). Hence, I is a fibre
bundle over P,C. As we have shown above, the holomorphic connection
form @ given by (6.4) is integrable and, hence M = P,C x T.

By the argument above and (6.5), we have established the following

THEOREM (6.8). Let @: M — 4 be an elliptic surface free from excep-
tional curves of the first kind. If ¢,(M) =0 and b,(M) is even, then

M=414x,T,

where 4 (=P,C, C or the upper half-plane H) is a mormal ramified
covering of 4 with covering group I' so that (i) 4 = 4T, (ii) o: I' - Aut (T)
is a representation and (iii) I' acts freely on 4 x T.

COROLLARY (6.9). Let @: M — 4 be an elliptic surface satisfying the
assumption of (6.8). Then it admits a holomorphic CO(2; C)-structure.

Next, we shall show that if @: M — 4 is an elliptic surface with
b,(M) odd, then M admits no holomorphic CO(2; C)-structure unless 4 =
PC. At the same time, we shall obtain some information on CO(2; C)-
structures of M when b,(M) is even.

Let @: M — 4 be an elliptic surface free from exceptional curves of
the first kind such that ¢,(M) = 0. Exclude the case 4 = P,C. In (6.3)
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we proved that there is an elliptic surface &: M — 4 with the commu-
tative diagram

M—M

5 I

4— 4
where 4 = /I and M = /I’ in the notation of (6.3). Since M — M is
an unramified covering, if M admits a holomorphic CO(2; C)-structure so

does M. Since &: M — 4 is a principal T-bundle, we shall assume that
@: M — 4 itself is a principal T-bundle.

LEMMA (6.10). Let @: M — 4 be a holomophic principal T-bundle.
Then the tangent bundle TM admits a splitting TM = L' @ L" such that
L' is the line bundle in the fibre direction and L" is a line bundle
tramsversal to L' if and only if the first Betti number b, is even.

PrRoOOF. Let V be the vector field defined by the T-action on M.
Given L”, we define a holomorphic 1-form @ on M by w(L"”) =0 and
(V) =1. Conversely, given a holomorphic 1-form @ such that (V) =1,
we define L” by @ = 0.

This gives a one-to-one correspondence between the set of L” trans-
versal to L’ and the set of holomorphic 1-forms @ satisfying w(V) = 1.
From (6.4) it is clear that such a holomorphic 1-form ® exists if and
only if b, (M) is even.

Lemma (6.10) does not mean that an elliptic surface M with odd b,
admits no holomorphic CO(2; C)-structures since there might exist a
splitting TM = L’ @ L"” where neither L' nor L” is in the fibre direc-
tion. To look into this possibility, we prove the following.

LEMMA (6.11). Let M be as in (6.10). Let a and b be the Lie alge-
bras of holomorphic vector fields on M and 4, respectively. Let b be the
1-dimensional subalgebra of a generated by the wvertical wector field V.
Then we have a natural exact sequence:

0—-b—a—b.

If v = a, then for any splitting TM = L' @ L" either L' or L" 1is
vertical.

Proor. Given a holomorphic vector field X on M, let f, = exp (tX)
be the 1-parameter group of holomorphic transformations generated by
X. TFor a small value of ¢, each fibre M, = @ *(u), u € 4, is mapped into
a coordinate neighborhood around % in 4 by @-f,. Since a holomorphic
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map of a compact complex space into a coordinate neighborhood is con-
stant, it follows that f, is fibre-preserving and induces a transformation
f/ on 4. Let X’ be the holomorphic vector field on 4 such that f; =
exp (tX’). This defines a natural homomorphism Xear X'eb. The
kernel of this homomorphism consists of vertical holomorphic vector fields.
Since the vertical holomorphic vector field V never vanishes, every ver-
tical holomorphic vector field is a (function and hence constant) multiple
of V. This establishes the first half of (6.11).

If V is contained in neither L’ nor L', the decompositionV = V' + V",
where V' isin L' and V" is in L”, yields two linearly independent vector
fields V' and V", contradicting the assumption that dima = dimb = 1. q.e.d.

LEMMA (6.12). Let M be as in (6.10). If the genus of 4 is at least
2, then for any splitting TM = L' @ L", either L' or L" is vertical. If
the genus of 4 is 1 and if there is a splitting of TM, then there is a
splitting TM = L' @ L" such that L' is vertical.

Proor. If the genus of 4 is at least 2, then b =0 in (6.11) and
the result follows from (6.11). Assume that the genus of 4 is 1.
Given an arbitrary splitting TM = L' P L”, decompose V = V' + V",
where V' is in L' and V” is in L”. If neither L’ nor L” is vertical at
some point, V"' is not vertical at some point. Let W be the holomorphic
vector field on 4 induced by V”. Then W is nonzero at some point since
V" is not vertical. Since 4 is a torus, W is nonzero everywhere. Hence,
V" is non-vertical everywhere. Then L” is transversal to the vertical
line bundle everywhere. So we have only to replace L' by the vertical
line subbundle of TM. Then we have a desired splitting of TM. q.e.d.

The unramified covering space M = M/I" of M in (6.3) admits a holo-
morphic CO(2; C)-structure if M does. Since the genus of 4/I" is greater
than or equal to that of 4, combining (6.5), (6.10) and (6.12) we obtain

THEOREM (6.13). Let @: M — 4 be an elliptic surface free from excep-
tional curves of the first kind such that c,(M) = 0 and b,(M) is odd. If
the genus of 4 1is positive, then M admits no holomorphic CO(2;C)-
structures.

We shall now consider the case where the genus of 4 is 0, i.e.,
4 = PC.

THEOREM (6.14). Let M be an elliptic surface over 4 = P,C with odd
Jirst Betti number. If it admits a holomorphic CO(2; C)-structure, then
1t must be a Hopf surface.
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PRrOOF. It suffices to show that M = §/I" in (6.3) is a Hopf surface.
We may therefore assume that M — 4 is a principal T-bundle. We con-
sider first the case » > 2. Let a, b and v be as in (6.11). If dima =1,
i.e., b =a, then M admits no holomorphic CO(2: C)-structure by (6.10)
and (6.11). Hence, there is a holomorphic vector field X € a, not contained
in b. Its projection X’ to the base curve 4 = P,C is a nonzero holomor-
phic vector field. Being a holomorphic vector field on P,C, X’ vanishes
at some point but no more than two points of P,C.

Let @ be a holomorphic 1-form on M. Then w(X) is constant. Since
o(V) =0 by (6.4), (X) vanishes at a point where X is vertical, i.e.,
a point which projects to a zero of X’. Hence, w(X) vanishes identically
and w = 0. This shows that A*° = 0. Since b, = 2h'° + 1 = 1, M belongs
to Class VII, in Kodaira’s classification of surfaces, [15]. (Class VII,
consists of minimal surfaces with b, =1 and P, = 0).

By integrating X we see that the fibre at a nonzero point of X’ is
biholomorphic to all nearby fibres. Since X' vanishes at no more than
two points of 4 = P,C, M has at most two singular fibres.

An elliptic surface of Class VII, with at most two singular fibres is
a Hopf surface, i.e., has C* — {0} as its universal covering space [15]. q.e.d.

In the next section, we shall study Hopf surfaces.

7. Hopf surfaces. Throughout this section we shall denote the
natural coordinate system (2!, 2?) in C* by (2, w) whenever convenient to
do so.

A compact complex surface M is called a Hopf surface if its universal
covering space is biholomorphic to C* — {0}. A Hopf surface is said to
be primary if its fundamental group is infinite eyclic. Every Hopf sur-
face has a primary Hopf surface as a finite unramified covering. Every
primary Hopf surface M is biholomorphic to a surface of the form
(C* — {0})/(0), where (o) denotes the infinite ecyclic group of transfor-
mations genearated by a transformation ¢ of the form (see [15])

(7.1) o(z, w) = (az + Aw™, Bw)
with
(1.2) @/ reC, 0<|al=IBl<l, (a—pg"n=0.

We shall determine which Hopf surfaces admit holomorphic CO(2; C)-
structure. Let M be a primary Hopf surface (C* — {0})/(¢) with a holo-
morphic CO(2; C)-structure. A holomorphic CO(2; C)-structure on M may

be regarded as a c-invariant holomorphic CO(2; C)-structure on C* — {0}.
By (56.9), a holomorphic CO(2; C)-structure on C* — {0} is given by a



612 S. KOBAYASHI AND T. OCHIAI

globally defined quadratic from g = 3, g,; d2'dz? on C* — {0}. Since C* — {0}
is simply connected we can divide g by a globally defined (det (g.;))"*
and assume that det (g;;) = 1.

We represent g = > g,;dzd?’ by a matrix

1.3) (gu gu).
Oa1 9o
Since
o*dz a mw™\[dz
& [ovae) =6 ™ Jlam)
g*dw 0 B dw
o*g is represented by
5) ( o 0)(9& gﬁ) (a xmw"‘“‘) ,
amw™t B/\gn 9%/\0 B

where g7,(0) = 9.5(0(©), = (2, w) = (2, 2°).

The holomorphic CO(2; C)-structure on C* — {0} defined by ¢ is invari-
ant by o if and only if ¢*¢ = fg, where f is a holomorphic function
without zeros. Comparing the martrices (7.3) and (7.4) and using the
condition det (¢;;) = 1, we obtain

(7.6) f* = (ap)

and

(7.7) f0u(Q) = a’gu(a(Q)) .

Hence,

(7.8) 9u() = £(a/B)9u(0(Q)) .

Iterating this process, we obtain

(7.9) 9u(0) = =(a/B)"9u(a™(Q) .

By Hartogs’ theorem, g,, extends through the origin o. Hence
(7.10) 0u(0) = lim =(@/@)"gu(e"@) = 0 if |a| <Al

We shall first consider the case g, = 0 (which is satisfied if |a| < |8
by (7.10)). Then 1 = det (g;;) = —91,0., and g, = =1 —1. Comparing
(7.3) with (7.5), we obtain

(7.11) f=aB, ag.=2¢.h+ B9z,
where g, = +1"—1 and » = mw™'. Hence,
(7.12) Q0g5/02 = B0g%[0% .
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By iterating this process, we obtain

(7.13) 09:(0)[0z = B" dgn(a™({))/0% .
Then, as in (7.10), we conclude
(7.14) 0gy,/02 =0,

i.e., g, is a function of w only.
From (7.11) we obtain

(7.15) ad™gy,/(Ow)™ = B™ ™ g,/ (Ow)™ .
Assume ) # 0 so that @« = g™ Then
(7.16) 0™ g5/ (OW)™ = B0™gy/(Ow)™ .
In the same way as we derived (7.14) from (7.12), we obtain
(7.17) : omgy/(Ow)™ = 0.
Hence, ¢., is a polynomial of degree m — 1 in w, i.e.,
(7.18) oo = @y + QW + -+ + @, w™ .

Substituting (7.18) into (7.11), we obtain contradiction. We have thus
shown

LemMMA (7.19). If |a]| < |B| and N # 0, then there is no o-invariant
holomorphic CO(2; C)-structures on C* — {0}.

We shall now consider the case where |a| < |8| and A =0. We
already know that f=aB, ¢,=0 and g, = =1 —1. Since » =0 in
(7.5), the o-invariance o*g = fg implies

( 0 aﬁgm) _ ( 0 fglz)
apgy (9 J9u 9% )

Hence,

(7.20) 9 = (Bla)gs. .

By differentiating (7.20) with respect to z, we obtain
(7.21) 0902 = B09%[0% .

As in (7.14) we conclude that dg,/0z = 0, i.e., g,, is a function of w only.
Let n be a larger integer such that |B3|"" < |a|. Then from (see (7.15))
0"/ (Ow)” = (B"*'/ax) 0"g,/(0w)" we conclude that g, is a polynomial of
degree at most # — 1 in w. Substitute that polynomial into (7.20). Then
we see that g,, is a monomial g,, = aw* in w if a = g*** and g, = 0 if
there is no such relation between a and 3. Hence,
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LEMMA (7.22). If |a| < |B| and N = 0, then there exist g-invariant
holomorphic CO(2; C)-structures on C* — {0}. They are given by
g9.=0, G, = g, = constant = 0,

a monomial of degree k in w if a= Q"
Jo =

0 otherwise .
We shall now consider the case |a| = |B|. By (7.2) we have either
A=0o0r m=1 From (7.8) we have
(7.23) lgul = |90l .

Hence, |g,,| may be considered as a function on M and is constant by
the maximum principle. Hence, g,, itself is constant.

Assume A = 0. The og-invariance ¢*g = fg implies
<fgu fgm) _ (a2gu aBle)
[0 f0.)  \aBg. B9n]’
From (7.6) and (7.24) we obtain |g,,| = |g%.|. By the same argument as
above, g,, is constant. Similarly, g¢,, is also constant. Thus we have

LEMMA (7.25). If |a| = |B| and N = 0, then there exist o-imvariant
holomorphic CO(2; C)-structures on C* — {0}. _

(i) If a =B, then any mon-degenerate constant matrixz (g;;) gives
such a structure.

(ii) If a = —pB, then (g;;) must be a constant matrix of the form

(gu 0) o < 0 gm>
0 gu gn 0)°

(iii) If a # £B, then (g;;) must be a constant matrix of the form

(0 gm)
9. 0/
These exhaust all g-invariant holomorphic CO(2; C)-structures on C* — {0}

when |a| = |B], » = 0.

We shall consider the last remaining case where |a|=|8|, m =1
and A #0. By (7.2) we have a = 8. In this case, the o-invariance
o*g = fg is equivalent to

(7.26) (fgu fgnz) _ (a O)(Qi’l gfz) (a 7\')
f0y [0 Noa/\gh 9%/\0 «a
3 ( a‘gy argh + a'gh )
any + a’gs N'gh + 2ang% + a’gh )

(7.24)
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We have shown already that g,, is constant. Assume g, # 0. Then
f = a® from (7.26). Also from (7.26) we obtain

(7.27) g = Ma)gy + 97
Differentiating (7.27), we obtain
(7.28) 00,,/02 = a09%/0% , 0g./0w = a 0%/0w .

By the argument we have used several times, these partial derivatives

are zero and g,, is constant. This contradiets (7.27). Hence, g, = 0.
Since 1= det(g,;) = —¢.,9.,, We obtain g,=g, = 1/ —1. From (7.26)

we obtain f = a® and

(7.29) Gos = (2)'/“)912 + 92 -

In the same way as we proved that g, is constant, we can show that
g, is constant. This contradicts (7.29). Hence,

(71.30) If |al=|Bl, m=1 and N # 0, then there is no o-invariant
holomorphic CO(2; C)-structures on C* — {0}.

We have shown that a primary Hopf surface (C* — {0})/(¢) admitting
a holomorphic CO(2; C)-structure must satisfy A =0, i.e., ¢ is of the
form

(7.31) o(z, w) = (az, Bw) with 0 < |a| =B < 1.

It is clear that such a primary Hopf surface admits an obvious holomor-
phic CO(2; C)-structure (which is, in fact, a quadric structure and gives
rise to a splitting TM = L' P L"”). We shall now examine Hopf surfaces
covered by such a primary Hopf surface.

Let M = (C* — {0})/" be a Hopf surface covered by a primary Hopf
surface M = (C* — {0})/(0), where ¢ is of the form (7.31). Then () is a

subgroup of finite index in I". Moreover, a suitable power ¢? of ¢ is in
the center of I', [15].

Let 7 be an element of I' given by
(7.32) (2, w) = (f'(z, w), f*(z, w)) .
If » is a multiple of ¢, then 7 commutes with ¢ and we have
(1.33)  fHa"z, g"w) = a"fi(z, w),  fHa"z, B"w) = B"f*(z, w) .
By differentiating the first equation with respect to z, we obtain
(7.34) (0f*/oz)(a"z, Bw) = (0f*/0z)(2, w) .

Letting n — «, we see that the right hand side is equal to the constant
(0f'102)(0, 0). Similarly, of*/ow is also constant. Hence,
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(7.35) iz, w) = A(w)z + B(w) , iz, w) = C(z) + D(x)w .

Since 7 commutes with o™ (where % is a multiple of ¢), we obtain
A(Bw)a"z + B(8"w) = a"A(w)z + a"B(w) ,

Cla™z) + D(a"2)3"w = B"C(2z) + B"D(z)w .

From (7.36) we see immediately that both A and D are constant. Ex-

panding B(w) and C(z) into power series and using the condition 0 <
la] £ |8] <1, we arrive at the following possibilities:

(7.36)

(7.37) (2, w) = (ad, dw) if «a®+* B for all integers k>0,
(7.38) (2, w) = (az + dbw*, dw) if a’= B for some integer k = 2,
(7.39) (2, w) = (a2 + dbw, cz + dw) if a’=pB°.

In case (7.37), the natural splitting for the tangent bundle of C* — {0}
given by the coordinate system is invariant by the group I.

In case (7.38), we shall show that if b # 0, then C? — {0} admits no
holomorphic CO(2; C)-structures invariant by the element 7. Since (o)
is a subgroup of finite index in I', some power of 7, say 7¢, is equal to
o'. (replacing = by 7' if necessary we may assume that ¢ is positive
and s is non-negative). Then

(7.40) o =a°, d=p.

Since a* = g% with &£ = 2 in this case, we have |a| < |B|. Since b+ 0,
7! cannot be the identity element and hence s is positive. From (7.40)
we obtain |a| < |d|. Thus we are almost in the same situation as in
(7.19). The difference here is that we have

(7.41) alt = g

instead of @« = g™. Following the computation from (7.3) through (7.14),
we see that if the CO(2; C)-structure is invariant by 7, then g, =0,
g =gy = =V —1 and g,, is a function of w only. As in (7.15), we
obtain

(7.42) @ 0%g,/(0w)* = d** d*g5,/(dw)* .

From (7.41) and (7.42) we obtain

(7.43) (0" g/ (Qw)*)** = d*(3* g/ (Ow)*)** .

In the same way as we derived (7.14) from (7.12), we obtain
(7.44) 0% g,/ (Ow)t =0 .

Hence, ¢,, is a polynomial of degree ¥ — 1 in w, i.e.,
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(7.45) Oy = Gy + QW + -+ + a,_w*?*.

Now, we are in the same situation as in (7.18) and obtain the desired
result that there is no holomorphic CO(2; C)-structures on C* — {0} invari-
ant by z.

We have shown that in case (7.38) a holomorphic CO(2; C)-structure
exists on M = (C* — {0})/I" if and only if every element 7 of I" is of
the form

(7.46) 7(z, w) = (ad, dw) ,
i.e,, b=0.

We consider now case (7.39). Let V be the vector field on C* — {0}
defined by

(7.47) V = z0d/oz + wolow .

Since it is invariant by any linear transformation of C? it may be
considered as a vector field on M = (C* — {0})/(6) or M = (C* — {0})/I.
Assuming that M admits a holomorphic CO(2; C)-structure, consider the
induced holomorphic CO(2; C)-structure on C* — {0} invariant by I". Since
C* — {0} is simply connected, this CO(2; C)-structure is given by a split-
ting T(C* — {0}) = L' L"” of the tangent bundle of C*>— {0}. Then
every element of I' leaves both L’ and L” invariant or interchanges
them.

We claim that V is neither in L’ nor in L”. Assume that V is in
L'. Since ¢ leaves V invariant, it leaves both L’ and L” invariant
(instead of interchanging them). Hence we obtain the induced splitting
TH = L' @ L" denoted by the same symbols as the splitting T(C* — {0}) =
L'@ L". On the other hand, I is an elliptic surface over P,C with odd
first Betti number and, by (6.8), does not admit a splitting T/ = L' @ L”
such that L’ is in the fibre direction, i.e., in the direction of V in this
case. This is a contradiction.

Since V is neither in L’ nor in L”, the decomposition

(7.48) V=vV4+V", (VeL, V"'elL")
yields two nonzero vector fields V' and V" on C* — {0}. Every element

of I either leaves both ¥V’ and V" invariant or interchanges them.
We shall prove next that V' is of the following form:

(7.49) V' = (W2 + Mw)0/0z + (pz + pw) d0fow .

We write V' = &(2, w) 0/0z + £z, w)d/ow. Since o either leaves V’ and
V" invariant or interchanges them, ¢* leaves V' and V" invariant. Let
n = 2q so that ¢ leaves V'’ invariant and a™ = g8". Then
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(7.50) arg(z, w) = g(a'z, B"w) , B¢z, w) = (a2, B"w) .
Differentiating (7.50) with respect to z and w, we obtain (using a® = 8"

(0&'/02)(2, w) = (0&'/0z)(a"z, B w) ,

7.51

@5 (08*[ow)(z, w) = (0&'/0w)(a"z, B"w) .
Hence

.52 (¢ o2)z, w) = QEfoR\as, W),

(0&'/0w)(z, w) = (3¢'/ow)(a’"z, B""w) ,

Letting p — «, we see that the left hand side of (7.52) is constant. It
follows that &' is linear in 2z, w, i.e., V' is of the form (7.49).

We associate to vector fields V, V', V" the following matrices or
linear transformations of C*:

(1.53) V- (1 O) £ (M M) 144 (1—)“ _7”2>
: o 1) ) A\ 1-n)

Then a linear transformation of C? leaves the vector fields V' and V"
invariant if and only if it commutes with the corresponding linear trans-
formations given in (7.53). By a linear change of coordinates, we reduce
the matries in (7.53) into the following canonical forms:

a1 1—-» -1
54 ’. , ", ,
(7.54) v (0 )\,) 4 ( 0 1-— 7\.)

or

(7.55) v ()“ 0 v (1”)“ 0 ) with =
. : , : 1 .
0 pe) 01— a
We note that \ # g since V' is not a scalar multiple of V.

In case (7.54), a linear transformation of C? leaves V' and V" invari-
ant if and only if it is of the form

(7.56) (“ b)
' 0 a
while it interchanges V’ and V" if and only if it is of the form
a b .
(7.57) ( ) with A =1/2.
0 —a

By (7.30), in order for a matrix of the form (7.56) or (7.57) to leave a
holomorphic CO(2; C)-structure on C* — {0} invariant, it is necessary that
b =0. Hence, every element of I" must be of the form
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a 0 a 0
(7.58) (0 a) or (0 —a)

according as it leaves V' and V" invariant or interchanges them. It is
clear that, conversely, if every element of I' is a matrix of the form
(7.58), then the natural CO(2; C)-structure on C*— {0} is invariant by I.

In case (7.55), a linear transformation of C?leaves V' and V” invari-
ant if and only if it is of the form

(7.59) (g g)

while it interchanges V' and V” if and only if it is of the form
0 b
(7.60) (c 0) with v +p=1.

Hence every element of I” must be of the form (7.59) or (7.60) according
as it leaves V’ and V" invariant or it interchanges them. It is clear
that, conversely, if every element of I is of the form (7.59) or (7.60),
then the natural CO(2; C)-structure on C? — {0} is invariant by I.

We have established

THEOREM (7.61). A Hopf surface M = (C* — {0})/I" admits a holo-
morphic CO2; C)-structure if and only if every element of I' is a linear
transformation of the form

oo o Lo
or .
0 d c 0
8. Surfaces of Class VII,. Throughout this section we shall denote
the natural coordinate system (', 2*) in C* by (2, w) whenever convenient
to do so. A compact complex surface M is said to be in Class VII, if it
is free of exceptional curves of the first kind, b, =1 and p, = 0. Then

g=1. (In general, 2¢ = b, + 1 when b, is odd, [15]). By Noether’s
formula,

(8.1) G +e=121—-9) =0.
Since ¢, is the Euler number and b, =1,

8.2) ¢, =0b,.

Hence,

LEMMA (8.3). If a surface of Class VII, satisfies ¢ = 2¢,, in par-
ticular, if it admits a holomorphic CO(2; C)-structure, then
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b,=0.

The surfaces of Class VII, with b, = 0 can be classified as follows:

(i) Hopf surfaces;

(ii) non-Hopf, elliptic surfaces with b, =1, b, = 0;

(iii) non-Hopf, non-elliptic surfaces with b, =1, b, =0 and a line
bundle F' such that H°(M, '(F')) + 0;

(iv) non-Hopf, non-elliptic surfaces with b, =1, b, =0 such that
H(M, 2'(F"))) = 0 for all line bundles F.
Moreover the above classification is invariant under passing to an unrami-
fied covering.

We have already considered Case (i) in §7 and Case (ii) in §6.

LEMMA (B.4). A surface of Class VII, satisfying (iv) above admits
no holomorphic CO(2; C)-structures.

PrROOF. Assuming that M admits a holomorphic CO(2; C)-structure,
let TM =L'® L"” as in § 5 (taking a double covering if necessary). Then
the cotangent bundle is given by L' L. Hence,

QW) =W BLHRL) =20 QAL QL)

which clearly admits a non-trivial holomorphic section. This contradicts
the last condition in (iv). q.e.d.

We shall now consider Case (iii). According to Inoue [6], a surface
M satisfying (iii) belongs to one of the following three classes:

(@) Surfaces S;. Let U = (u;;) € SL(3; Z) be a unimodular matrix
with eigenvalues a, B, 8 such that « > 1, 8 # 8. Choose a real eigen-
vector (a, a,, a;) and an eigenvector (b, b, b;) of U corresponding to o
and g, respectively. Let G, be the group of holomorphic transformations
of H x C generated by

o, (2, w) — (az, Bw) ,
o R, wy—@+a,w+b), 1=123.

Let M =S, = (H x C)/G,. From the construction of M it is clear that
TM admits a splitting TM = L' @ L”, where L’ and L"” are spanned by
0/0z and o/ow, respectively. It is also clear that this CO(2; C)-structure
comes from a quadric structure.

We shall show that M admits no other CO(2; C)-structure. In fact,
let g =3 g;,d?'dz* define a holomorphic CO(2; C)-structure on M, i.e., a
Gy-invariant CO(2; C)-structure on H x C so that

8.1) org = fi9, 1=0,1,23,
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where each f; is a holomorphic function with no zeros. Because of the
simple connectedness of H x C, we may assume as in §7 that

8.2) det (g;,) = 1.

Then the invariance condition (8.1) is equivalent to
(C{ O)(Qflo glqzo)(a 0) __f(gn gn)

8.1 0 B g g/ \0 B ’ 92 Os

grf gi Oy G
e o) = o o)
g 9o Oa1 G2
From these and (8.2) it follows
8.3) (@B} = (f)*, 1=(f) (=1273).

From (8.3), we see that |g,,| is invariant by G, and hence g,, is a con-
stant function. From (8.1)" it then follows that

gy = fodu, Oi=fign (0=123),
B9 = foldnr G =fign (1=1,2,3).
Differentiating (8.1)” with respect to w, we obtain

a’ B0 g,,Jow?)™ = f,0%g,/ow* , (0*gu/owd) = f,d%gufow* (1=1,2,3).

Hence ((0%g,,/ow*)dz A dw)? is invariant by Gy and hence is a section of
K? on M. On the other hand, H°(M; K*) =0 by Inoue [6]. Hence
0’9, /ow* = 0. Similarly, we have 0%g,,/02* = 0. So put

8.1)"”

gu(z’ w) = AR)w + B(z) , g22(zy w) = Cw)z + D(w) ,

where A(z2), B(z) (resp. C(w), D(w)) are holomorphic on H (resp. C).
From (8.1)"” we obtain

a*{A(az)Bw + Blaz)} = f{A@)w + B(z)},
Az + a)(w + b) + B(z + a,) = fi{AR)w + B(2)} .
Hence,
(8.1)4 ’BA(az) = fi(2), Al + a) = fLA(2) ,
8.1), a*B(az) = f,B(z) , b, Az + a) + Bz + a,) = fiB({®) .
Without loss of generality, we may assume a, = 1. From (8.1), we obtain
Ala'z + 2a%) = (fila?B)‘A(z + 2) = (fi/a’B)*A(z) = A(a*z) for keZ.

Hence, A(z + 2a*) = A(z) for k€ Z. This means that A is constant on
the infinite sequence {z + 2a*}, k = —1, —2, ---, converging to z. Hence,
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A is constant on H. From (8.1),, we have (&’8 — f))A =0. If A#0,
then a's* = fi = a’8* and hence a® =1, contradicting the assumption
a>1. We conclude A =0. From (8.1);, we have

oa’B(az) = f,B(z), B(z + a,) = f,B(z) ,

and obtain “B = constant” in a similar manner. If B+ 0, then a'=
fi = a’s* and hence a® = g%, contradicting the assumption a >1 and
aBB =1. Hence, B=0. This proves g;,, = 0.

Similarly, from (8.1)” we obtain

B{C(Bw)az + D(Bw)} = fi{C(w)z + D(w)} ,
Cw + b)(z + a,) + D(w + b)) = fi{C(w)z + D(w)} ,

and hence

8.1)c aBC(Bw) = fC(w) ,

8.1), Clw +b) = f,Cw) .

Without loss of generality, we may assume b, = 0. In the same way as
above, we conclude C =D =0, i.e., g,, = 0. g.e.d.

(b) Surfaces S§) 4. Let N=(n;,) € SL(2; Z) be a unimodular matrix
with two real eigenvalues «, 1/a with a > 1. Choose real eigenvectors
(@;, @), (b, b,) of N corresponding to a and 1/a respectively and fix inte-
gers p,q,r (r # 0) and a complex number ¢. Let (¢, ¢,) be the solution of

(eie) = (€, €) ‘N + (e, €) + (1/7)(bya, — b,a))(®, @) »
where
e; = (1/2my(ny — Dad, + 1/2)nu(n,, — 1)ah, + nynib.a, .

Let G = G§),,.... be the group of holomorphic transformations of H x C,
generated by

o, (2, w) — (az, w + 1) ,

g: @ wr—&Z+a,w+bdbz+c¢), 1=12,

(/Y (Z, ’W) = (Z, w + (1/7')(1)1“2 - b2a1))
and define M = S§),,... = (HxC)/G.

We shall show that M admits no holomorphic CO(2; C)-structures.
Let g = 3 g;,dz’dz* define a holomorphic CO(2; C)-structure on M, i.e.,
a G-invariant holomorphic CO(2; C)-structure on H x C so that
(8.4) ofg=rfg, 1=0,1,23,

where each f; is a holomorphic function with no zeros. Because of the
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simple connectedness of H X C, we may assume as in §7 that
(8.5) det(g;,) =1.

Then the invariance condition (8.4) is equivalent to
(a 0') (gf}’ gi’é’) (a 0) - (yu gm)
0 1/\gx g2/\0 1 "\gu gu’

8.4y (1 bi) (glf gui) (1 0) - (gu yu) ’
0 1/\g:f g b, 1 Os1 G2
(gzlz g(l}:) 7 (gu 912).
ng g22 g21 g22

From these and (8.5) it follows that

(8.6) a=f, 1=f, =12, 1=f.

We see now easily that (g,,dz A dw)® is invariant by G and hence is a
section of K? on M. On the other hand, H°(M; K* = 0 by Inoue [6].
Hence, g,, = 0. Similarly, the function (g,,)* is invariant by G and hence
is constant on M. From (8.4)' it then follows that

a=fy, 1=f, =12, fi=1.
From (8.4)’ we obtain
8.7 gy =gu, gi+2bgn=9u, 9 =0u.
Differentiating (8.7) with respect to w, we obtain
0g,,/0w = adgiifow , 0g,./ow = agii/ow , 0g,./ow = aglijow .

Hence, (dg,./o0w)(0/0z A d/ow) is a globally defined holomorphic section of
K~'. But, according to Inoue [6], K~' has no holomorphic sections.
Hence, dg,/ow = 0, i.e., g,, is a function of z only. Now differentiating
(8.7) with respect to z, we obtain

09.,/0z = a*dgi}[0z ,  09./0z = dgi[0z,  09./0z = 0g:i[o% .

It follows that (0g,,/02)(0/0z A 0/ow)? is a globally defined holomorphic sec-
tion of K and hence d¢,,/02 = 0. We have shown that g,, is constant.
In particular, ¢! = g,,. From (8.7) and a > 1, we obtain g, = 0. Since
b, # 0 for ¢ =1 or 2, (8.7) implies g,, = 0. This is a contradiction.

(¢) Surfaces S§),.,. Let N=(n;)ecGL2;Z) be a matrix with
det N = —1 having real eigenvalues a, —1/a such that a > 1. Choose
real eigenvectors (a,, a,), (b, b,) of N corresponding to a and —1/a,
respectively, and we fix integers p, q, » (r # 0). Define (¢, ¢,) to be
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the solution of
'—(01, ) = (01, )N + (31, 62)(1/7’)(171(12 - bzal)(p’ Q,

where
e, = (1/2)n,(n, — Dab, + 1/2)n,(n, — 1ab, + nynyba, .
Let G = G§)),,, be the group of holomorphic transformations of H x C
generated by
o, (2, w) — (az, —w) ,
o2, w)— (2 + a;, w+ bz +¢),
0y (2, w) — (2, w + A/r)((ba, — b,a,)) .

(+)

Define M = 8§}, = (H x C)/G. Since 8%}, has Syz,, 4.0 With suitable
P, ¢, as its unramified double covering [6] and since the latter has no
CO(2; C)-structures, it follows that the former admits no holomorphic
CO(2; C)-structures.

9. Ruled surfaces. Since we are interested only in surfaces free
from exceptional curves of the first kind, by a ruled surface of genus g,
we mean a holomorphic fibre bundle over a non-singular algebraic curve
4 of genus g with fibre P,C and structure group PGL(1;C). Then

.1 q=9, p,=0, ¢=41-9, c=81-9).

LEMMA (9.2). Let M be a ruled surface over a curve 4 of genus g.
If TM =L@ L" is a splitting such that L' is in the fibre direction,
then M comes from a representation p of mw,(4) into PGL(1;C), i.e.,

M=1 x,PC,

where 4 is the universal covering space of 4, and L” is the horizontal
subspace of the matural flat connection in the bundle M.

PrRoOF. Consider L” as the horizontal subspace for a generalized
connection in the bundle M; since L” is transversal to fibres everywhere,
we can define the notion of parallel displacement of a fibre along a curve
on the base 4. Since L” is an integrable distribution, the parallel dis-
placement depends only on the homotopy class of the curve and maps
the initial fibre holomorphically onto the terminal fibre. Hence, we
obtain the holonomy representation p:z,(4) — PGL(1;C). The remainder
of the proof is obvious. g.e.d.

LEMMA (9.3). Let D be a small disk in C and p: D X PC— D be

the canonical projection. Then for every splitting TN = L' @ L", either
L' or L" is in the fibre direction of p, where we set N =D x P,C.
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ProoF. Let z be the natural coordinate in D so that &« =dz is a
holomorphic 1-form on N. For each tangent vector V of N, write
V=V + V", where V'eL’ and V”eL”. Define a new holomorphic
1-form a’ on N by setting a'(V) = a(V’). Assume neither L’ nor L” is
vertical at some point we N. Let V be a nonzero vertical vector at w.
Then a'(V) = a(V') = dz(p, V') # 0 since p,V’ is nonzero. Hence the
restriction of a’ onto the fibre p~(p(2)) = P,C is a nonzero holomorphic
1-form. This is a contradiction. q.e.d.

The ruled surfaces of genus 0 can be classified as follows. Let H
and 1 denote, respectively, the hyperplane line bundle and the trivial
line bundle over P,C. For each nonnegative integer =, let F, = P(H"P 1)
be the ruled surface associated to the vector bundle H*@ 1 of rank 2.

LEMMA (9.4). F, = PC X PC is the only ruled surface of genus 0
admitting a holomorphic CO2; C)-structure.

PrROOF. We represent a point of F', by a pair (u,, u,), where u,€ H"
and u,€1. The bundle F, has two natural sections s, and s., given by

s, = {u, = 0} and S = {u, = 0} .

Let the group C* = C — {0} act on F, by A\: (4, u;) — (N, u,) for \ e C*.
Let V be the holomorphic vertical vector field induced by this action of
C*. Since C* leaves the section s, fixed, V vanishes at s..

Let TF, = L' @ L"” be a splitting. (Remark F', is simply connected.)
Assume that neither L’ nor L” is in the fibre direction at some point
of F,. Decompose V =V’ + V", where V'eL’ and V"€ L"”. Since V
vanishes at s., so do V' and V”. On the other hand, as we have seen
in the proof of (6.11), every holomorphic vector field on F', projects to
a holomorphic vector field on the base space. In particular, V' and V"
project to holomorphic vector fields on the base space. Since they vanish
at the section s., their projections must be zero. In other words, V’
and V" are vertical vector fields. This is a contradiction. Hence, either
L' or L" is vertical. Now our assertion follows from (9.2). q.e.d.

THEOREM (9.5). A ruled surface M over a curve 4 of genus g =1
admits a holomorphic CO(2; C)-structure if and only if M =4 x, PC,
where 4 is the universal covering space of 4 and p:x,(4d) — PGL(1;C) is
a representation, and the CO(2; C)-structure is the natural one arising
from the natural quadric structure on 4 x P,C. The quadric P.C x PC
18 the only ruled surface of genus 0 admitting a holomorphic CO(2; C)-
structure.
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PROOF. Let p: M — 4 be the fibration. Take a sufficiently fine cover-
ing 4 = J U, by small disks U, so that »p™*(U,) = D,x P,C. By restricting
the CO(2; C)-structure onto P~'(U,), we have the splitting T(M) | P~*(U,) =
L'PL". From Lemma (9.3) we may assume L’ is in the fibre direction.
From this we see the CO(2; C)-structure on M gives rise to the splitting
TM = L' @ L". Then our assertion follows from Lemma (9.2) and Lemma
9.4). q.e.d.

10. Surfaces with holomorphic CO(2; C)-structures and quadric
structures. Let M be an algebraic surface and @, the pluri-canonical
map associated with the pluri-canonical system |mK]|; it is a rational
map of M into P,C, where N = dim |mK|. The Kodaira dimension x(M)
of M is the maximum dimension of the image @,.(M) for m = 1. If
ImK|= @, we set dim®,,,(M) = —c. Then the classification theorem
of Enriques may be stated as follows:

THEOREM (10.1). (1) A minimal algebraic surface M with k(M) =
— oo 48 either the projective plane P,C or a ruled surface;

(2) A minimal algebraic surface M with £(M) = 0 satisfies 4K = 0
or 6K =0, and it is either a K3 surface (3f ¢ =0 and p, =1), an
Enriques surface (if ¢ =0 and p, =0), a bielliptic (or hyperelliptic)
surface (if ¢ = 1), or an Abelian surface (if q¢ = 2);

(3) A minimal algebraic surface M with k(M) =1 satisfies ¢ =0
and s elliptic.

If k(M) = 2, then M is called a surface of general type.
By (3.21), the projective plane P,C admits no holomorphic CO(2; C)-
structures. From (9.5) we conclude:

THEOREM (10.2). An algebraic surface M with k(M) = — o~ admits
a holomorphic CO(2; C)-structure if and only if it is one of the following:

(1) A ruled surface over a curve 4 of genus =1 such that
M =4 x,PC, where 4 is the universal covering space of 4 and
p: ,(4) - PGL(1; C) is a representation. (In this case, the CO(2;C)-
structure is the natural one coming from the natural quadric structure
on 4 x PC).

(2) The quadric PC x PC.

THEOREM (10.3). An algebraic surface M with k(M) =0 admits a
holomorphic CO(2; C)-structure if and only if it is one of the following:

(1) A bielliptic (or hyperelliptic) surface.

(2) An Abelian surface.

In both cases, it admits a quadric structure.
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Proor. In this case, ¢, =0 in H*M; R). By (38.21) a necessary
condition for the existence of a holomorphic CO(2; C)-structure is ¢, = 0.
This eliminates the K3 surfaces and the Enriques surfaces (which are
doubly covered by K3 surfaces).

A complex torus C*/I" admits a quadric structure coming from the
natural quadric structure on C? invariant under the translation.

It is known (see, for example, [19]) that a bielliptic surface can be
expressed as the quotient of an Abelian surface A by the group generated
by an automorphism g of A of the following form: g(z*, 2*) = (' + 1/m, (2%,
where { is an m-th root of 1 and m =2, 3,4, or 6. It is clear that the
natural quadric structure on A induces a quadric structure on the quotient
bielliptic surface. q.e.d.

THEOREM (10.4). An algebraic surface M with k(M) =1 admits a
holomorphic CO(2; C)-structure if and only if ¢ = 0 (which is equivalent
to minimality for an elliptic surface) and ¢, = 0. In this case, it admits
a quadric structure.

ProoF. The first part follows from (3.21), (5.11) and (6.8). The
second half follows from (6.15). q.e.d.

THEOREM (10.5). An algebraic surface M of general type admits a
holomorphic CO(2; C)-structure if and only if its universal covering
space is biholomorphic to the bidisk D X D. In this case, it admits a
quadric structure.

PROOF. According to Kodaira [16], an algebraic surface of general
type M has an ample canonical bundle if and only if it contains no non-
singular rational curve C with self-intersection C.C = —1 or —2. Our
assertion now follows from (4.5) and (5.14). q.e.d.

Kodaira [15] classified the compact complex surfaces without excep-
tional curves of the first kind into seven classes I, to VII,, We shall
now examine his classification table to determine the surfaces which
admit holomorphiec CO(2; C)-structures and quadriec structures.

Class I, This is the class of minimal algebraic surfaces with p, = 0.
The algebraic case was dealt with in (10.2)-(10.5).

Class II,. This is the class K3 surfaces. Since ¢! =0 and ¢, = 24
for a K3 surface, there is no holomorphic CO(2; C)-structure on a K3
surface by (3.21).

Class III,. This is the class of complex tori. Clearly, every complex
torus admits a natural quadric structure.

Class IV,. This is the class of minimal elliptic surfaces with even
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Betti number, p, > 0 and ¢} =0 (but ¢, # 0 in H*(M; Z)). By (6.10), a
surface in this class admits a holomorphic CO(2; C)-structure. By (6.15)
it actually admits a quadric structure.

Class V,. This is the class of minimal algebraic surfaces with p, > 0
and ¢ > 0. The algebraic case was dealt with in (10.2)-(10.5).

Class VI,. This is the class of minimal elliptic surfaces with odd
first Betti number, p, > 0 and ¢} = 0. By (6.13) an elliptic surface with
odd first Betti number, fibred over a curve of positive genus, admits no
holomorphic CO(2; C)-structures. By (6.14), an elliptic surface over P,C
with odd first Betti number cannot admit a holomorphic CO(2; C)-struc-
ture unless it is a Hopf surface (which is in Class VII). Hence, no
surface of Class VI, admits a holomorphic CO(2; C)-structure.

Class VII,. This is the class of minimal surfaces with p, =0 and
b,=1. In §6, §7 and §8, we have shown that a surface of Class VII,
admitting a holomorphric CO(2; C)-structure is either an Inoue surface
Sy in the notation of § 8 or a Hopf surface (C* — {0})/I", where I" contains

only elements of the form
(a 0) 0 b)
or
0 d ¢c 0

and that such a surface actually admits a quadric structure.
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