HOLOMORPHIC STRUCTURES MODELED AFTER HYPERQUADRICS

Shoshichi Kobayashi* and Takushiro Ochiai*

(Received April 20, 1982)

1. Introduction. In our joint paper with Inoue [7], we studied holomorphic affine connections and affine structures on complex manifolds and classified all compact complex surfaces admitting such structures. In [12] we studied holomorphic projective connections and projective structures and classified all compact complex surfaces admitting such structures. The one case left open in [12] has been solved recently ([13]). Both of our papers were partly based on Gunning's earlier work [4].

In the present paper we shall study holomorphic geometric structures modeled after a hyperquadric. Leaving the precise definitions of holomorphic $C O(n ; C)$-structure and quadric structure to $\S 2$, we shall explain them by the following diagram:

Model space	Infinitesimal structure	Local structure
Affine space \boldsymbol{C}^{n}	Affine connection	Affine structure
Projective space $P_{n} \boldsymbol{C}$	Projective connection	Projective structure
Quadric Q_{n}	$C O(n ; \boldsymbol{C})$-structure	Quadric structure

By a quadric Q_{n} we mean a non-singular hyperquadric in $P_{n+1} C$; it is a holomorphic analogue of a sphere. A holomorphic $C O(n ; \boldsymbol{C})$-structure may be considered as a holomorphic conformal connection, and a quadric structure as a flat holomorphic conformal structure.

In $\S 2$, § 3 and $\S 4$, we shall discuss general results valid for all dimension. In the subsequent sections we determine all compact complex surfaces admitting holomorphic $C O(2 ; \boldsymbol{C})$-structures and quadric structures. The 2-dimensional case is somewhat exceptional as in the case of conformal differential geometry. This is because a non-singular quadric Q_{2} is isomorphic to $P_{1} C \times P_{1} C$, i.e., reducible. Hence, a holomorphic $C O(2 ; C)$-structure is equivalent (modulo passing to a double covering) to a splitting of the holomorphic tangent bundle into a direct sum of two holomorphic line subbundles, which in turn, is equivalent to a pair of mutually transversal holomorphic foliations of dimension 1 . We take a

[^0]full advantage of this special situation to achieve the following classification.

The class of compact complex surfaces admitting holomorphic $C O(2 ; C)$-structure consists of the following:
(1) the quadric $P_{1} C \times P_{1} C$;
(2) ruled surfaces of the form $\tilde{\Delta} \times{ }_{\rho} P_{1} C$, where $\tilde{\Delta}$ is the universal covering space of an algebraic curve Δ and ρ is a homomorphism of $\pi_{1}(\Delta)$ into Aut $\left(P_{1} C\right)=P G L(1)$, in other words, flat holomorphic fibre bundles over Δ with fibre $P_{1} C$;
(3) bielliptic (or hyperelliptic) surfaces;
(4) complex tori;
(5) minimal elliptic surfaces with $c_{2}=0$ and even first Betti number;
(6) surfaces with universal covering space $D \times D$ (bidisk);
(7) Hopf surfaces $\left(C^{2}-0\right) / \Gamma$, where Γ consists of linear transformations of the form

$$
\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \quad \text { or }\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right) ;
$$

(8) Inoue surfaces S_{U} associated with $U \in S L(3 ; \boldsymbol{Z})$;

These surfaces admit not only holomorphic $\operatorname{CO}(2 ; C)$-structures but also quadric structures.
2. Holomorphic $C O(n ; \boldsymbol{C})$-structures. Let M be an n-dimensional complex manifold. Let

$$
\begin{equation*}
C O(n ; C)=\left\{c U ; U \in O(n ; C) \text { and } c \in \boldsymbol{C}^{*}\right\} \tag{2.1}
\end{equation*}
$$

where $O(n ; C)=\left\{U \in G L(n ; C) ;{ }^{t} U U=1\right\}$. Let $L(M)$ be the bundle of complex linear frames over M; it is a holomorphic principal bundle with structure group $G L(n ; C)$. A holomorphic principal subbundle P of $L(M)$ with structure group $C O(n ; C)$ is called a holomorphic $C O(n ; C)$-structure on M.

Given a holomorphic $C O(n ; C)$-structure P on M, we can cover M by small open sets U_{α} with local coordinate system $z_{\alpha}^{1}, \cdots, z_{\alpha}^{n}$ and find a holomorphic non-degenerate symmetric covariant tensor field

$$
\begin{equation*}
g_{\alpha}=\sum_{i, j} g_{\alpha i j} d z_{\alpha}^{i} d z_{\alpha}^{j}, \quad \operatorname{det}\left(g_{\alpha i j}\right) \neq 0 \tag{2.2}
\end{equation*}
$$

on each U_{α} in such a way that

$$
\begin{equation*}
g_{\beta}=f_{\beta \alpha} g_{\alpha} \quad \text { on } \quad U_{\alpha} \cap U_{\beta} \tag{2.3}
\end{equation*}
$$

where $f_{\beta \alpha}$ is a holomorphic function on $U_{\alpha} \cap U_{\beta}$ (without zeros).

Conversely, given $\left\{U_{\alpha}, g_{\alpha}\right\}$ satisfying the conditions above, we obtain a holomorphic conformal structure P on M. Two such $\left\{U_{\alpha}, g_{\alpha}\right\}$ and $\left\{U_{\lambda}^{\prime}, g_{\lambda}^{\prime}\right\}$ correspond to the same structure P if and only if $g_{\lambda}^{\prime}=h_{\lambda \alpha} g_{\alpha}$ on $U_{\alpha} \cap U_{\lambda}^{\prime}$, where $h_{\lambda \alpha}$ is a function holomorphic on $U_{\alpha} \cap U_{\lambda}^{\prime}$.

From (2.3) we obtain

$$
\begin{equation*}
\operatorname{det}\left(g_{\beta i j}\right)\left(d z_{\beta}^{1} \wedge \cdots \wedge d z_{\beta}^{n}\right)^{2}=f_{\beta \alpha}^{n} \operatorname{det}\left(g_{\alpha i j}\right)\left(d z_{\alpha}^{1} \wedge \cdots \wedge d z_{\alpha}^{n}\right)^{2} \tag{2.4}
\end{equation*}
$$

If we denote the canonical line bundle of M by K and the line bundle with transition functions $\left\{f_{\beta \alpha}\right\}$ by F, then (2.4) implies

$$
\begin{equation*}
F^{n}=K^{-2} \tag{2.5}
\end{equation*}
$$

As an immediate consequence of (2.5), we have
Proposition (2.6). For a compact complex manifold M of dimension n to admit a holomorphic $\operatorname{CO}(n ; \boldsymbol{C})$-structure, it is necessary that $2 c_{1}(M)$ be divisible by n.

Since we shall be working in one coordinate neighborhood U_{α}, we drop the subscript α temporarily in the following calculation. As in the Riemannian case, to the given $g=\sum g_{i j} d z^{i} d z^{j}$ we associate a holomorphic affine connection $\Gamma_{j k}^{i}$ in U by

$$
\begin{equation*}
\Gamma_{j k}^{i}=(1 / 2) \sum g^{i n}\left(\partial g_{h j} / \partial z^{k}+\partial g_{h k} / \partial z^{j}-\partial g_{j k} / \partial z^{h}\right) \tag{2.7}
\end{equation*}
$$

Given a holomorphic $C O(n ; \boldsymbol{C})$-structure P, g is defined only up to the multiple of a non-vanishing holomorphic function. If we replace g by $\widetilde{g}=f g=\sum f g_{i j} d z^{i} d z^{j}$, then the corresponding affine connection $\tilde{\Gamma}_{j k}^{i}$ is related to $\Gamma_{j k}^{i}$ by

$$
\begin{equation*}
\widetilde{\Gamma}_{j k}^{i}=\Gamma_{j_{k}}^{i}+(1 / 2) \delta_{j}^{i} \rho_{k}+(1 / 2) \delta_{k}^{i} \rho_{j}-(1 / 2) \sum g^{i h} g_{j k} \rho_{h}, \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{k}=\partial(\log f) / \partial z^{k} \tag{2.9}
\end{equation*}
$$

The formula (2.8) is classical in conformal differential geometry and can be verified by a direct calculation. We note that while $\log f$ is defined modulo $2 \pi i m, m \in \boldsymbol{Z}$, its derivatives ρ_{k} are well defined. Setting $i=j$ in (2.8) and summing over i, we obtain

$$
\begin{equation*}
\sum \widetilde{\Gamma}_{i k}^{i}=\sum \Gamma_{i k}^{i}+(n / 2) \rho_{k} \tag{2.10}
\end{equation*}
$$

Eliminate ρ_{k} from (2.8) using (2.10) and use the fact that $\widetilde{g}^{i h} \widetilde{g}_{j k}=g^{i h} g_{j k}$. Then we obtain

$$
\begin{align*}
\Gamma_{j k}^{i}- & (1 / n) \delta_{j}^{i} \Gamma_{k}-(1 / n) \delta_{k}^{i} \Gamma_{j}+(1 / n) \sum g^{i h} g_{j k} \Gamma_{h} \tag{2.11}\\
& =\widetilde{\Gamma}_{j k}^{i}-(1 / n) \delta_{j}^{i} \widetilde{\Gamma}_{k}-(1 / n) \delta_{k}^{i} \widetilde{\Gamma}_{j}+(1 / n) \sum \widetilde{g}^{i k} \widetilde{g}_{j k} \widetilde{\Gamma}_{h}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma_{k}=\sum \Gamma_{h k}^{h} \quad \text { and } \quad \tilde{\Gamma}_{k}=\sum \tilde{\Gamma}_{h k}^{h} \tag{2.12}
\end{equation*}
$$

We denote the left side (and also the right side) of (2.11) by $C_{j k}^{i}$. Once the coordinate system z^{1}, \cdots, z^{n} is fixed, $C_{j k}^{i}$ depends only on the holomorphic $C O(n ; C)$-structure P but not on the particular g.

We shall now study how $C_{j k}^{i}$ changes under coordinate transformations. First, we note

$$
\begin{align*}
& \Gamma_{k}=(1 / 2) \sum g^{i n}\left(\partial g_{h i} / \partial z^{k}\right)=(1 / 2)\left(\partial(\log G) / \partial z^{k}\right) \tag{2.13}\\
& \text { where } G=\operatorname{det}\left(g_{i j}\right) .
\end{align*}
$$

Now, we use two local coordinate systems $z_{\alpha}^{1}, \cdots, z_{\alpha}^{n}$ and $z_{\beta}^{1}, \cdots, z_{\beta}^{n}$, and we calculate $C_{\alpha j k}^{i}$ and $C_{\beta j k}^{i}$ with respect to these coordinate systems. Since g and $f g$ give rise to the same $C_{j k}^{i}$, we may assume $g_{\beta}=g_{\alpha}$, i.e., $f_{\beta \alpha}=1$ for the purpose of calculating $C_{j k}^{i}$. Then

$$
\begin{equation*}
\sum g_{\alpha i j} d z_{\alpha}^{i} d z_{\alpha}^{j}=\sum g_{\beta i j} d z_{\beta}^{i} d z_{\beta}^{j} \tag{2.14}
\end{equation*}
$$

so that

$$
\begin{equation*}
G_{\beta}=\operatorname{det}\left(g_{\beta i j}\right)=J_{\beta \alpha}^{2} \operatorname{det}(g)_{\alpha i j}=J_{\beta \alpha}^{2} G_{\alpha} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\beta \alpha}=\operatorname{det}\left(\partial z_{\alpha}^{i} / \partial z_{\beta}^{j}\right) . \tag{2.16}
\end{equation*}
$$

From (2.13) and (2.15), we obtain

$$
\begin{equation*}
\Gamma_{\beta k}=\sum \Gamma_{\alpha h}\left(\partial z_{\alpha}^{h} / \partial z_{\beta}^{k}\right)+\partial\left(\log J_{\beta \alpha}\right) / \partial z_{\beta}^{k} . \tag{2.17}
\end{equation*}
$$

From the definition (2.11) of $C_{j k}^{i}$ and (2.17), it follows that

$$
\begin{align*}
C_{\beta j k}^{i}= & \sum\left(\partial z_{\beta}^{i} / \partial z_{\alpha}^{a}\right) C_{\alpha b c}^{a}\left(\partial z_{\alpha}^{b} / \partial z_{\beta}^{j}\right)\left(\partial z_{\alpha}^{e} / \partial z_{\beta}^{k}\right)+\sum\left(\partial z_{\beta}^{i} / \partial z_{\alpha}^{a}\right)\left(\partial^{2} z_{\alpha}^{a} / \partial z^{j} \partial z^{k}\right) \tag{2.18}\\
& -(1 / n)\left(\delta_{j}^{i} \sigma_{\beta \alpha k}+\delta_{k}^{i} \sigma_{\beta \alpha j}-\sum g_{\beta}^{i h} g_{\beta j k} \sigma_{\beta \alpha h}\right),
\end{align*}
$$

where

$$
\begin{equation*}
\sigma_{\beta \alpha k}=\partial\left(\log J_{\beta \alpha}\right) / \partial z_{\beta}^{k} \tag{2.19}
\end{equation*}
$$

We consider a non-singular hyperquadric Q_{n} in $P_{n+1} C$ defined in terms of the homogeneous coordinate system $\zeta^{0}, \zeta^{1}, \cdots, \zeta^{n+1}$ by the following equation:

$$
\begin{equation*}
-2 \zeta^{0} \zeta^{n+1}+\left(\zeta^{1}\right)^{2}+\cdots+\left(\zeta^{n}\right)^{2}=0 \tag{2.20}
\end{equation*}
$$

Let Q be the symmetric matrix of degree $n+2$ corresponding to the quadritic form of (2.20):

$$
Q=\left(\begin{array}{rcr}
0 & 0 & -1 \tag{2.21}\\
0 & I_{n} & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

Let $G=O(n+2 ; C)$ be the group of complex matrices A of degree $n+2$ such that

$$
\begin{equation*}
{ }^{t} A Q A=Q \tag{2.22}
\end{equation*}
$$

Its Lie algebra $\mathfrak{g}=\mathfrak{o}(n+2 ; C)$ consists of complex matrices A of degree $n+2$ satisfying

$$
\begin{equation*}
{ }^{t} A Q+Q A=0 \tag{2.23}
\end{equation*}
$$

Then it can be easily verified that g is a graded Lie algebra

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}, \quad\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j} \tag{2.24}
\end{equation*}
$$

where

$$
\mathfrak{g}_{-1}=\left\{\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2.25}\\
u & 0 & 0 \\
0 & { }^{t} u & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{0}=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & U & 0 \\
0 & 0 & -a
\end{array}\right)\right\}, \quad \mathfrak{g}_{1}=\left\{\left(\begin{array}{lll}
0 & v^{t} v & 0 \\
0 & 0 & v \\
0 & 0 & 0
\end{array}\right)\right\}
$$

where u and v are complex n-vectors, U is a complex skew-symmetric matrix of degree n and a is a complex number.

The group G acts transitively on the quadric Q_{n}. Let H be the isotropy subgroup leaving the point $p_{0}={ }^{t}(1,0, \cdots, 0) \in Q_{n}$ fixed. Then H consists of matrices of the form

$$
\left(\begin{array}{lll}
a & { }^{t} v & b \tag{2.26}\\
0 & U & w \\
0 & 0 & c
\end{array}\right), \quad \text { where } \quad \begin{aligned}
& a, b, c \in C, \quad a c=1, \quad{ }^{t} U U=I_{n} \\
& v=a^{t} U w, \quad 2 b c={ }^{t} w w
\end{aligned}
$$

Note that a, w, U determine b, c, v.
To see the action of H on the tangent space at p_{0}, i.e., the linear isotropy representation of H, we use the inhomogeneous coordinate system $z^{1}, \cdots, z^{n}, z^{n+1}$ of $P_{n+1} C$ defined by $z^{i}=\zeta^{i} / \zeta^{0}, i=1, \cdots, n+1$. Then the defining equation (2.20) for the quadric Q_{n} becomes

$$
\begin{equation*}
2 z^{n+1}=\left(z^{1}\right)^{2}+\cdots+\left(z^{n}\right)^{2}={ }^{t} z z \tag{2.27}
\end{equation*}
$$

where z denotes the vector ${ }^{t}\left(z^{1}, \cdots, z^{n}\right)$. To see how the element of H given by (2.26) acts on Q_{n}, we calculate

$$
\left(\begin{array}{ccc}
a & { }^{t} v & b \tag{2.28}\\
0 & U & w \\
0 & 0 & c
\end{array}\right)\left(\begin{array}{l}
1 \\
z \\
z^{n+1}
\end{array}\right)=\left(\begin{array}{c}
a+{ }^{t} v z+b z^{n+1} \\
U z+w z^{n+1} \\
c z^{n+1}
\end{array}\right)
$$

Hence, the transformation is given by

$$
\begin{equation*}
z \mapsto\left\{U z+(1 / 2)\left({ }^{t} z z\right) w\right\}\left\{a+{ }^{t} v z+(1 / 2)\left({ }^{t} z z\right) b\right\}^{-1} \tag{2.29}
\end{equation*}
$$

Its differential at p_{0}, i.e., at $z=0$, is given by

$$
\begin{equation*}
d z \mapsto c U d z \tag{2.30}
\end{equation*}
$$

Thus the linear isotropy representation λ of H is given by

$$
\lambda:\left(\begin{array}{ccc}
a & { }^{t} v & b \tag{2.31}\\
0 & U & w \\
0 & 0 & c
\end{array}\right) \mapsto c \cdot U
$$

Its kernel N consists of matrices of the form

$$
\left.\left(\begin{array}{rcr}
\pm 1 & { }^{t} v & b \tag{2.32}\\
0 & \pm I_{n} & v \\
0 & 0 & \pm 1
\end{array}\right), \quad b= \pm(1 / 2){ }^{t} v v\right)
$$

It is not hard to see that g_{1} is the Lie algebra of N and $g_{0}+g_{1}$ is the Lie algebra of H while g_{0} is the Lie algebra of the subgroup $G_{0} \subset H$ consisting of matrices of the form

$$
\left(\begin{array}{lll}
a & 0 & 0 \tag{2.33}\\
0 & U & 0 \\
0 & 0 & c
\end{array}\right), \quad a c=1, \quad{ }^{t} U U=I_{n}
$$

We shall now construct a holomorphic $C O(n ; C)$-structure on the quadric Q_{n}. Let $\left(e_{1}, \cdots, e_{n}\right)$ be the frame at $p_{0} \in Q_{n}$ given by $\left(\partial / \partial z^{1}\right)_{p_{0}}, \cdots$, $\left(\partial / \partial z^{n}\right)_{p_{0}}$. Let P be the subbundle of the bundle $L\left(Q_{n}\right)$ of complex linear frames of Q_{n} consisting of those frames which are obtained from $\left(e_{1}, \cdots, e_{n}\right)$ by translation by elements of $G=O(n+2 ; C)$. Then P is a principal subbundle of $L\left(Q_{n}\right)$ with structure group $H / N=C O(n ; C)$, (see (2.1) and (2.31)). Thus we have constructed a natural holomorphic $C O(n ; C)$-structure on the quadric Q_{n}. The action of G on Q_{n} lifts naturally to the bundle $L\left(Q_{n}\right)$, and P is nothing but the G-orbit of the frame $\left(e_{1}, \cdots, e_{n}\right)$. It is then clear that the holomorphic $C O(n ; \boldsymbol{C})$-structure P is invariant by G. Moreover G is the largest group of holomorphic transformations of Q_{n} which leaves P invariant.

The homogeneous space G / N is a principal bundle over G / H with structure group H / N. It is also clear that this bundle is naturally isomorphic to the bundle P.

We shall now construct a holomorphic non-degenerate symmetric covariant tensor field (2.2) associated to the holomorphic conformal struc-
ture P. Consider the tensor field

$$
\begin{equation*}
f=-d \zeta^{0} d \zeta^{n+1}-d \zeta^{n+1} d \zeta^{0}+d \zeta^{1} d \zeta^{1}+\cdots+d \zeta^{n} d \zeta^{n} \tag{2.34}
\end{equation*}
$$

on $\boldsymbol{C}^{n+2}-\{0\}$. Let s be a local holomorphic section of the bundle $\boldsymbol{C}^{n+2}-\{0\}$ over $P_{n+1} C$. Although $s^{*} f$ depends on the section s, its restriction to Q_{n} is uniquely defined, independently of s, up to a multiplicative factor of non-vanishing holomorphic function. In fact, let $s^{\prime}=\lambda s$ be another local holomorphic section. Since

$$
\begin{align*}
&-d\left(\lambda \zeta^{0}\right) d\left(\lambda \zeta^{n+1}\right)-d\left(\lambda \zeta^{n+1}\right) d\left(\lambda \zeta^{0}\right)+\sum_{i=1}^{n} d\left(\lambda \zeta^{i}\right) d\left(\lambda \zeta^{i}\right) \tag{2.35}\\
&= \lambda^{2}\left(-d \zeta^{0} d \zeta^{n+1}-d \zeta^{n+1} d \zeta^{0}+\sum^{n} d \zeta^{i} d \zeta^{i}\right) \\
& \quad+(\lambda d \lambda) d\left(-2 \zeta^{0} \zeta^{n+1}+\sum \zeta^{i} \zeta^{i}\right)+(d \lambda d \lambda)\left(-2 \zeta^{0} \zeta^{n+1}+\sum \zeta^{i} \zeta^{i}\right)
\end{align*}
$$

we obtain

$$
\begin{equation*}
\left.s^{*} f\right|_{Q_{n}}=\lambda^{2}\left(\left.s^{*} f\right|_{Q_{n}}\right) \tag{2.36}
\end{equation*}
$$

In the affine space $A_{n+1} \subset P_{n+1} C$ defined by $\zeta^{0} \neq 0$, we use the inhomogeneous coordinate system z^{1}, \cdots, z^{n+1} given by $z^{i}=\zeta^{i} / \zeta^{0}$. Let s be the cross section $A_{n+1} \rightarrow \boldsymbol{C}^{n+2}-\{0\}$ defined by

$$
\begin{equation*}
\zeta^{0}=1, \zeta^{1}=z^{1}, \cdots, \zeta^{n+1}=z^{n+1} \tag{2.37}
\end{equation*}
$$

Since $Q_{n} \cap A_{n+1}$ is given by the equation (2.27), (z^{1}, \cdots, z^{n}) can be taken as a coordinate system in $Q_{n} \cap A_{n+1}$. Then $s^{*} f$ is given on $Q_{n} \cap A_{n+1}$ by

$$
\begin{equation*}
d z^{1} d z^{1}+\cdots+d z^{n} d z^{n} \tag{2.38}
\end{equation*}
$$

Let M be an n-dimensional complex manifold and $P(M)$ a holomorphic $C O(n ; C)$-structure on M. Let $P\left(Q_{n}\right)$ be the natural holomorphic $C O(n ; C)$-structure on the quadric Q_{n} defined above. We say that the structure $P(M)$ is flat if it is locally isomorphic to $P\left(Q_{n}\right)$, i.e., if, for every point of M, there is a biholomorphic map h of a neighborhood U of that point into Q_{n} which induces an isomorphism $\left.\left.P(M)\right|_{U} \rightarrow P\left(Q_{n}\right)\right|_{h(U)}$. A flat $C O(n ; C)$-structure $P(M)$ is called a quadric structure on M. It can be proved that M admits a quadric structure if and only if it is covered by coordinate charts $\left(U_{\alpha}, \varphi_{\alpha}\right)$ such that
(i) $\varphi_{\alpha} \operatorname{maps} U_{\alpha}$ biholomorphically onto an open subset of Q_{n},
(ii) for every pair (α, β) with $U_{\alpha} \cap U_{\beta} \neq \varnothing$, the coordinate change

$$
\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is given by (the restriction of) an element of G.
We shall now consider the noncompact dual of Q_{n}. In $P_{n+1} C$, consider the domain B of Q_{n} defined in terms of the homogenous coordinate sys-
tem $\eta^{0}, \cdots, \eta^{n+1}$ by

$$
B=\left\{\left[\eta^{0}: \cdots: \eta^{n+1}\right] \in P_{n+1} C ; \begin{array}{l}
-\left(\eta^{0}\right)^{2}+\left(\eta^{1}\right)^{2}+\cdots+\left(\eta^{n}\right)^{2}-\left(\eta^{n+1}\right)^{2}=0 \tag{2.39}\\
-\left|\eta^{0}\right|^{2}+\left|\eta^{1}\right|^{2}+\cdots+\left|\eta^{n}\right|^{2}-\left|\eta^{n+1}\right|^{2}<0
\end{array}\right\}
$$

Let t be the projective transformation of $P_{n+1} C$ defined by

$$
\begin{align*}
& t\left(\left[\eta^{0}: \cdots: \eta^{n+1}\right]\right) \tag{2.40}\\
&=\left[\left(i \eta^{0}+\eta^{n+1}\right) / \sqrt{2}: \eta^{1}: \cdots: \eta^{n}:\left(-i \eta^{0}+\eta^{n+1}\right) / \sqrt{2}\right]
\end{align*}
$$

Set $D=t(B)$. Then we have

$$
\left.\begin{array}{rl}
D=\{ & \left\{\zeta^{0}\right. \tag{2.41}\\
& \left.: \cdots: \zeta^{n+1}\right] \in P_{n+1} C \\
& -2 \zeta^{0} \zeta^{n+1}+\left(\zeta^{1}\right)^{2}+\cdots+\left(\zeta^{n}\right)^{2}=0 \\
& -\left|\zeta^{0}-\zeta^{n+1}\right|^{2} / 2+\left|\zeta^{1}\right|^{2}+\cdots+\left|\zeta^{n}\right|^{2}-\left|\zeta^{0}+\zeta^{n+1}\right|^{2} / 2<0
\end{array}\right\} .
$$

Hence D is a domain in Q_{n}. Actually D is in $Q_{n} \cap A_{n+1}$. With respect to the coordinate (z^{1}, \cdots, z^{n}) of $Q_{n} \cap A_{n+1}$ defined above, D can be identified with the bounded domain

$$
\begin{equation*}
\left\{\left(z^{1}, \cdots, z^{n}\right) \in C^{n} ; \sum_{k=1}^{n}\left|z^{k}\right|^{2}<1+\left|\sum_{k=1}^{n}\left(z^{k}\right)^{2}\right|^{2}\right\} \tag{2.42}
\end{equation*}
$$

We know D is a symmetric bounded domain, called the noncompact dual of Q_{n}. We write H for the subgroup of $O(n+2 ; C)$ leaving the domain D invariant. Then H is the largest group of holomorphic transformations of the bounded domain D. The natural invariant quadric structure on Q_{n} constructed above induces a quadric structure on D which is clearly invariant by the subgroup H. If Γ is a discrete subgroup of H acting freely on D, then the quotient manifold $M=D / \Gamma$ carries a natural quadric structure induced from that of D.
3. Chern classes. Let M be an n-dimensional complex manifold with a holomorphic conformal structure $\left\{g_{\alpha}\right\}$. To calculate its Chern classes, we construct a C^{∞} affine connection on M and compute its curvature tensor.

Since $d\left(\log f_{\beta \alpha}\right)$ is a 1-cocycle, we can find a C^{∞} form

$$
\begin{equation*}
\varphi_{\alpha}=\sum \varphi_{\alpha k} d z_{\alpha}^{k} \tag{3.1}
\end{equation*}
$$

on each U_{α} such that

$$
\begin{equation*}
d\left(\log f_{\beta \alpha}\right)=\varphi_{\beta}-\varphi_{\alpha} \tag{3.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\rho_{\beta \alpha k}=\varphi_{\beta k}-\varphi_{\alpha k} \tag{3.3}
\end{equation*}
$$

We set

$$
\begin{equation*}
\Gamma_{\alpha j k}^{i}=C_{\alpha j k}^{i}-\left(\delta_{j}^{i} \varphi_{\alpha k}+\delta_{k}^{i} \varphi_{\alpha j}-\sum g_{\alpha j k} g_{\alpha}^{i l} \varphi_{\alpha l}\right) / 2 \tag{3.4}
\end{equation*}
$$

Then $\Gamma_{\alpha j k}^{i}$ defines an affine connection globally on M.
Since we shall work within one coordinate neighborhood in the remainder of this section, we shall drop the subscript α in the following calculation. The curvature tensor is given by

$$
\begin{equation*}
R_{j A B}^{i}=\partial \Gamma_{{ }_{j B}}^{i} / \partial z^{A}-\partial \Gamma_{j A}^{i} / \partial z^{B}+\sum\left(\Gamma_{C A}^{i} \Gamma_{j B}^{C}-\Gamma_{C B}^{i} \Gamma_{j A}^{C}\right) . \tag{3.5}
\end{equation*}
$$

Hence, (using the fact that $C_{j k}^{i}$ are holomorphic), we obtain

$$
\begin{equation*}
R_{j \overline{k h}}^{i}=0 \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j k \bar{h}}^{i}=-\partial \Gamma_{j k}^{i} / \partial \bar{z}^{h}=\left(\delta_{j}^{i} \varphi_{k \bar{h}}+\delta_{k}^{i} \varphi_{j \bar{h}}-\sum g_{j k} g^{i l} \varphi_{l \bar{h}}\right) / 2 . \tag{3.7}
\end{equation*}
$$

The curvature form is given by

$$
\begin{align*}
\Omega_{j}^{i} & =\sum R_{j k \bar{h}}^{i} d z^{k} \wedge d \bar{z}^{h}+\cdots \tag{3.8}\\
& =-\left(\delta_{j}^{i} \bar{\partial} \varphi+\bar{\partial} \varphi_{j} \wedge d z^{i}-\sum g_{j k} g^{i l} \bar{\partial} \varphi_{l} \wedge d z^{k}\right) / 2+\cdots
\end{align*}
$$

where the dots indicate terms of degree (2,0). (By (3.6), there is no terms of degree (0,2)).

The Chern forms $c_{i}, i=1, \cdots, n$, are given by (see, for example [10])

$$
\begin{equation*}
\operatorname{det}(I+(\sqrt{-1} / 2 \pi) \Omega)=1+c_{1}+\cdots+c_{n} \tag{3.9}
\end{equation*}
$$

It is clear from (3.6) that c_{i} involves only forms of degree $(i+m, i-m)$, $m \geqq 0$ and not those of degree $(i+m, i-m)$ for $m<0$. We shall calculate, only the (i, i-component $c^{(i, i)}$ of c_{i}. We substitute (3.8) into (3.9) and drop the terms indicated by dots. Then

$$
\begin{align*}
& \operatorname{det}\left[(1-(\sqrt{-1} / 4 \pi) \bar{\partial} \varphi) \delta_{j}^{i}-(\sqrt{-1} / 4 \pi)\left(\delta_{k}^{i} \bar{\partial} \varphi_{j}-g_{j k} g^{i l} \bar{\partial} \varphi_{l}\right) \wedge d z^{k}\right] \tag{3.10}\\
& =\sum_{p=0}^{n}(1-(\sqrt{-1} / 4 \pi) \bar{\partial} \varphi)^{n-p}(-\sqrt{-1} / 4 \pi)^{p}(1 / p!) \Phi_{p}
\end{align*}
$$

where

$$
\begin{align*}
\Phi_{p}=\sum \delta_{i_{1} \ldots i_{p}}^{j_{1} \cdots j_{p}}\left(\delta_{k_{1}}^{i_{1}} \bar{\partial} \varphi_{j_{1}}-\right. & \left.g_{j_{1} k_{1}} g_{1}^{i_{1} l_{1}} \bar{\partial} \varphi_{l_{1}}\right) \wedge d z^{k_{1}} \wedge \cdots \tag{3.11}\\
& \wedge\left(\delta_{k_{p} p}^{i_{p}} \varphi_{j_{p}}-g_{j_{p} k_{p}} g^{i_{p} l_{p}} \bar{\partial} \varphi_{l_{p}}\right) \wedge d z^{k_{p}}
\end{align*}
$$

Given a point of M, we choose a local coordinate system so that $g_{i j}=\delta_{i j}$ at that point. Then a straightforward calculation shows

$$
\Phi_{p}= \begin{cases}p!(\bar{\partial} \varphi)^{p} & \text { if } p \text { is even } \tag{3.12}\\ 0 & \text { if } p \text { is odd }\end{cases}
$$

If we set

$$
\begin{equation*}
h=(4 \pi \sqrt{-1})^{-1} \bar{\partial} \varphi, \tag{3.13}
\end{equation*}
$$

then (3.10) may be written as follows:

$$
\begin{equation*}
1+c^{(1,1)}+\cdots+c^{(n, n)}=\sum_{0 \leq q \leq n / 2}(1+h)^{n-2 q} h^{2 q} . \tag{3.14}
\end{equation*}
$$

Since $h^{n+1}=0$, this may be rewritten as follows:

$$
\begin{equation*}
1+c^{(1,1)}+\cdots+c^{(n, n)}=(1+h)^{n+2} /(1+2 h) \tag{3.15}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
c^{(1,1)}=n h \tag{3.16}
\end{equation*}
$$

Substituting (3.16) back into (3.14) or (3.15), we can express $c^{(i, i)}$ in terms of $c^{(1,1)}$. Write

$$
\begin{equation*}
\sum_{q=0}^{m}(1+h)^{n-2 q} h^{2 q}=1+a_{1} h+a_{2} h^{2}+\cdots+a_{n} h^{n} \tag{3.17}
\end{equation*}
$$

where a_{1}, \cdots, a_{n} are positive integers. (We can easily see that $a_{1}=n$ and $a_{n}=m+1$, where $n=2 m$ or $2 m+1$). Then

$$
\begin{equation*}
c^{(r, r)}=a_{r} \cdot n^{-r}\left(c^{(1,1)}\right)^{r} . \tag{3.18}
\end{equation*}
$$

As we have stated above, c_{r} involves only forms of degree $(r+m$, $r-m), m \geqq 0$. Hence, both $c_{r}-c^{(r, r)}$ and $c_{1}^{r}-\left(c^{(1,1)}\right)^{r}$ involve only forms of degree $(r+m, r-m), m>0$. Hence, if Q_{n-r} is a $2(n-r)$-form involving only forms of degree ($n-r+k, n-r-k$), $k \geqq 0$, then

$$
\begin{equation*}
c_{r} Q_{n-r}=c^{(r, r)} Q_{n-r}, \quad c_{1}^{r} Q_{n-r}=\left(c^{(1,1)}\right)^{r} Q_{n-r} \tag{3.19}
\end{equation*}
$$

We have shown
Theorem (3.20). Let M be an n-dimensional complex manifold with a holomorphic $\operatorname{CO}(n ; \boldsymbol{C})$-structure and $c_{i} \in H^{2 i}(M, \boldsymbol{R})$ its i-th Chern class. Then for every weighted homogeneous polynomial $Q_{n-r}=Q_{n-r}\left(c_{1}, \cdots, c_{n-r}\right) \in$ $H^{2 n-2 r}(M, \boldsymbol{R})$ in Chern classes, we have

$$
c_{r} Q_{n-r}=a_{r} n^{-r} c_{1}^{r} Q_{n-r} \quad \text { for } \quad r=1, \cdots, n
$$

where a_{r} is the positive integer defined by (3.17). If M is moreover Kähler, then

$$
c_{r}=a_{r} n^{-r} c_{1}^{r} \quad \text { for } \quad r=1, \cdots, n .
$$

For surfaces, whether Kähler or not, the only relation we have is

$$
\begin{equation*}
2 c_{2}=c_{1}^{2} \tag{3.21}
\end{equation*}
$$

Remark (3.22). Let D be the noncompact dual of Q_{n} (cf. $\S 2$) and
Γ a discrete subgroup of H acting freely on D. Then we have shown in §2, that the quotient manifold $M=D / \Gamma$ carries the natural quadric structure (and hence a holomorphic $C O(n ; C)$-structure). In this case Theorem (3.20) above is known as Hirzebruch's proportionality principle ([5]).
4. Einstein-Kähler manifolds. In this section we shall prove the following

Theorem (4.1). Let M be a compact n-dimensional Einstein-Kähler manifold admitting a holomorphic $\operatorname{CO}(n ; \boldsymbol{C})$-structure. Then M is either a hyperquadric, or flat, or covered by the noncompact dual of a hyperquadric as described in §2 according as the Ricci tensor is positive, 0 or negative.

Let a holomorphic $C O(n ; \boldsymbol{C})$-structure is given by $\left\{g_{\alpha}\right\}$ as in (2.2). Let $S^{k} T^{*}$ denote the symmetric k-th tensor power of the cotangent bundle $T^{*}=T^{*} M$. Let F be the line bundle defined by $\left\{f_{\alpha \beta}\right\}$, (see (2.3)). Then $\left\{g_{\alpha}\right\}$ may be considered as a holomorphic section of $F \otimes S^{2} T^{*}$. We shall denote this section by g. Then $g^{n}=g \otimes \cdots \otimes g$ is a section of $F^{n} \otimes$ $\left(S^{2} T^{*}\right)^{\otimes n}$. By symmetrizing g^{n} we obtain a section $g^{(n)}$ of $F^{n} \otimes S^{2 n} T^{*}$. Since $F^{n}=K^{-2}$ by (2.5) (where K is the canonical line bundle of M), $g^{(n)}$ is a section of $K^{-2} \otimes S^{2 n} T^{*}$. In particular, $g^{(n)}$ is a holomorphic tensor field of covariant degree $2 n$ and contravariant degree $2 n$. On a compact Einstein-Kähler manifold such a holomorphic tensor field is parallel (by Theorem 1 in [9]). We lift this parallel tensor field to the universal covering manifold \tilde{M} of M and shall show that \tilde{M} is either a hyperquadric or its noncompact dual according as the Ricci tensor is positive or negative. (The Ricci flat case will be considered separately).

We shall wite $K^{-2} \otimes S^{2 n} T^{*}$ for $K^{-2} \otimes S^{2 n} T^{*}(\widetilde{M})$ and denote the lift of $g^{(n)}$ to \tilde{M} by the same symbol $g^{(n)}$. Let $\tilde{M}=M_{1} \times \cdots \times M_{r}$ be the de Rham decomposition of \tilde{M} into Kähler manifolds M_{1}, \cdots, M_{r} with irreducible holonomy group. (Since the Ricci tensor is definite, there is no Euclidean factor in the decomposion and the Ricci tensors of M_{1}, \cdots, M_{r} are either all positive or negative definite.) If we write $T_{i}^{*}=T^{*} M_{i}$ and denote the canonical line bundle of M_{i} by K_{i}, then under a natural identification we have

$$
\begin{equation*}
K^{-2} \otimes S^{2 n} T^{*}=\sum\left(K_{1}^{-2} \otimes S^{m_{1}} T_{1}^{*}\right) \otimes \cdots \otimes\left(K_{r}^{-2} \otimes S^{m_{r}} T_{r}^{*}\right) \tag{4.2}
\end{equation*}
$$

where the summation is taken over all partitions $2 n=m_{1}+\cdots+m_{r}$. We shall now restrict (4.2) to one point of \widetilde{M}. Thus we regard (4.2) as an isomorphism between the fibres of the two bundles at one point. We
consider $g^{(n)}$ as an element of that particular fibre which is invariant by the holonomy group rather than a parallel section of the tensor bundle.

Let $\Phi, \Phi_{1}, \cdots, \Phi_{r}$ be the holonomy groups of M, M_{1}, \cdots, M_{r}. Then $\Phi=\Phi_{1} \times \cdots \times \Phi_{r}$ in a natural manner. If we denote in (4.2) the subspaces consisting of elements invariant by these holonomy groups by the superscript $(\cdots)^{I}$, then we obtain

$$
\begin{equation*}
\left(K^{-2} \otimes S^{2 n} T^{*}\right)^{I}=\sum\left(K_{1}^{-2} \otimes S^{m_{1}} T_{1}^{*}\right)^{I} \otimes \cdots \otimes\left(K_{r}^{-2} \otimes S^{m_{r}} T_{r}^{*}\right)^{I} \tag{4.3}
\end{equation*}
$$

We claim that $\left(K_{i}^{-2} \otimes S^{m_{i}} T_{i}^{*}\right)^{I}=0$ unless M_{i} is a symmetric space. In fact, (by the argument in [9]),

Lemma (4.4). If M is a Kähler manifold with irreducible holonomy, then

$$
\left(K^{q} \otimes S^{m} T^{*}\right)^{I}=0 \quad \text { for all } \quad q \quad \text { and } \quad m>0
$$

unless M is a symmetric space.
Since (4.4) is not stated exactly in this form in [9], we shall sketch its proof. Since M is not symmetric and has nonzero Ricci tensor, its holonomy group is either $U(n)$ or $S p(n / 2) \times U(1)$ by Berger's holonomy theorem. But these groups act irreducibly on $K^{q} \otimes S^{m} T^{*}$.

Now we claim that M_{1}, \cdots, M_{r} are all symmetric. Since $g=\left\{g_{\alpha}\right\}$ is non-degenerate, the element $g^{(n)}$ of the left hand side of (4.3) involves all factors M_{1}, \cdots, M_{r}. If one of them, say M_{1}, is not symmetric, then there would be no terms involving $\left(K_{1}^{-2} \otimes S^{m_{1}} T_{1}^{*}\right)^{I}$ in the right hand side of (4.3). This is a contradiction.

We shall show now either $\tilde{M}=M_{1}$, i.e., \tilde{M} is already irreducible, or $\widetilde{M}=P_{1} C \times P_{1} C$ or $\tilde{M}=D \times D$, where D denotes the unit disk. By (3.20), the ratio between all Chern numbers of M with a holomorphic $C O(n ; \boldsymbol{C})$ structure depends only on the dimension n and does not depend on a particular M. This ratio can be determined, for example, from the hyperquadric. In particular, the n-dimensional hyperquadric has

$$
\text { arithmetic genus }=1, \quad c_{n}=\left\{\begin{array}{llll}
n+1 & \text { if } & n \text { is odd } \\
n+2 & \text { if } & n & \text { is even }
\end{array}\right.
$$

We consider first the case where the Ricci tensor is positive so that M itself is simply connected. In this case, the arithmetic genus of M is 1 and hence the Euler number c_{n} is $n+1$ or $n+2$. If we denote the complex dimension of M_{i} by n_{i}, then its Euler number is at least $n_{i}+1$ since M_{i} is of compact type. Hence $n+2 \geqq\left(n_{1}+1\right) \cdots\left(n_{r}+1\right)$, where $n=n_{1}+\cdots+n_{r}$. But this is possible only when $r=1$ or $r=2$ with $n_{1}=n_{2}=1$. When the Ricci tensor is negative we consider the
compact dual of M and apply Hirzebruch's proportionality principle (cf. Remark (3.22)). This proves our assertion that either \tilde{M} is irreducible or $\widetilde{M}=P_{1} C \times P_{1} C$ or $\widetilde{M}=D \times D$.

Assume that \tilde{M} is irreducible. Again we consider first the case the Ricci tensor is positive. Then $c_{n}>n+2$ unless M is either the projective space $P_{n} \boldsymbol{C}$ (in which case $c_{n}=n+1$) or the hyperquadric. The projective space can be eliminated by considering the Chern class c_{2}. (For the hyperquadric $c_{2}=\left(\left(n^{2}-n+2\right) / 2 n^{2}\right) c_{1}^{2}$ while $c_{2}=(n / 2(n+1)) c_{1}^{2}$ for $P_{n} C$.) The case of negative Ricci tensor can be reduced to the positive case by the proportionality principle.

We shall now consider the remaining case, i.e., the Ricci flat case. Since $c_{1}=0, c_{2}=0$ by (3.20). But we know that a compact Kähler manifold with vanishing Ricci tensor and $c_{2}=0$ is flat, (see [7] as well as [17]). This completes the proof of (4.1).

Corollary (4.5). Let M be a compact n-dimensional Kähler manifold admitting a holomorphic $C O(n ; \boldsymbol{C})$-structure. If $c_{1}<0$ (i.e., if the canonical bundle is ample), then the universal covering space of M is the noncompact dual of the hyperquadric. If $c_{1}=0$ in $H^{2}(M ; \boldsymbol{R})$, then M has a complex torus as a unramified covering space.

Proof. The case $c_{1}<0$ follows from the theorem of Aubin [1] and Yau [20] that such a manifold admits an Einstein-Kähler metric. The case $c_{1}=0$ follows from the theorem of Yau [20] that such a manifold admits a Ricci flat Kähler metric. q.e.d.

Although a compact Kähler manifold with $c_{1}>0$ may not admit an Einstein-Kähler metric, we can still say something. Since a compact Kähler manifold with $c_{1}>0$ admits a Kähler metric with positive Ricci tensor [20], it is simply connected, [8]. The standard argument using the development (cf. §4 of [12]) implies the following:

Theorem (4.6). Let M be an n-dimensional compact Kähler manifold with $c_{1}>0$. If it admits a quadric structure, it is biholomorphic to a nonsingular hyperquadric Q_{n} in $P_{n+1} C$.

When n is odd, we can say more.
Theorem (4.7). Let M be an n-dimensional compact Kähler manifold with $c_{1}>0$. If n is odd and if M admits a holomorphic $\operatorname{CO}(n ; \boldsymbol{C})$ structure, then M is biholomorphic to a nonsingular hyperquadric Q_{n} in $P_{n+1} C$.

Proof. By (2.5), the canonical bundle K satisfies the relationship
$K^{-2}=F^{n}$, where F is a line bundle. Let α be the characteristic class of F. Then $2 c_{1}=n \alpha$ (in $H^{1,1}(M: Z)$). If n is odd, there is an element β in $H^{1,1}(M: Z)$ such that $c_{1}=n \beta$. Since c_{1} is positive, so is β. By the characterization of a nonsingular hyperquadric given in [11], M is biholomorphic to Q_{n}.

It would be natural to raise the question whether a compact Kähler manifold with $c_{1}>0$ admitting a holomorphic $C O(n ; C)$-structure is biholomorphic to Q^{n}. In dimension 2, the condition $c_{1}>0$ implies the rationality and, as we shall see later, the only rational surface admitting a holomorphic $C O(n ; C)$-structure is the quadric $Q_{2}=P_{1} C \times P_{1} C$.
5. Compact complex surfaces. Let M be a complex surface with a holomorphic $\operatorname{CO}(2 ; C)$-structure $\left\{g_{\alpha}\right\}$, where $g_{\alpha}=\sum g_{\alpha i j} d z_{\alpha}^{i} d z_{\alpha}^{j}$ in U_{α}. At each point $x_{\alpha} \in U_{\alpha} \subset M$, the equation

$$
\begin{equation*}
g_{\alpha}(X, X)=0 \tag{5.1}
\end{equation*}
$$

defines two lines L_{x}^{\prime} and $L_{x}^{\prime \prime}$ in the tangent plane $T_{x} M$. Since we cannot distinguish L_{x}^{\prime} and $L_{x}^{\prime \prime}$, we may not be able to choose L_{x}^{\prime} continuously on M. However, on a double covering space \tilde{M} of M, we can obtain holomorphic line subbundles L^{\prime} and $L^{\prime \prime}$ of $T \widetilde{M}$. Thus, a holomorphic $C O(2 ; C)$-structure on M gives rise to a splitting $T \widetilde{M}=L^{\prime} \oplus L^{\prime \prime}$.

Conversely, given a splitting

$$
\begin{equation*}
T M=L^{\prime} \oplus L^{\prime \prime} \tag{5.2}
\end{equation*}
$$

of the tangent bundle into line subbundles L^{\prime} and $L^{\prime \prime}$, we can obtain a holomorphic $C O(2 ; C)$-structure on M by setting

$$
\begin{equation*}
g_{\alpha}\left(L^{\prime}, L^{\prime}\right)=g_{\alpha}\left(L^{\prime \prime}, L^{\prime \prime}\right)=0, \quad g_{\alpha}\left(e^{\prime}, e^{\prime \prime}\right)=1 \tag{5.3}
\end{equation*}
$$

where e^{\prime} and $e^{\prime \prime}$ are arbitrarily chosen local holomorphic sections spanning L^{\prime} and $L^{\prime \prime}$ over U_{α}. The structure is independent of the choice of $e^{\prime}, e^{\prime \prime}$.

Since every 1-dimensional holomorphic distribution is integrable, L^{\prime} and $L^{\prime \prime}$ are integrable and define foliations. Hence,

Lemma (5.4). A splitting $T M=L^{\prime} \oplus L^{\prime \prime}$ on a complex surface M is equivalent to a pair of mutually transversal 1-dimensional holomorphic foliations on M.

In other words, on such a surfance M we can choose a system of coordinate charts $\left\{U_{\alpha} ;\left(z_{\alpha}^{1}, z_{\alpha}^{2}\right)\right\}$ such that

$$
\begin{equation*}
\boldsymbol{z}_{\alpha}^{1}=f_{\alpha \beta}^{1}\left(z_{\beta}^{1}\right), \quad z_{\alpha}^{2}=f_{\alpha \beta}^{2}\left(z_{\beta}^{2}\right) \tag{5.5}
\end{equation*}
$$

so that $\partial / \partial z_{\alpha}^{1}$ and $\partial / \partial z_{\alpha}^{2}$ span L^{\prime} and $L^{\prime \prime}$, respectively. With respect to
such a coordinate system, g_{α} is of the following form (see (5.3)):

$$
\begin{equation*}
g_{\alpha}=2 g_{\alpha 12} d z_{\alpha}^{1} d z_{\alpha}^{2} \tag{5.6}
\end{equation*}
$$

Without loss of generality we may assume that $g_{\alpha 12}=1$ so that

$$
\begin{equation*}
g_{\alpha}=2 d z_{\alpha}^{1} d z_{\alpha}^{2} \tag{5.7}
\end{equation*}
$$

Lemma (5.8). Let M be a compact complex surface with a splitting $T M=L^{\prime} \oplus L^{\prime \prime}$. If f^{\prime} and $f^{\prime \prime}$ denote the characteristic classes of the line bundles L^{\prime} and $L^{\prime \prime}$, then

$$
c_{1}(M)=f^{\prime}+f^{\prime \prime}, \quad c_{2}(M)=f^{\prime} \cdot f^{\prime \prime}, \quad f^{\prime 2}=f^{\prime \prime 2}=0
$$

Proof. The first two equalities are obvious. The third follows from the vanishing theorem of Bott for integrable distributions, [3].

We shall now show that a complex surface admitting a holomorphic $C O(2 ; C)$-structure is free of exceptional curves. The following lemma will be used also in studying Hopf surfaces.

Lemma (5.9). Given a holomorphic $\operatorname{CO}(2 ; \boldsymbol{C})$-structure $\left\{g_{\alpha}\right\}$ on the punctured unit ball

$$
B^{*}=\left\{\left(z^{1}, z^{2}\right) \in C^{2} ; 0<\left|z^{1}\right|^{2}+\left|z^{2}\right|^{2}<1\right\}
$$

in \boldsymbol{C}^{2}, there is a globally defined holomorphic quadratic form $g=\sum g_{i j} d z^{i} d z^{j}$ on B^{*} such that $g=f_{\alpha} g_{\alpha}$ on U_{α}, where f_{α} is a holomorphic function on U_{α}.

Proof. Let F be the line bundle given by the transition functions $\left\{f_{\alpha \beta}\right\}$ defined by $g_{\alpha}=f_{\alpha \beta} g_{\beta}$. By (2.5), $F^{2}=K^{-2}$, where K is the canonical line bundle of B^{*}. Since K on B^{*} is trivial, so is F^{2}. From the simple connectedness of B^{*} it follows that F itself is trivial. Hence, $f_{\alpha \beta}=f_{\alpha}^{-1} f_{\beta}$, where f_{α} is an invertible holomorphic function on U_{α}. Then $f_{\alpha} g_{\alpha}=f_{\beta} g_{\beta}$ on $U_{\alpha} \cap U_{\beta}$, which defines a global form g.
q.e.d.

Lemma (5.10). Let M be a complex surface and \tilde{M} the surface obtained by blowing up a point, say o, of M. If \tilde{M} admits a holomorphic $C O(2 ; \boldsymbol{C})$-structure, so does M.

Proof. Let $p: \widetilde{M} \rightarrow M$ be the natural projection and $C=p^{-1}(o)$. The given holomorphic $C O(2 ; C)$-structure on \widetilde{M} induces a holomorphic $C O(2 ; C)$ structure on $M-\{o\}$. Let B be a neighborhood of o in M and $B^{*}=$ $B-\{o\}$. By (5.9), the induced holomorphic $C O(2 ; C)$-structure on B^{*} can be given by a single quadratic form $g=\sum g_{i j} d z^{i} d z^{j}$. Since g is holomorphic, it extends through o by Hartogs' theorem. Since both $\operatorname{det}\left(g_{i j}\right)$ and $\operatorname{det}\left(g_{i j}\right)^{-1}$ are holomorphic and extend through o, $\operatorname{det}\left(g_{i j}\right)$ remains
nonzero even at the point o. Hence the extended g is everwhere nondegenerate.
q.e.d.

THEOREM (5.11). A complex surface admitting a holomorphic $C O(2 ; C)$-structure is free of exceptional curves of the first kind.

Proof. Let M and \tilde{M} be as in (5.10). Assume that \tilde{M} admits a holomorphic $C O(2 ; C)$-structure. With the notation in the proof of (5.10), let $g=\sum g_{i j} d z^{i} d z^{j}$ be a form on B defining the induced $C O(2 ; C)$-structure on $B \subset M$. The pull-back $p^{*}(g)$ defines the given holomorphic $C O(2 ; C)$ structure on $p^{-1}\left(B^{*}\right)=p^{-1}(B)-C$ while it degenerates at each point of C since p collapses C into a single point. This is a contrdiction. q.e.d.

Remark (5.12). If we assume M to be compact, we can use (3.21) to obtain (5.11). Since $c_{2}(\tilde{M})=c_{2}(M)+1$ and $c_{1}(\tilde{M})^{2}=c_{1}(M)^{2}-1$, (3.21) cannot hold for both M and \widetilde{M} at the same time. This is the argument used by Gunning [4] for holomorphic affine and projective connections.

Using the splitting $T M=L^{\prime}+L^{\prime \prime}$ we can strengthen (5.11).
THEOREM (5.13). Let M be a complex surface admitting a CO(2; C)structure. Let C be a nonsingular rational curve in M and N_{C} its normal line bundle. Let H be the hyperplane line bundle over C (so that every line bundle over C is of the form $\left.H^{k}, k \in \boldsymbol{Z}\right)$. Then $N_{C}=H^{k}$, where $k \geqq 2$ or $k=0$.

Proof. Taking a double covering space \tilde{M} of M and lifting C to \widetilde{M} if necessary, we may assume that the $C O(2 ; C)$-structure on M gives rise to a splitting $T M=L^{\prime} \oplus L^{\prime \prime}$. Consider first the case where C is tangent to L^{\prime} (or $L^{\prime \prime}$). Then C is a leaf of the foliation defined by L^{\prime}. The holonomy of the leaf C is discrete by the general theory. Since C is simply connected, the holonomy of C is trivial. Hence the normal bundle N_{C} is trivial. Assume that C is not tangent to L^{\prime} (nor to $L^{\prime \prime}$). Let X be a holomorphic vector field of C with two isolated zeros. We write $X=X^{\prime}+X^{\prime \prime}$ so that $X^{\prime} \in L^{\prime}$ and $X^{\prime \prime} \in L^{\prime \prime}$. Let s be the section of the normal bundle N_{C} obtained by projecting X^{\prime} to N_{C}. Then s is a nontrivial section with at least two zeros. Hence, $N_{C}=H^{k}$ with $k \geqq 2$. q.e.d.

Corollary (5.14). A complex surface M with a holomorphic CO(2; C)structure cannot contain a nonsingular rational curve with self-intersection $C \cdot C<0$ or $C \cdot C=1$.
6. Elliptic surfaces. We shall determine the elliptic surfaces admitting $C O(2 ; \boldsymbol{C})$-structures. Let M be an elliptic surface with a $C O(2 ; \boldsymbol{C})$ structure. Then it is free of exceptional curves of the first kind and
hence $c_{1}^{2}=0$. Therefore, $c_{2}=0$ by (3.21). Since the Euler number c_{2} of M is the sum of the Euler numbers of all singular fibres of M, it follows that there are no singular fibres except multiple fibres, (see [14]).

Lemma (6.1). Let Δ be a compact Riemann surface of genus g, and a_{1}, \cdots, a_{r} be r distinct points of Δ with multiplicities $m_{1}, \cdots, m_{r}>1$. Assume $(g, r) \neq(0,1),(0,2)$. Then
(1) There exists a (ramified) covering $\pi: \tilde{\Delta} \rightarrow \Delta=\tilde{\Delta} / \Gamma$ such that
(a) $\tilde{\Delta}$ is simply connected and Γ is a group acting properly discontinuously on $\widetilde{\Delta}$;
(b) $\pi: \widetilde{\Delta}-\pi^{-1}\left(\left\{a_{i}\right\}\right) \rightarrow \Delta-\left\{a_{i}\right\}$ is an unramified covering;
(c) π is ramified with ramification index $m_{i}-1$ at each point of $\pi^{-1}\left(a_{i}\right)$.
(2) There exists a normal subgroup Γ_{0} of Γ of finite index such that
(d) Γ_{0} acts freely on $\tilde{\Delta}$;
(e) $\Delta_{0}=\widetilde{\Delta} / \Gamma_{0} \rightarrow \Delta$ is a (ramified) covering satisfying (b) and (c).

Proof. (1) Set $U=\Delta-\left\{a_{i}\right\}$ and $\widetilde{U} \rightarrow U$ be the universal covering with covering group $\widetilde{\Gamma}$. Then $\widetilde{\Gamma}$ is a group with generators $\alpha_{1}, \beta_{1}, \cdots$, $\alpha_{g}, \beta_{g}, S_{1}, \cdots, S_{r}$ with one relation

$$
(*)
$$

$$
\alpha_{1} \beta_{1} \alpha_{1}^{-1} \beta_{1}^{-1} \cdots \alpha_{g} \beta_{g} \alpha_{g}^{-1} \beta_{g}^{-1} S_{1} \cdots S_{r}=1
$$

Let Γ be the group with the same set of generators and additional relations

$$
\begin{equation*}
S_{1}^{m_{1}}=\cdots=S_{r}^{m_{r}}=1 \tag{**}
\end{equation*}
$$

Let N be the kernel of the natural homomorphism $\widetilde{\Gamma} \rightarrow \Gamma$; it is the normal subgroup of $\tilde{\Gamma}$ generated by $S_{1}^{m_{1}}, \cdots, S_{r}^{m_{r}}$. Let $\tilde{\Delta}$ be the Riemann surface obtained from \widetilde{U} / N by filling r points corresponding to a_{1}, \cdots, a_{r}. Then $\widetilde{\Delta}$ satisfies (a), (b) and (c). (We note that if $(g, r) \neq(0,1),(0,2)$ then \widetilde{U} is biholomorphic to the upper half-plane and the action of Γ on \widetilde{U} / N extends to the compactification $\widetilde{\Delta}$ by Picard's theorem).
(2) Given a group Γ with generators $\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g}, S_{1}, \cdots, S_{r}$ and relations (*) and (**), the theorem of Bundgaard-Nielsen [22] and Fox [24] conjectured by Fenchel [23] states that there exists a normal subgroup $\Gamma_{0} \subset \Gamma$ of finite index with no torsion (i.e., with no elements of finite order). Since Γ acts properly discontinuously on $\tilde{\Delta}$, the torsionfree subgroup Γ_{0} acts freely on $\widetilde{\Delta}$.
q.e.d.

Lemma (6.2). If $M \rightarrow \Delta$ is a holomorphic fibre bundle over a simply connected Δ with an elliptic curve as fibre, then it is a principal bundle with group T.

Proof. Let A be the group of holomorphic transformations of T. The translations of T form a normal subgroup, denoted also by T, such that A / T is finite. Since the base manifold Δ is simply connected, the structure group A of the bundle M reduces to its identity component T. Hence, M is a principal T-bundle.
q.e.d.

Lemma (6.3). Let $\Phi: M \rightarrow \Delta$ be an elliptic surface, free of exceptional curve of the first kind, with multiple singular fibres of multiplicities m_{1}, \cdots, m_{r} at $a_{1}, \cdots, a_{r} \in \Delta$ and no other singular fibres. Assume that $c_{2}(M)=0$ and exclude the case $\Delta=P_{1} C$ and $r=1$ or 2 . Then there exists an elliptic surface $\widetilde{\Phi}: \widetilde{M} \rightarrow \widetilde{\Delta}$ with a commutative diagram

such that
(1) $\pi: \tilde{\Delta} \rightarrow \Delta=\tilde{\Delta} / \Gamma$ is a (ramified) simply connected covering as described in (6.1);
(2) $\widetilde{\Phi}: \widetilde{M} \rightarrow \widetilde{\Delta}$ is a principal T-bundle;
(3) $p: \widetilde{M} \rightarrow M$ is an unramified normal covering with covering group Γ, and the group Γ acts on \widetilde{M} as bundle automorphisms (but not necessarily as principal bundle automorphisms which commute with the action of T);
(4) There exists a normal subgroup $\hat{\Gamma} \subset \Gamma$ of finite index acting on $\widetilde{\Delta}$ freely and on \tilde{M} as principal bundle automorphisms. (Set $\hat{M}=$ $\tilde{M} / \hat{\Gamma}$ and $\hat{\Delta}=\widetilde{\Delta} / \hat{\Gamma}$. Then $\hat{\Phi}: \widehat{M} \rightarrow \hat{\Delta}$ is a holomorphic principal T-bundle over a compact Riemann surface $\hat{\Delta})$.

Proof. We construct $\pi: \tilde{\Delta} \rightarrow \Delta$ as in (6.1). We consider the pull-back $M^{\prime}=\pi^{*} M$ and the commutative diagram:

Then M^{\prime} has no singularities outside the curves obtained by pulling back the singular fibres $\Phi^{-1}\left(a_{i}\right)$. Each of these curves $\Phi^{-1}\left(a_{i}\right) \times b_{i \lambda},\left(b_{i \lambda} \in \pi^{-1}\left(a_{i}\right)\right)$, is a multiple curve of multiplicity m_{i}. In fact in a neighborhood of each point of $\Phi^{-1}\left(a_{i}\right) \times b_{i \lambda}, M^{\prime}$ is composed of m_{i} non-singular sheets passing through $\Phi^{-1}\left(a_{i}\right) \times b_{i \lambda}$. By separating these sheets, we obtain a nonsingular elliptic surface $\widetilde{\Phi}: \widetilde{M} \rightarrow \widetilde{\Delta}$ with a commutative diagram:

The action of Γ on $\tilde{\Delta}$ induces an action of Γ on $M^{\prime} \subset \tilde{\Delta} \times M$ and then an action of Γ on \tilde{M}. Let Γ_{0} be a normal subgroup of Γ of finite index as described in (6.1). Then $\tilde{M} / \Gamma_{0} \rightarrow \tilde{\Delta} / \Gamma_{0}$ is an elliptic surface over a compact Riemann surface $\tilde{\Delta} / \Gamma_{0}$ with no singular fibres. It follows that it is a holomorphic fibre bundle (with a fixed elliptic curve T as fibre). Hence, \widetilde{M} is also a holomorphic fibre bundle over $\tilde{\Delta}$ with fibre T. Since $\tilde{\Delta}$ is simply connected, \tilde{M} is a holomorphic principal T-bundle over $\tilde{\Delta}$, (see (6.2)).

If $\tilde{\Delta}=P_{1} C$, then we take as Γ the trivial group consisting of the identity only. If $\tilde{\Delta}=C$ or $\tilde{\Delta}=H$ (upper half-plane), then \tilde{M} is a product bundle $\tilde{M}=\tilde{\Delta} \times T$. Since $\operatorname{Aut}(T) / T$ is finite, the subgroup Γ^{\prime} of Γ consisting of elements which act as principal bundle automorphisms on \widetilde{M} is a normal subgroup of finite index in Γ. Let Γ_{0} be as in (6.1), and set $\hat{\Gamma}=\Gamma^{\prime} \cap \Gamma_{0}$.

Lemma (6.4). Let $\Phi: M \rightarrow \Delta$ be a holomorphic principal bundle over a compact Riemann surface Δ with structure group T, where T is an elliptic curve. Let V be a vertical vector field on M defined by the action of T.
(1) If $b_{1}(M)$ is even, then there exists a holomorphic 1-form $\omega \in H^{\circ}\left(M, \Omega^{1}\right)$ such that $\omega(V)=1$, and

$$
\operatorname{dim} H^{\circ}\left(M, \Omega^{1}\right)-1=\operatorname{genus}(\Delta)=\operatorname{dim} H^{\circ}\left(M, \Omega^{2}\right)
$$

(2) If $b_{1}(M)$ is odd, then

$$
\operatorname{dim} H^{o}\left(M, \Omega^{1}\right)=\operatorname{genus}(\Delta)=\operatorname{dim} H^{o}\left(M, \Omega^{2}\right)
$$

Proof. Let (x, t) be a local coordinate system for the bundle M, where x is a local coordinate for the base Δ and t is a local coordinate for the fibre T. Let $\theta=A d x+B d t \in H^{\circ}\left(M, \Omega^{1}\right)$, where A and B are holomorphic functions of (x, t). Since $B=\theta(V)$ is holomorphic on M, it is constant. Since θ is closed, A is a function of x only. Hence, $\Phi^{*}\left(H^{\circ}\left(\Delta, \Omega^{1}\right)\right)$ consists of $\theta \in H^{\circ}\left(M, \Omega^{1}\right)$ with $B=0$. This implies that $\Phi^{*}\left(H^{\circ}\left(\Delta, \Omega^{1}\right)\right)$ is either equal to $H^{o}\left(M, \Omega^{1}\right)$ or of codimension 1 in $H^{\circ}\left(M, \Omega^{1}\right)$ so that

$$
h^{1,0}-1=\operatorname{dim} H^{o}\left(M, \Omega^{1}\right)-1 \leqq \operatorname{genus}(\Delta) \leqq \operatorname{dim} H^{\circ}\left(M, \Omega^{1}\right)=h^{1,0}
$$

Since $\Phi: M \rightarrow \Delta$ is a principal T-bundle, for every $\theta=A d x \in \Phi^{*} H^{\circ}\left(\Delta, \Omega^{1}\right)$
we have a globally well defined 2-form $\omega=A d x \wedge d t \in H^{\circ}\left(M, \Omega^{2}\right)$. Conversely, every holomorphic 2 -form $\omega=A d x \wedge d t \in H^{\circ}\left(M, \Omega^{2}\right)$ comes from a holomorphic 1-form $\theta=\iota_{V} \omega=A d x \in \Phi^{*} H^{\circ}\left(\Delta, \Omega^{1}\right)$. This establishes an isomorphism between $H^{\circ}\left(\Delta, \Omega^{1}\right)$ and $H^{\circ}\left(M, \Omega^{2}\right)$ so that

$$
\operatorname{genus}(\Delta)=\operatorname{dim} H^{\circ}\left(M, \Omega^{2}\right)=h^{2,0}
$$

By Noether's formula, $12\left(1-h^{0,1}+h^{0,2}\right)=c_{1}^{2}+c_{2}=0$. When b_{1} is even, $h^{0,1}=h^{1,0}$ and $h^{2,0}=h^{0,2}=h^{1,0}-1$. When b_{1} is odd, $h^{1,0}=h^{0,1}-1$ and $h^{2,0}=h^{0,2}=h^{1,0}$.
q.e.d.

Lemma (6.5). Let $\Phi: M \rightarrow \Delta$ and $\Phi^{\prime}: M^{\prime} \rightarrow \Delta^{\prime}$ be two elliptic surfaces such that M^{\prime} is a normal unramified covering of M. Then $b_{1}\left(M^{\prime}\right)$ is even if and only if $b_{1}(M)$ is even.

Proof. According to Miyaoka [21], an elliptic surface admits a Kähler metric if (and only if) its first Betti number b_{1} is even. If M is Kähler, clearly M^{\prime} is also Kähler. If M^{\prime} is Kähler, by averaging its Kähler metric by the action of the covering group, we obtain a Kähler metric on M.
q.e.d.

Lemma (6.6). Assume in (6.3) that $b_{2}(M)$ is even. Then

$$
\tilde{M}=\tilde{\Delta} \times T
$$

and there is a representation $\rho: \Gamma \rightarrow \operatorname{Aut}(T)$ such that the action of Γ on $\tilde{M}=\tilde{\Delta} \times T$ is given by

$$
\gamma(z, t)=(\gamma(z), \rho(\gamma) t) \quad \text { for } \quad(z, t) \in \tilde{\Delta} \times T \quad \text { and } \quad \gamma \in \Gamma .
$$

Proof. We exclude first the case where $\Delta=P_{1} C$ and the number r of singular (modified) fibres is at most 2 . Then we have the following commutative diagram described in (6.3)

We consider the natural representation of the covering group $\Gamma / \hat{\Gamma}$ of $\tilde{M} / \hat{\Gamma} \rightarrow M$ on $H^{\circ}\left(\tilde{M} / \hat{\Gamma}, \Omega^{1}\right)$. Since $\Gamma / \hat{\Gamma}$ is a finite group, the invariant subspace $\hat{\Phi}^{*}\left(H^{\circ}\left(\widetilde{J} / \widetilde{\Gamma}, \Omega^{1}\right)\right)$ has a complementary invariant subspace W :

$$
H^{\circ}\left(\widetilde{M} / \hat{\Gamma}, \Omega^{1}\right)=\hat{\Phi}^{*}\left(H^{\circ}\left(\widetilde{\bar{T}} / \hat{\Gamma}, \Omega^{1}\right)\right)+W
$$

Since $\tilde{M} / \hat{\Gamma} \rightarrow M$ is a finite unramified normal covering and $b_{1}(M)$ is even, $b_{1}(\tilde{M} / \hat{\Gamma})$ is also even by (6.5). Since $\tilde{M} / \tilde{\Gamma} \rightarrow \tilde{\Delta} / \hat{\Gamma}$ is a principal T-bundle and $b_{1}(\widetilde{M} / \hat{\Gamma})$ is even, by (6.4) we have $\operatorname{dim} W=1$. Hence, there is a
holomorphic 1-form $\omega \in W$ such that $\omega(V)=1$ where V is the vertical vector field on $\tilde{M} / \hat{\Gamma}$ defined by the action of T. Since W is invariant by $\Gamma / \hat{\Gamma}$, we have

$$
\sigma^{*} \omega=\chi(\sigma) \omega \quad \text { for } \quad \sigma \in \Gamma / \hat{\Gamma}
$$

where $\chi: \Gamma / \hat{\Gamma} \rightarrow C^{*}$ is a character.
Since $\omega(V)=1$ and $\mathscr{L}_{V} \omega:=d \cdot \iota_{V} \omega+\iota_{V} d \omega=0$, it follows that ω is a connection form for the principal T-bundle $\tilde{M} / \hat{\Gamma} \rightarrow \tilde{\Delta} / \hat{\Gamma}$. Since ω is holomorphic and the base space is of complex dimension 1 , the curvature form vanishes, i.e., the connection is flat. Let $\tilde{\omega}$ be the connection form for the bundle $\tilde{M} \rightarrow \widetilde{\Delta}$ induced by ω. Let (z, t) denote the coordinate for $\tilde{\Delta} \times T$. Then \tilde{M} is isomorphic to the product bundle $\tilde{\Delta} \times T$ in such a way that $\tilde{\omega}=d t$. Let $\tilde{\chi}: \Gamma \rightarrow \boldsymbol{C}^{*}$ denote the character induced by $\chi: \Gamma / \widehat{\Gamma} \rightarrow \boldsymbol{C}^{*}$. Then

$$
\gamma^{*} \tilde{\omega}=\chi(\gamma) \tilde{\omega} \text { for } \gamma \in \Gamma \quad \text { or } \quad \gamma^{*} d t=\chi(\gamma) d t \text { for } \gamma \in \Gamma
$$

This implies

$$
\gamma(z, t)=(\gamma(z), \rho(\gamma) t) \quad \text { for } \quad(z, t) \in \tilde{\Delta} \times T, \quad \gamma \in \Gamma,
$$

where $\rho: \Gamma \rightarrow \operatorname{Aut}(T)$ is a representation.
q.e.d.

In order to consider the excluded cases ($\Delta=P_{1} C$ and $r=1,2$), we use the following result of Kodaira [15]. (The definition of logarithmic transformation is given later).

Theorem (6.7). An elliptic surface M over a curve Δ with multiple singular fibres of multiplicity m_{1}, \cdots, m_{r} at $a_{1}, \cdots, a_{r} \in \Delta$ and no other singular fibres is obtained from a holomorphic bundle S over Δ with an elliptic fibre T by logarithmic transformations at a_{1}, \cdots, a_{r}.

To explain what a logarithmic transformation at a_{i} is, we set $a=a_{i}$ and $m=m_{i}$ and take a neighborhood $D=\{|z|<1\}$ in terms of a local coordinate z such that $z(a)=0$. We may further assume that D contains no other a_{j} 's, and that $S \mid D$ is a product bundle $D \times T$. Let the elliptic curve T be given by $T=\boldsymbol{C} /(1, \tau)$, where $(1, \tau)$ denotes the lattice generated by 1 and $\tau \in C$ with positive imaginary part. We use w as coordinate in T as well as in C. Fix a complex number β such that $[\beta]$ is an element of T of order m. Let $g: D \times T \rightarrow D \times T$ be defined by

$$
g(z, w)=(\rho z, w+[\beta]), \quad \text { where } \quad \rho=e^{2 \pi i / m}
$$

Then g generates a cyclic group (g) of order m acting freely on $D \times T$. The quotient space $(D \times T) /(g)$ is a fibre space over D with projection Φ induced by $\Phi(x, w)=z^{m}$. We replace $S \mid D$ by $(D \times T) /(g)$, using the
following identification of $D^{*} \times T$ with $\left(D^{*} \times T\right) /(g)$, where $D^{*}=D-\{0\}$. Let $\Lambda: D^{*} \times T \rightarrow D^{*} \times T$ be defined by

$$
\Lambda(z, w)=\left(z^{m}, w-(m \beta / 2 \pi i) \log z\right)
$$

Then Λ induces an isomorphism $\lambda:\left(D^{*} \times T\right) /(g) \rightarrow D^{*} \times T$. This process, denoted by $L_{a}(m, \beta)$, is called a logarithmic transformation of S at a.

Suppose now that $p: M \rightarrow \Delta$ has multiple fibre at a_{j} with multiplicity $m_{j}(j=1, \cdots, r)$. When $\Delta=P_{1} C, M$ can be written as follows (see pp. 685-687 of [15] for the argument as well as for the notation):

$$
M=L_{a_{r}}\left(m_{r}, \beta_{r}\right) \cdots L_{a_{1}}\left(m_{1}, \beta_{1}\right)\left(P^{1} C \times T\right), \quad\left(m_{j} \geqq 2\right),
$$

where $T=\boldsymbol{C} /(1, \tau)$. And $b_{1}(M)$ is even if and only if $\beta_{1}+\cdots+\beta_{r}=0$. Assume $\Delta=P_{1} C, b_{1}(M)$ is even and M admits a holomorphic $C O(2 ; C)$ structure. If $r=1$, then $\beta_{1}=0$ and $M \rightarrow P_{1} C$ is a fibre bundle, contradicting the assumption that it has multiple fibres. If $r=2$, set $d=$ g.c.d. $\left(m_{1}, m_{2}\right)$ with $m_{1}=m_{1}^{\prime} d$ and $m_{2}=m_{2}^{\prime} d$. Then M has a finite covering \widetilde{M} given by

$$
\widetilde{M}=L_{a_{2}}\left(m_{2}^{\prime}, \beta_{2} d\right) L_{a_{1}}\left(m_{1}^{\prime}, \beta_{1} d\right)\left(P^{1} C \times T\right)
$$

(see the argument given in [15, p. 689, lines 7-15]). Since $a m_{1}+b m_{2}=d$ for some integers a, b and since $\beta_{1}+\beta_{2}=0$, we have $\beta_{1} d=a \beta_{1} m_{1}+$ $b \beta_{1} m_{2}=a \beta_{1} m_{1}-b \beta_{2} m_{2} \in(1, \tau)$ and $\beta_{2} d=-\beta_{1} d \in(1, \tau)$. Hence, \tilde{M} is a fibre bundle over $P_{1} C$. As we have shown above, the holomorphic connection form ω given by (6.4) is integrable and, hence $\tilde{M}=P_{1} C \times T$.

By the argument above and (6.5), we have established the following
Theorem (6.8). Let $\Phi: M \rightarrow \Delta$ be an elliptic surface free from exceptional curves of the first kind. If $c_{2}(M)=0$ and $b_{1}(M)$ is even, then

$$
M=\tilde{\Delta} \times{ }_{\rho} T
$$

where $\tilde{\Delta}\left(=P_{1} C, C\right.$ or the upper half-plane H) is a normal ramified covering of Δ with covering group Γ so that (i) $\Delta=\tilde{\Delta} / \Gamma$, (ii) $\rho: \Gamma \rightarrow \operatorname{Aut}(T)$ is a representation and (iii) Γ acts freely on $\tilde{\Delta} \times T$.

Corollary (6.9). Let $\Phi: M \rightarrow \Delta$ be an elliptic surface satisfying the assumption of (6.8). Then it admits a holomorphic $C O(2 ; \boldsymbol{C})$-structure.

Next, we shall show that if $\Phi: M \rightarrow \Delta$ is an elliptic surface with $b_{1}(M)$ odd, then M admits no holomorphic $C O(2 ; C)$-structure unless $\Delta=$ $P_{1} C$. At the same time, we shall obtain some information on $C O(2 ; C)$ structures of M when $b_{1}(M)$ is even.

Let $\Phi: M \rightarrow \Delta$ be an elliptic surface free from exceptional curves of the first kind such that $c_{2}(M)=0$. Exclude the case $\Delta=P_{1} C$. In (6.3)
we proved that there is an elliptic surface $\hat{\Phi}: \hat{M} \rightarrow \hat{\Delta}$ with the commutative diagram

where $\hat{\Delta}=\tilde{\Delta} / \Gamma$ and $\hat{M}=\tilde{M} / \hat{\Gamma}$ in the notation of (6.3). Since $\hat{M} \rightarrow M$ is an unramified covering, if M admits a holomorphic $C O(2 ; C)$-structure so does \hat{M}. Since $\hat{\Phi}: \hat{M} \rightarrow \Delta$ is a principal T-bundle, we shall assume that $\Phi: M \rightarrow \Delta$ itself is a principal T-bundle.

Lemma (6.10). Let $\Phi: M \rightarrow \Delta$ be a holomophic principal T-bundle. Then the tangent bundle TM admits a splitting $T M=L^{\prime} \oplus L^{\prime \prime}$ such that L^{\prime} is the line bundle in the fibre direction and $L^{\prime \prime}$ is a line bundle transversal to L^{\prime} if and only if the first Betti number b_{1} is even.

Proof. Let V be the vector field defined by the T-action on M. Given $L^{\prime \prime}$, we define a holomorphic 1-form ω on M by $\omega\left(L^{\prime \prime}\right)=0$ and $\omega(V)=1$. Conversely, given a holomorphic 1-form ω such that $\omega(V)=1$, we define $L^{\prime \prime}$ by $\omega=0$.

This gives a one-to-one correspondence between the set of $L^{\prime \prime}$ transversal to L^{\prime} and the set of holomorphic 1-forms ω satisfying $\omega(V)=1$. From (6.4) it is clear that such a holomorphic 1-form ω exists if and only if $b_{1}(M)$ is even.

Lemma (6.10) does not mean that an elliptic surface M with odd b_{1} admits no holomorphic $C O(2 ; \boldsymbol{C})$-structures since there might exist a splitting $T M=L^{\prime} \oplus L^{\prime \prime}$ where neither L^{\prime} nor $L^{\prime \prime}$ is in the fibre direction. To look into this possibility, we prove the following.

Lemma (6.11). Let M be as in (6.10). Let \mathfrak{a} and \mathfrak{b} be the Lie algebras of holomorphic vector fields on M and Δ, respectively. Let \mathfrak{v} be the 1-dimensional subalgebra of a generated by the vertical vector field V. Then we have a natural exact sequence:

$$
0 \rightarrow \mathfrak{v} \rightarrow \mathfrak{a} \rightarrow \mathfrak{b}
$$

If $\mathfrak{v}=\mathfrak{a}$, then for any splitting $T M=L^{\prime} \oplus L^{\prime \prime}$ either L^{\prime} or $L^{\prime \prime}$ is vertical.

Proof. Given a holomorphic vector field X on M, let $f_{t}=\exp (t X)$ be the 1-parameter group of holomorphic transformations generated by X. For a small value of t, each fibre $M_{u}=\Phi^{-1}(u), u \in \Delta$, is mapped into a coordinate neighborhood around u in Δ by $\Phi \cdot f_{t}$. Since a holomorphic
map of a compact complex space into a coordinate neighborhood is constant, it follows that f_{t} is fibre-preserving and induces a transformation f_{t}^{\prime} on Δ. Let X^{\prime} be the holomorphic vector field on Δ such that $f_{t}^{\prime}=$ $\exp \left(t X^{\prime}\right)$. This defines a natural homomorphism $X \in \mathfrak{a} \mapsto X^{\prime} \in \mathfrak{b}$. The kernel of this homomorphism consists of vertical holomorphic vector fields. Since the vertical holomorphic vector field V never vanishes, every vertical holomorphic vector field is a (function and hence constant) multiple of V. This establishes the first half of (6.11).

If V is contained in neither L^{\prime} nor $L^{\prime \prime}$, the decomposition $V=V^{\prime}+V^{\prime \prime}$, where V^{\prime} is in $L^{\prime \prime}$ and $V^{\prime \prime}$ is in $L^{\prime \prime}$, yields two linearly independent vector fields V^{\prime} and $V^{\prime \prime}$, contradicting the assumption that $\operatorname{dim} \mathfrak{a}=\operatorname{dim} \mathfrak{v}=1$. q.e.d.

Lemma (6.12). Let M be as in (6.10). If the genus of Δ is at least 2, then for any splitting $T M=L^{\prime} \oplus L^{\prime \prime}$, either L^{\prime} or $L^{\prime \prime}$ is vertical. If the genus of Δ is 1 and if there is a splitting of TM, then there is a splitting $T M=L^{\prime} \oplus L^{\prime \prime}$ such that L^{\prime} is vertical.

Proof. If the genus of Δ is at least 2, then $\mathfrak{b}=0$ in (6.11) and the result follows from (6.11). Assume that the genus of Δ is 1 . Given an arbitrary splitting $T M=L^{\prime} \oplus L^{\prime \prime}$, decompose $V=V^{\prime}+V^{\prime \prime}$, where V^{\prime} is in L^{\prime} and $V^{\prime \prime}$ is in $L^{\prime \prime}$. If neither L^{\prime} nor $L^{\prime \prime}$ is vertical at some point, $V^{\prime \prime}$ is not vertical at some point. Let W be the holomorphic vector field on Δ induced by $V^{\prime \prime}$. Then W is nonzero at some point since $V^{\prime \prime}$ is not vertical. Since Δ is a torus, W is nonzero everywhere. Hence, $V^{\prime \prime}$ is non-vertical everywhere. Then $L^{\prime \prime}$ is transversal to the vertical line bundle everywhere. So we have only to replace L^{\prime} by the vertical line subbundle of $T M$. Then we have a desired splitting of $T M$. q.e.d.

The unramified covering space $\hat{M}=\tilde{M} / \tilde{\Gamma}$ of M in (6.3) admits a holomorphic $C O(2 ; \boldsymbol{C})$-structure if M does. Since the genus of $\widetilde{\Delta} / \widetilde{\Gamma}$ is greater than or equal to that of Δ, combining (6.5), (6.10) and (6.12) we obtain

Theorem (6.13). Let $\Phi: M \rightarrow \Delta$ be an elliptic surface free from exceptional curves of the first kind such that $c_{2}(M)=0$ and $b_{1}(M)$ is odd. If the genus of Δ is positive, then M admits no holomorphic $\operatorname{CO}(2 ; \boldsymbol{C})$ structures.

We shall now consider the case where the genus of Δ is 0 , i.e., $\Delta=P_{1} C$.

Theorem (6.14). Let M be an elliptic surface over $\Delta=P_{1} C$ with odd first Betti number. If it admits a holomorphic $C O(2 ; \boldsymbol{C})$-structure, then it must be a Hopf surface.

Proof. It suffices to show that $\hat{M}=\tilde{M} / \tilde{\Gamma}$ in (6.3) is a Hopf surface. We may therefore assume that $M \rightarrow \Delta$ is a principal T-bundle. We consider first the case $r>2$. Let $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{b} be as in (6.11). If $\operatorname{dim} \mathfrak{a}=1$, i.e., $\mathfrak{v}=\mathfrak{a}$, then M admits no holomorphic $C O(2: C)$-structure by (6.10) and (6.11). Hence, there is a holomorphic vector field $X \in \mathfrak{a}$, not contained in \mathfrak{b}. Its projection X^{\prime} to the base curve $\Delta=P_{1} C$ is a nonzero holomorphic vector field. Being a holomorphic vector field on $P_{1} C, X^{\prime}$ vanishes at some point but no more than two points of $P_{1} C$.

Let ω be a holomorphic 1-form on M. Then $\omega(X)$ is constant. Since $\omega(V)=0$ by (6.4), $\omega(X)$ vanishes at a point where X is vertical, i.e., a point which projects to a zero of X^{\prime}. Hence, $\omega(X)$ vanishes identically and $\omega=0$. This shows that $h^{1,0}=0$. Since $b_{1}=2 h^{1,0}+1=1, M$ belongs to Class VII_{0} in Kodaira's classification of surfaces, [15]. (Class VII consists of minimal surfaces with $b_{1}=1$ and $P_{g}=0$).

By integrating X we see that the fibre at a nonzero point of X^{\prime} is biholomorphic to all nearby fibres. Since X^{\prime} vanishes at no more than two points of $\Delta=P_{1} C, M$ has at most two singular fibres.

An elliptic surface of Class VII_{0} with at most two singular fibres is a Hopf surface, i.e., has $C^{2}-\{0\}$ as its universal covering space [15]. q.e.d.

In the next section, we shall study Hopf surfaces.
7. Hopf surfaces. Throughout this section we shall denote the natural coordinate system (z^{1}, z^{2}) in C^{2} by (z, w) whenever convenient to do so.

A compact complex surface M is called a Hopf surface if its universal covering space is biholomorphic to $C^{2}-\{0\}$. A Hopf surface is said to be primary if its fundamental group is infinite cyclic. Every Hopf surface has a primary Hopf surface as a finite unramified covering. Every primary Hopf surface M is biholomorphic to a surface of the form $\left(\boldsymbol{C}^{2}-\{0\}\right) /(\sigma)$, where (σ) denotes the infinite cyclic group of transformations genearated by a transformation σ of the form (see [15])

$$
\begin{equation*}
\sigma(z, w)=\left(\alpha z+\lambda w^{m}, \beta w\right) \tag{7.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha, \beta, \lambda \in \boldsymbol{C}, \quad 0<|\alpha| \leqq|\beta|<1, \quad\left(\alpha-\beta^{m}\right) \lambda=0 \tag{7.2}
\end{equation*}
$$

We shall determine which Hopf surfaces admit holomorphic $C O(2 ; \boldsymbol{C})$ structure. Let M be a primary Hopf surface $\left(C^{2}-\{0\}\right) /(\sigma)$ with a holomorphic $C O(2 ; C)$-structure. A holomorphic $C O(2 ; C)$-structure on M may be regarded as a σ-invariant holomorphic $C O(2 ; C)$-structure on $\boldsymbol{C}^{2}-\{0\}$. By (5.9), a holomorphic $C O(2 ; \boldsymbol{C})$-structure on $\boldsymbol{C}^{2}-\{0\}$ is given by a
globally defined quadratic from $g=\sum g_{i j} d z^{i} d z^{j}$ on $C^{2}-\{0\}$. Since $C^{2}-\{0\}$ is simply connected we can divide g by a globally defined $\left(\operatorname{det}\left(g_{i j}\right)\right)^{1 / 2}$ and assume that $\operatorname{det}\left(g_{i j}\right)=1$.

We represent $g=\sum g_{i j} d z^{i} d z^{j}$ by a matrix

$$
\left(\begin{array}{ll}
g_{11} & g_{12} \tag{7.3}\\
g_{21} & g_{22}
\end{array}\right) .
$$

Since

$$
\binom{\sigma^{*} d z}{\sigma^{*} d w}=\left(\begin{array}{cc}
\alpha & m w^{m-1} \tag{7.4}\\
0 & \beta
\end{array}\right)\binom{d z}{d w},
$$

$\sigma^{*} g$ is represented by

$$
\left(\begin{array}{cc}
\alpha & 0 \tag{7.5}\\
\lambda m w^{m-1} & \beta
\end{array}\right)\left(\begin{array}{ll}
g_{11}^{o} & g_{12}^{o} \\
g_{21}^{o} & g_{22}^{o}
\end{array}\right)\left(\begin{array}{cc}
\alpha & \lambda m w^{m-1} \\
0 & \beta
\end{array}\right)
$$

where $g_{i j}^{o}(\zeta)=g_{i j}(\sigma(\zeta)), \zeta=(z, w)=\left(z^{1}, z^{2}\right)$.
The holomorphic $C O(2 ; C)$-structure on $C^{2}-\{0\}$ defined by g is invariant by σ if and only if $\sigma^{*} g=f g$, where f is a holomorphic function without zeros. Comparing the martrices (7.3) and (7.4) and using the condition $\operatorname{det}\left(g_{i j}\right)=1$, we obtain

$$
\begin{equation*}
f^{2}=(\alpha \beta)^{2} \tag{7.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f g_{11}(\zeta)=\alpha^{2} g_{11}(\sigma(\zeta)) \tag{7.7}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
g_{11}(\zeta)= \pm(\alpha / \beta) g_{11}(\sigma(\zeta)) \tag{7.8}
\end{equation*}
$$

Iterating this process, we obtain

$$
\begin{equation*}
g_{11}(\zeta)= \pm(\alpha / \beta)^{n} g_{11}\left(\sigma^{n}(\zeta)\right) \tag{7.9}
\end{equation*}
$$

By Hartogs' theorem, g_{11} extends through the origin 0 . Hence

$$
\begin{equation*}
g_{11}(\zeta)=\lim _{n \rightarrow \infty} \pm(\alpha / \beta)^{n} g_{11}\left(\sigma^{n}(\zeta)\right)=0 \quad \text { if } \quad|\alpha|<|\beta| \tag{7.10}
\end{equation*}
$$

We shall first consider the case $g_{11}=0$ (which is satisfied if $|\alpha|<|\beta|$ by (7.10)). Then $1=\operatorname{det}\left(g_{i j}\right)=-g_{12} g_{21}$ and $g_{12}= \pm \sqrt{-1}$. Comparing (7.3) with (7.5), we obtain

$$
\begin{equation*}
f=\alpha \beta, \quad \alpha g_{22}=2 g_{12} h+\beta g_{22}^{\sigma} \tag{7.11}
\end{equation*}
$$

where $g_{12}= \pm \sqrt{-1}$ and $h=m w^{m-1}$. Hence,

$$
\begin{equation*}
\alpha \partial g_{22} / \partial z=\alpha \beta \partial g_{22}^{\sigma} / \partial z . \tag{7.12}
\end{equation*}
$$

By iterating this process, we obtain

$$
\begin{equation*}
\partial g_{22}(\zeta) / \partial z=\beta^{n} \partial g_{22}\left(\sigma^{n}(\zeta)\right) / \partial z . \tag{7.13}
\end{equation*}
$$

Then, as in (7.10), we conclude

$$
\begin{equation*}
\partial g_{22} / \partial z=0, \tag{7.14}
\end{equation*}
$$

i.e., g_{22} is a function of w only.

From (7.11) we obtain

$$
\begin{equation*}
\alpha \partial^{m} g_{22} /(\partial w)^{m}=\beta^{m+1} \partial^{m} g_{22} /(\partial w)^{m} \tag{7.15}
\end{equation*}
$$

Assume $\lambda \neq 0$ so that $\alpha=\beta^{m}$. Then

$$
\begin{equation*}
\partial^{m} g_{22} /(\partial w)^{m}=\beta \partial^{m} g_{22} /(\partial w)^{m} \tag{7.16}
\end{equation*}
$$

In the same way as we derived (7.14) from (7.12), we obtain

$$
\begin{equation*}
\partial^{m} g_{22} /(\partial w)^{m}=0 . \tag{7.17}
\end{equation*}
$$

Hence, g_{22} is a polynomial of degree $m-1$ in w, i.e.,

$$
\begin{equation*}
g_{22}=a_{0}+a_{1} w+\cdots+a_{m-1} w^{m-1} \tag{7.18}
\end{equation*}
$$

Substituting (7.18) into (7.11), we obtain contradiction. We have thus shown

Lemma (7.19). If $|\alpha|<|\beta|$ and $\lambda \neq 0$, then there is no σ-invariant holomorphic $\operatorname{CO}(2 ; C)$-structures on $C^{2}-\{0\}$.

We shall now consider the case where $|\alpha|<|\beta|$ and $\lambda=0$. We already know that $f=\alpha \beta, g_{11}=0$ and $g_{12}= \pm \sqrt{-1}$. Since $\lambda=0$ in (7.5), the σ-invariance $\sigma^{*} g=f g$ implies

$$
\left(\begin{array}{cc}
0 & \alpha \beta g_{12} \\
\alpha \beta g_{21} & \beta^{2} g_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 & f g_{12} \\
f g_{21} & f g_{22}^{\sigma}
\end{array}\right) .
$$

Hence,

$$
\begin{equation*}
g_{22}=(\beta / \alpha) g_{22}^{\sigma} \tag{7.20}
\end{equation*}
$$

By differentiating (7.20) with respect to z, we obtain

$$
\begin{equation*}
\partial g_{22} / \partial z=\beta \partial g_{22}^{\sigma} / \partial z . \tag{7.21}
\end{equation*}
$$

As in (7.14) we conclude that $\partial g_{22} / \partial z=0$, i.e., g_{22} is a function of w only. Let n be a larger integer such that $|\beta|^{n+1}<|\alpha|$. Then from (see (7.15)) $\partial^{n} g_{22} /(\partial w)^{n}=\left(\beta^{n+1} / \alpha\right) \partial^{n} g_{22} /(\partial w)^{n}$ we conclude that g_{22} is a polynomial of degree at most $n-1$ in w. Substitute that polynomial into (7.20). Then we see that g_{22} is a monomial $g_{22}=a w^{k}$ in w if $\alpha=\beta^{k+1}$ and $g_{22}=0$ if there is no such relation between α and β. Hence,

Lemma (7.22). If $|\alpha|<|\beta|$ and $\lambda=0$, then there exist σ-invariant holomorphic $\operatorname{CO}(2 ; \boldsymbol{C})$-structures on $\boldsymbol{C}^{2}-\{0\}$. They are given by

$$
\begin{aligned}
& g_{11}=0, \quad g_{12}=g_{21}=\text { constant } \neq 0, \\
& g_{22}= \begin{cases}\text { a monomial of degree } k \text { in } w & \text { if } \alpha=\beta^{k+1} \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

We shall now consider the case $|\alpha|=|\beta|$. By (7.2) we have either $\lambda=0$ or $m=1$. From (7.8) we have

$$
\begin{equation*}
\left|g_{11}\right|=\left|g_{11}^{\sigma}\right| \tag{7.23}
\end{equation*}
$$

Hence, $\left|g_{11}\right|$ may be considered as a function on M and is constant by the maximum principle. Hence, g_{11} itself is constant.

Assume $\lambda=0$. The σ-invariance $\sigma^{*} g=f g$ implies

$$
\left(\begin{array}{ll}
f g_{11} & f g_{12} \tag{7.24}\\
f g_{21} & f g_{22}
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{2} g_{11} & \alpha \beta g_{12} \\
\alpha \beta g_{21} & \beta^{2} g_{22}
\end{array}\right)
$$

From (7.6) and (7.24) we obtain $\left|g_{22}\right|=\left|g_{22}^{o}\right|$. By the same argument as above, g_{22} is constant. Similarly, g_{12} is also constant. Thus we have

Lemma (7.25). If $|\alpha|=|\beta|$ and $\lambda=0$, then there exist σ-invariant holomorphic $\mathrm{CO}(2 ; \boldsymbol{C})$-structures on $\boldsymbol{C}^{2}-\{0\}$.
(i) If $\alpha=\beta$, then any non-degenerate constant matrix ($g_{i j}$) gives such a structure.
(ii) If $\alpha=-\beta$, then $\left(g_{i j}\right)$ must be a constant matrix of the form

$$
\left(\begin{array}{cc}
g_{11} & 0 \\
0 & g_{22}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
0 & g_{12} \\
g_{21} & 0
\end{array}\right) .
$$

(iii) If $\alpha \neq \pm \beta$, then $\left(g_{i j}\right)$ must be a constant matrix of the form

$$
\left(\begin{array}{cc}
0 & g_{12} \\
g_{21} & 0
\end{array}\right) .
$$

These exhaust all σ-invariant holomorphic $\operatorname{CO}(2 ; \boldsymbol{C})$-structures on $\boldsymbol{C}^{2}-\{0\}$ when $|\alpha|=|\beta|, \lambda=0$.

We shall consider the last remaining case where $|\alpha|=|\beta|, m=1$ and $\lambda \neq 0$. By (7.2) we have $\alpha=\beta$. In this case, the σ-invariance $\sigma^{*} g=f g$ is equivalent to

$$
\begin{align*}
\left(\begin{array}{ll}
f g_{11} & f g_{12} \\
f g_{21} & f g_{22}
\end{array}\right) & =\left(\begin{array}{ll}
\alpha & 0 \\
\lambda & \alpha
\end{array}\right)\left(\begin{array}{ll}
g_{11}^{\sigma} & g_{12}^{\sigma} \\
g_{21}^{\sigma} & g_{22}^{\sigma}
\end{array}\right)\left(\begin{array}{cc}
\alpha & \lambda \\
0 & \alpha
\end{array}\right) \tag{7.26}\\
& =\left(\begin{array}{cc}
\alpha^{2} g_{11}^{o} & \alpha \lambda g_{11}^{\sigma}+\alpha^{2} g_{12}^{\sigma} \\
\alpha \lambda_{11}^{\sigma}+\alpha^{2} g_{21}^{\sigma} & \lambda^{2} g_{11}^{\sigma}+2 \alpha \lambda g_{12}^{\sigma}+\alpha^{2} g_{22}^{\sigma}
\end{array}\right)
\end{align*}
$$

We have shown already that g_{11} is constant. Assume $g_{11} \neq 0$. Then $f=\alpha^{2}$ from (7.26). Also from (7.26) we obtain

$$
\begin{equation*}
g_{12}=(\lambda / \alpha) g_{11}+g_{12}^{\tau} . \tag{7.27}
\end{equation*}
$$

Differentiating (7.27), we obtain

$$
\begin{equation*}
\partial g_{12} / \partial z=\alpha \partial g_{12}^{\sigma} / \partial z, \quad \partial g_{12} / \partial w=\alpha \partial_{12}^{\sigma} / \partial w \tag{7.28}
\end{equation*}
$$

By the argument we have used several times, these partial derivatives are zero and g_{12} is constant. This contradicts (7.27). Hence, $g_{11}=0$.

Since $1=\operatorname{det}\left(g_{i j}\right)=-g_{12} g_{21}$, we obtain $g_{12}=g_{21}= \pm \sqrt{-1}$. From (7.26) we obtain $f=\alpha^{2}$ and

$$
\begin{equation*}
g_{22}=(2 \lambda / \alpha) g_{12}+g_{22}^{\sigma} \tag{7.29}
\end{equation*}
$$

In the same way as we proved that g_{12} is constant, we can show that g_{22} is constant. This contradicts (7.29). Hence,
(7.30) If $|\alpha|=|\beta|, m=1$ and $\lambda \neq 0$, then there is no σ-invariant holomorphic $\mathrm{CO}(2 ; \boldsymbol{C})$-structures on $\boldsymbol{C}^{2}-\{0\}$.

We have shown that a primary Hopf surface $\left(C^{2}-\{0\}\right) /(\sigma)$ admitting a holomorphic $C O(2 ; \boldsymbol{C})$-structure must satisfy $\lambda=0$, i.e., σ is of the form

$$
\begin{equation*}
\sigma(z, w)=(\alpha z, \beta w) \quad \text { with } \quad 0<|\alpha| \leqq|\beta|<1 \tag{7.31}
\end{equation*}
$$

It is clear that such a primary Hopf surface admits an obvious holomorphic $C O(2 ; \boldsymbol{C})$-structure (which is, in fact, a quadric structure and gives rise to a splitting $T M=L^{\prime} \oplus L^{\prime \prime}$). We shall now examine Hopf surfaces covered by such a primary Hopf surface.

Let $M=\left(C^{2}-\{0\}\right) / \Gamma$ be a Hopf surface covered by a primary Hopf surface $\widetilde{M}=\left(C^{2}-\{0\}\right) /(\sigma)$, where σ is of the form (7.31). Then (σ) is a subgroup of finite index in Γ. Moreover, a suitable power σ^{q} of σ is in the center of Γ, [15].

Let τ be an element of Γ given by

$$
\begin{equation*}
\tau(z, w)=\left(f^{1}(z, w), f^{2}(z, w)\right) \tag{7.32}
\end{equation*}
$$

If n is a multiple of q, then τ commutes with σ^{n} and we have

$$
\begin{equation*}
f^{1}\left(\alpha^{n} z, \beta^{n} w\right)=\alpha^{n} f^{1}(z, w), \quad f^{2}\left(\alpha^{n} z, \beta^{n} w\right)=\beta^{n} f^{2}(z, w) \tag{7.33}
\end{equation*}
$$

By differentiating the first equation with respect to z, we obtain

$$
\begin{equation*}
\left(\partial f^{1} \partial z\right)\left(\alpha^{n} z, \beta^{n} w\right)=\left(\partial f^{1} \partial z\right)(z, w) \tag{7.34}
\end{equation*}
$$

Letting $n \rightarrow \infty$, we see that the right hand side is equal to the constant $\left(\partial f^{1} / \partial z\right)(0,0)$. Similarly, $\partial f^{2} / \partial w$ is also constant. Hence,

$$
\begin{equation*}
f^{1}(z, w)=A(w) z+B(w), \quad f^{2}(z, w)=C(z)+D(z) w \tag{7.35}
\end{equation*}
$$

Since τ commutes with σ^{n} (where n is a multiple of q), we obtain

$$
\begin{align*}
& A\left(\beta^{n} w\right) \alpha^{n} z+B\left(\beta^{n} w\right)=\alpha^{n} A(w) z+\alpha^{n} B(w) \tag{7.36}\\
& C\left(\alpha^{n} z\right)+D\left(\alpha^{n} z\right) \beta^{n} w=\beta^{n} C(z)+\beta^{n} D(z) w
\end{align*}
$$

From (7.36) we see immediately that both A and D are constant. Expanding $B(w)$ and $C(z)$ into power series and using the condition $0<$ $|\alpha| \leqq|\beta|<1$, we arrive at the following possibilities:

$$
\begin{align*}
& \tau(z, w)=(a d, d w) \text { if } \alpha^{q} \neq \beta^{q k} \text { for all integers } k>0 \tag{7.37}\\
& \tau(z, w)=\left(a z+b w^{k}, d w\right) \text { if } \alpha^{q}=\beta^{q k} \text { for some integer } k \geqq 2, \tag{7.38}\\
& \tau(z, w)=(a z+b w, c z+d w) \text { if } \alpha^{q}=\beta^{q} \tag{7.39}
\end{align*}
$$

In case (7.37), the natural splitting for the tangent bundle of $\boldsymbol{C}^{2}-\{0\}$ given by the coordinate system is invariant by the group Γ.

In case (7.38), we shall show that if $b \neq 0$, then $C^{2}-\{0\}$ admits no holomorphic $C O(2 ; C)$-structures invariant by the element τ. Since (σ) is a subgroup of finite index in Γ, some power of τ, say τ^{t}, is equal to σ^{8}. (replacing τ by τ^{-1} if necessary we may assume that t is positive and s is non-negative). Then

$$
\begin{equation*}
a^{t}=\alpha^{s}, \quad d^{t}=\beta^{s} \tag{7.40}
\end{equation*}
$$

Since $\alpha^{q}=\beta^{q k}$ with $k \geqq 2$ in this case, we have $|\alpha|<|\beta|$. Since $b \neq 0$, τ^{t} cannot be the identity element and hence s is positive. From (7.40) we obtain $|a|<|d|$. Thus we are almost in the same situation as in (7.19). The difference here is that we have

$$
\begin{equation*}
a^{t q}=d^{t q k} \tag{7.41}
\end{equation*}
$$

instead of $\alpha=\beta^{m}$. Following the computation from (7.3) through (7.14), we see that if the $C O(2 ; C)$-structure is invariant by τ, then $g_{11}=0$, $g_{12}=g_{21}= \pm \sqrt{-1}$ and g_{22} is a function of w only. As in (7.15), we obtain

$$
\begin{equation*}
a \partial^{k} g_{22} /(\partial w)^{k}=d^{k+1} \partial^{k} g_{22}^{\tau} /(\partial w)^{k} \tag{7.42}
\end{equation*}
$$

From (7.41) and (7.42) we obtain

$$
\begin{equation*}
\left(\partial^{k} g_{22} /(\partial w)^{k}\right)^{q t}=d^{q t}\left(\partial^{k} g_{22}^{\tau} /(\partial w)^{k}\right)^{q t} \tag{7.43}
\end{equation*}
$$

In the same way as we derived (7.14) from (7.12), we obtain

$$
\begin{equation*}
\partial^{k} g_{22} /(\partial w)^{k}=0 \tag{7.44}
\end{equation*}
$$

Hence, g_{22} is a polynomial of degree $k-1$ in w, i.e.,

$$
\begin{equation*}
g_{22}=a_{0}+a_{1} w+\cdots+a_{k-1} w^{k-1} \tag{7.45}
\end{equation*}
$$

Now, we are in the same situation as in (7.18) and obtain the desired result that there is no holomorphic $C O(2 ; \boldsymbol{C})$-structures on $\boldsymbol{C}^{2}-\{0\}$ invariant by τ.

We have shown that in case (7.38) a holomorphic $C O(2 ; C)$-structure exists on $M=\left(C^{2}-\{0\}\right) / \Gamma$ if and only if every element τ of Γ is of the form

$$
\begin{equation*}
\tau(z, w)=(a d, d w) \tag{7.46}
\end{equation*}
$$

i.e., $b=0$.

We consider now case (7.39). Let V be the vector field on $C^{2}-\{0\}$ defined by

$$
\begin{equation*}
V=z \partial / \partial z+w \partial / \partial w \tag{7.47}
\end{equation*}
$$

Since it is invariant by any linear transformation of C^{2}, it may be considered as a vector field on $\widetilde{M}=\left(\boldsymbol{C}^{2}-\{0\}\right) /(\boldsymbol{\sigma})$ or $M=\left(\boldsymbol{C}^{2}-\{0\}\right) / \Gamma$. Assuming that M admits a holomorphic $C O(2 ; C)$-structure, consider the induced holomorphic $C O(2 ; \boldsymbol{C})$-structure on $\boldsymbol{C}^{2}-\{0\}$ invariant by Γ. Since $\boldsymbol{C}^{2}-\{0\}$ is simply connected, this $C O(2 ; \boldsymbol{C})$-structure is given by a splitting $T\left(C^{2}-\{0\}\right)=L^{\prime} \oplus L^{\prime \prime}$ of the tangent bundle of $C^{2}-\{0\}$. Then every element of Γ leaves both L^{\prime} and $L^{\prime \prime}$ invariant or interchanges them.

We claim that V is neither in L^{\prime} nor in $L^{\prime \prime}$. Assume that V is in L^{\prime}. Since σ leaves V invariant, it leaves both L^{\prime} and $L^{\prime \prime}$ invariant (instead of interchanging them). Hence we obtain the induced splitting $T \tilde{M}=L^{\prime} \oplus L^{\prime \prime}$ denoted by the same symbols as the splitting $T\left(C^{2}-\{0\}\right)=$ $L^{\prime} \oplus L^{\prime \prime}$. On the other hand, \widetilde{M} is an elliptic surface over $P_{1} C$ with odd first Betti number and, by (6.8), does not admit a splitting $T \widetilde{M}=L^{\prime} \oplus L^{\prime \prime}$ such that L^{\prime} is in the fibre direction, i.e., in the direction of V in this case. This is a contradiction.

Since V is neither in L^{\prime} nor in $L^{\prime \prime}$, the decomposition

$$
\begin{equation*}
V=V^{\prime}+V^{\prime \prime}, \quad\left(V^{\prime} \in L^{\prime}, V^{\prime \prime} \in L^{\prime \prime}\right) \tag{7.48}
\end{equation*}
$$

yields two nonzero vector fields V^{\prime} and $V^{\prime \prime}$ on $C^{2}-\{0\}$. Every element of Γ either leaves both V^{\prime} and $V^{\prime \prime}$ invariant or interchanges them.

We shall prove next that V^{\prime} is of the following form:

$$
\begin{equation*}
V^{\prime}=\left(\lambda_{1} z+\lambda_{2} w\right) \partial / \partial z+\left(\mu_{1} z+\mu_{2} w\right) \partial / \partial w \tag{7.49}
\end{equation*}
$$

We write $V^{\prime}=\xi^{1}(z, w) \partial / \partial z+\xi^{2}(z, w) \partial / \partial w$. Since σ either leaves V^{\prime} and $V^{\prime \prime}$ invariant or interchanges them, σ^{2} leaves V^{\prime} and $V^{\prime \prime}$ invariant. Let $n=2 q$ so that σ^{n} leaves V^{\prime} invariant and $\alpha^{n}=\beta^{n}$. Then

$$
\begin{equation*}
\alpha^{n} \xi^{1}(z, w)=\xi^{1}\left(\alpha^{n} z, \beta^{n} w\right), \quad \beta^{n} \xi^{2}(z, w)=\xi^{2}\left(\alpha^{n} z, \beta^{n} w\right) . \tag{7.50}
\end{equation*}
$$

Differentiating (7.50) with respect to z and w, we obtain (using $\alpha^{n}=\beta^{n}$)

$$
\begin{align*}
& \left(\partial \xi^{i} / \partial z\right)(z, w)=\left(\partial \xi^{i} / \partial z\right)\left(\alpha^{n} z, \beta^{n} w\right), \\
& \left(\partial \xi^{i} / \partial w\right)(z, w)=\left(\partial \xi^{i} / \partial w\right)\left(\alpha^{n} z, \beta^{n} w\right) . \tag{7.51}
\end{align*}
$$

Hence

$$
\begin{align*}
& \left(\partial \xi^{i} / \partial z\right)(z, w)=\left(\partial \xi^{i} / \partial z\right)\left(\alpha^{p n} z, \beta^{p n} w\right) \\
& \left(\partial \xi^{i} / \partial w\right)(z, w)=\left(\partial \xi^{i} / \partial w\right)\left(\alpha^{p n} z, \beta^{p n} w\right) \tag{7.52}
\end{align*}
$$

Letting $p \rightarrow \infty$, we see that the left hand side of (7.52) is constant. It follows that ξ^{i} is linear in z, w, i.e., V^{\prime} is of the form (7.49).

We associate to vector fields $V, V^{\prime}, V^{\prime \prime}$ the following matrices or linear transformations of \boldsymbol{C}^{2} :

$$
V:\left(\begin{array}{ll}
1 & 0 \tag{7.53}\\
0 & 1
\end{array}\right), \quad V^{\prime}:\left(\begin{array}{ll}
\lambda_{1} & \lambda_{2} \\
\mu_{1} & \mu_{2}
\end{array}\right), \quad V^{\prime \prime}:\left(\begin{array}{cc}
1-\lambda & -\lambda_{2} \\
-\mu_{1} & 1-\mu_{2}
\end{array}\right) .
$$

Then a linear transformation of C^{2} leaves the vector fields V^{\prime} and $V^{\prime \prime}$ invariant if and only if it commutes with the corresponding linear transformations given in (7.53). By a linear change of coordinates, we reduce the matrics in (7.53) into the following canonical forms:

$$
V^{\prime}:\left(\begin{array}{cc}
\lambda & 1 \tag{7.54}\\
0 & \lambda
\end{array}\right), \quad V^{\prime \prime}:\left(\begin{array}{cc}
1-\lambda & -1 \\
0 & 1-\lambda
\end{array}\right)
$$

or

$$
V^{\prime}:\left(\begin{array}{ll}
\lambda & 0 \tag{7.55}\\
0 & \mu
\end{array}\right), \quad V^{\prime \prime}:\left(\begin{array}{cc}
1-\lambda & 0 \\
0 & 1-\mu
\end{array}\right) \quad \text { with } \quad \lambda \neq \mu .
$$

We note that $\lambda \neq \mu$ since V^{\prime} is not a scalar multiple of V.
In case (7.54), a linear transformation of C^{2} leaves V^{\prime} and $V^{\prime \prime}$ invariant if and only if it is of the form

$$
\left(\begin{array}{ll}
a & b \tag{7.56}\\
0 & a
\end{array}\right)
$$

while it interchanges V^{\prime} and $V^{\prime \prime}$ if and only if it is of the form

$$
\left(\begin{array}{rr}
a & b \tag{7.57}\\
0 & -a
\end{array}\right) \quad \text { with } \quad \lambda=1 / 2 .
$$

By (7.30), in order for a matrix of the form (7.56) or (7.57) to leave a holomorphic $C O(2 ; \boldsymbol{C})$-structure on $\boldsymbol{C}^{2}-\{0\}$ invariant, it is necessary that $b=0$. Hence, every element of Γ must be of the form

$$
\left(\begin{array}{ll}
a & 0 \tag{7.58}\\
0 & a
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rr}
a & 0 \\
0 & -a
\end{array}\right)
$$

according as it leaves V^{\prime} and $V^{\prime \prime}$ invariant or interchanges them. It is clear that, conversely, if every element of Γ is a matrix of the form (7.58), then the natural $C O(2 ; C)$-structure on $C^{2}-\{0\}$ is invariant by Γ.

In case (7.55), a linear transformation of C^{2} leaves V^{\prime} and $V^{\prime \prime}$ invariant if and only if it is of the form

$$
\left(\begin{array}{ll}
a & 0 \tag{7.59}\\
0 & d
\end{array}\right)
$$

while it interchanges V^{\prime} and $V^{\prime \prime}$ if and only if it is of the form

$$
\left(\begin{array}{ll}
0 & b \tag{7.60}\\
c & 0
\end{array}\right) \text { with } \quad \lambda+\mu=1
$$

Hence every element of Γ must be of the form (7.59) or (7.60) according as it leaves V^{\prime} and $V^{\prime \prime}$ invariant or it interchanges them. It is clear that, conversely, if every element of Γ is of the form (7.59) or (7.60), then the natural $C O(2 ; \boldsymbol{C})$-structure on $\boldsymbol{C}^{2}-\{0\}$ is invariant by Γ.

We have established
Theorem (7.61). A Hopf surface $M=\left(C^{2}-\{0\}\right) / \Gamma$ admits a holomorphic $C O(2 ; \boldsymbol{C})$-structure if and only if every element of Γ is a linear transformation of the form

$$
\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)
$$

8. Surfaces of Class VII_{0}. Throughout this section we shall denote the natural coordinate system (z^{1}, z^{2}) in C^{2} by (z, w) whenever convenient to do so. A compact complex surface M is said to be in Class VII_{0} if it is free of exceptional curves of the first kind, $b_{1}=1$ and $p_{g}=0$. Then $q=1$. (In general, $2 q=b_{1}+1$ when b_{1} is odd, [15]). By Noether's formula,

$$
\begin{equation*}
c_{1}^{2}+c_{2}=12(1-q)=0 \tag{8.1}
\end{equation*}
$$

Since c_{2} is the Euler number and $b_{1}=1$,

$$
\begin{equation*}
c_{2}=b_{2} \tag{8.2}
\end{equation*}
$$

Hence,
Lemma (8.3). If a surface of Class VII_{0} satisfies $c_{1}^{2}=2 c_{2}$, in particular, if it admits a holomorphic $\operatorname{CO}(2 ; \boldsymbol{C})$-structure, then

$$
b_{2}=0 .
$$

The surfaces of Class VII_{0} with $b_{2}=0$ can be classified as follows:
(i) Hopf surfaces;
(ii) non-Hopf, elliptic surfaces with $b_{1}=1, b_{2}=0$;
(iii) non-Hopf, non-elliptic surfaces with $b_{1}=1, b_{2}=0$ and a line bundle F such that $H^{0}\left(M, \Omega^{1}(F)\right) \neq 0$;
(iv) non-Hopf, non-elliptic surfaces with $b_{1}=1, b_{2}=0$ such that $\left.H^{0}\left(M, \Omega^{1}(F)\right)\right)=0$ for all line bundles F.
Moreover the above classification is invariant under passing to an unramified covering.

We have already considered Case (i) in § 7 and Case (ii) in § 6.
Lemma (8.4). A surface of Class VII_{0} satisfying (iv) above admits no holomorphic $C O(2 ; C)$-structures.

Proof. Assuming that M admits a holomorphic $C O(2 ; C)$-structure, let $T M=L^{\prime} \oplus L^{\prime \prime}$ as in $\S 5$ (taking a double covering if necessary). Then the cotangent bundle is given by $L^{\prime-1} \oplus L^{\prime \prime-1}$. Hence,

$$
\Omega^{1}\left(L^{\prime}\right)=\mathscr{O}\left(\left(L^{\prime-1} \oplus L^{\prime \prime-1}\right) \otimes L^{\prime}\right)=\mathscr{O}(1) \oplus \mathscr{O}\left(L^{\prime \prime-1} \otimes L^{\prime}\right)
$$

which clearly admits a non-trivial holomorphic section. This contradicts the last condition in (iv).
q.e.d.

We shall now consider Case (iii). According to Inoue [6], a surface M satisfying (iii) belongs to one of the following three classes:
(a) Surfaces S_{U}. Let $U=\left(u_{i j}\right) \in S L(3 ; \boldsymbol{Z})$ be a unimodular matrix with eigenvalues $\alpha, \beta, \bar{\beta}$ such that $\alpha>1, \beta \neq \bar{\beta}$. Choose a real eigenvector (a_{1}, a_{2}, a_{3}) and an eigenvector (b_{1}, b_{2}, b_{3}) of U corresponding to α and β, respectively. Let G_{U} be the group of holomorphic transformations of $H \times \boldsymbol{C}$ generated by

$$
\begin{aligned}
& \sigma_{0}:(z, w) \mapsto(\alpha z, \beta w), \\
& \sigma_{i}:(z, w) \mapsto\left(z+a_{i}, w+b_{i}\right), \quad i=1,2,3 .
\end{aligned}
$$

Let $M=S_{U}=(H \times C) / G_{U}$. From the construction of M it is clear that $T M$ admits a splitting $T M=L^{\prime} \oplus L^{\prime \prime}$, where L^{\prime} and $L^{\prime \prime}$ are spanned by $\partial / \partial z$ and $\partial / \partial w$, respectively. It is also clear that this $C O(2 ; \boldsymbol{C})$-structure comes from a quadric structure.

We shall show that M admits no other $C O(2 ; C)$-structure. In fact, let $g=\sum g_{j k} d z^{j} d z^{k}$ define a holomorphic $C O(2 ; C)$-structure on M, i.e., a G_{U}-invariant $C O(2 ; C)$-structure on $H \times C$ so that

$$
\begin{equation*}
\sigma_{i}^{*} g=f_{i} g, \quad i=0,1,2,3 \tag{8.1}
\end{equation*}
$$

where each f_{i} is a holomorphic function with no zeros. Because of the simple connectedness of $H \times C$, we may assume as in $\S 7$ that

$$
\begin{equation*}
\operatorname{det}\left(g_{j k}\right)=1 \tag{8.2}
\end{equation*}
$$

Then the invariance condition (8.1) is equivalent to

$$
\begin{align*}
& \left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{ll}
g_{11}^{\sigma_{0}} & g_{12}^{\sigma_{0}} \\
g_{21}^{\sigma_{0}} & g_{22}^{\sigma_{0}}
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)=f_{0}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) \tag{8.1}\\
& \left(\begin{array}{ll}
g_{11}^{\sigma_{i}} & g_{12}^{\sigma_{i}} \\
g_{21}^{\sigma_{i}} & g_{22}^{\sigma_{i}}
\end{array}\right)=f_{i}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) .
\end{align*}
$$

From these and (8.2) it follows

$$
\begin{equation*}
(\alpha \beta)^{2}=\left(f_{0}\right)^{2}, \quad 1=\left(f_{i}\right)^{2} \quad(i=1,2,3) \tag{8.3}
\end{equation*}
$$

From (8.3), we see that $\left|g_{12}\right|$ is invariant by G_{U} and hence g_{12} is a constant function. From (8.1)' it then follows that

$$
\begin{array}{lll}
\alpha^{2} g_{11}^{\sigma_{0}}=f_{0} g_{11}, & g_{11}^{\sigma_{i}}=f_{i} g_{11} & (i=1,2,3) \tag{8.1}\\
\beta^{2} g_{22}^{\sigma_{0}}=f_{0} g_{22}, & g_{22}^{\sigma_{i}}=f_{i} g_{22} & (i=1,2,3)
\end{array}
$$

Differentiating (8.1)" with respect to w, we obtain

$$
\alpha^{2} \beta^{2}\left(\partial^{2} g_{11} / \partial w^{2}\right)^{\sigma_{0}}=f_{0} \partial^{2} g_{11} / \partial w^{2}, \quad\left(\partial^{2} g_{11} / \partial w^{2}\right)^{\sigma_{0}}=f_{i} \partial^{2} g_{11} / \partial w^{2} \quad(i=1,2,3)
$$

Hence $\left(\left(\partial^{2} g_{11} / \partial w^{2}\right) d z \wedge d w\right)^{2}$ is invariant by G_{U} and hence is a section of K^{2} on M. On the other hand, $H^{0}\left(M ; K^{2}\right)=0$ by Inoue [6]. Hence $\partial^{2} g_{11} / \partial w^{2}=0$. Similarly, we have $\partial^{2} g_{22} / \partial z^{2}=0$. So put

$$
g_{11}(z, w)=A(z) w+B(z), \quad g_{22}(z, w)=C(w) z+D(w)
$$

where $A(z), B(z)($ resp. $C(w), D(w))$ are holomorphic on H (resp. C). From (8.1)" we obtain

$$
\begin{gathered}
\alpha^{2}\{A(\alpha z) \beta w+B(\alpha z)\}=f_{0}\{A(z) w+B(z)\} \\
A\left(z+a_{1}\right)\left(w+b_{1}\right)+B\left(z+a_{1}\right)=f_{1}\{A(z) w+B(z)\}
\end{gathered}
$$

Hence,

$$
\begin{equation*}
\alpha^{2} \beta A(\alpha z)=f_{0}(z), \quad A\left(z+a_{1}\right)=f_{1} A(z), \tag{8.1}
\end{equation*}
$$

$(8.1)_{B} \quad \alpha^{2} B(\alpha z)=f_{0} B(z), \quad b_{1} A\left(z+a_{1}\right)+B\left(z+a_{1}\right)=f_{1} B(z)$.
Without loss of generality, we may assume $a_{1}=1$. From (8.1) $)_{A}$ we obtain

$$
A\left(\alpha^{k} z+2 \alpha^{k}\right)=\left(f_{0} / \alpha^{2} \beta\right)^{k} A(z+2)=\left(f_{0} / \alpha^{2} \beta\right)^{k} A(z)=A\left(\alpha^{k} z\right) \quad \text { for } \quad k \in \mathbb{Z}
$$

Hence, $A\left(z+2 \alpha^{k}\right)=A(z)$ for $k \in Z$. This means that A is constant on the infinite sequence $\left\{z+2 \alpha^{k}\right\}, k=-1,-2, \cdots$, converging to z. Hence,
A is constant on H. From (8.1) $)_{A}$, we have $\left(\alpha^{2} \beta-f_{0}\right) A=0$. If $A \neq 0$, then $\alpha^{4} \beta^{2}=f_{0}^{2}=\alpha^{2} \beta^{2}$ and hence $\alpha^{2}=1$, contradicting the assumption $\alpha>1$. We conclude $A=0$. From (8.1) ${ }_{B}$, we have

$$
\alpha^{2} B(\alpha z)=f_{0} B(z), \quad B\left(z+a_{1}\right)=f_{1} B(z)
$$

and obtain " $B=$ constant" in a similar manner. If $B \neq 0$, then $\alpha^{4}=$ $f_{0}^{2}=\alpha^{2} \beta^{2}$ and hence $\alpha^{2}=\beta^{2}$, contradicting the assumption $\alpha>1$ and $\alpha \beta \bar{\beta}=1$. Hence, $B=0$. This proves $g_{11}=0$.

Similarly, from (8.1)" we obtain

$$
\begin{gathered}
\beta^{2}\{C(\beta w) \alpha z+D(\beta w)\}=f_{0}\{C(w) z+D(w)\}, \\
C\left(w+b_{1}\right)\left(z+a_{1}\right)+D\left(w+b_{1}\right)=f_{1}\{C(w) z+D(w)\}
\end{gathered}
$$

and hence

$$
\begin{align*}
\alpha \beta^{2} C(\beta w) & =f_{0} C(w) \tag{8.1}\\
C\left(w+b_{1}\right) & =f_{1} C(w) \tag{8.1}
\end{align*}
$$

Without loss of generality, we may assume $b_{1}=0$. In the same way as above, we conclude $C=D=0$, i.e., $g_{22}=0$.
q.e.d.
(b) Surfaces $S_{N, p, q, r ; t}^{++)}$Let $N=\left(n_{j k}\right) \in S L(2 ; Z)$ be a unimodular matrix with two real eigenvalues $\alpha, 1 / \alpha$ with $\alpha>1$. Choose real eigenvectors $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ of N corresponding to α and $1 / \alpha$ respectively and fix integers $p, q, r(r \neq 0)$ and a complex number t. Let $\left(c_{1}, c_{2}\right)$ be the solution of

$$
\left(c_{1} c_{2}\right)=\left(c_{1}, c_{2}\right)^{t} N+\left(e_{1}, e_{2}\right)+(1 / r)\left(b_{1} a_{2}-b_{2} a_{1}\right)(p, q),
$$

where

$$
e_{i}=(1 / 2) n_{i 1}\left(n_{i 1}-1\right) a_{1} b_{1}+(1 / 2) n_{i 2}\left(n_{i 2}-1\right) a_{2} b_{2}+n_{i 1} n_{i 2} b_{1} a_{2}
$$

Let $G=G_{N, p, q, r ; t}^{(+)}$be the group of holomorphic transformations of $H \times \boldsymbol{C}$, generated by

$$
\begin{aligned}
& \sigma_{0}:(z, w) \mapsto(\alpha z, w+t), \\
& \sigma_{i}:(z, w) \mapsto\left(z+a_{i}, w+b_{i} z+c_{i}\right), \quad i=1,2, \\
& \sigma_{3}:(z, w) \mapsto\left(z, w+(1 / r)\left(b_{1} a_{2}-b_{2} a_{1}\right)\right)
\end{aligned}
$$

and define $M=S_{N, p, q, r ; t}^{(+)}=(H \times C) / G$.
We shall show that M admits no holomorphic $C O(2 ; C)$-structures. Let $g=\sum g_{j_{k}} d z^{j} d z^{k}$ define a holomorphic $C O(2 ; C)$-structure on M, i.e., a G-invariant holomorphic $C O(2 ; C)$-structure on $H \times C$ so that

$$
\begin{equation*}
\sigma_{i}^{*} g=f_{i} g, \quad i=0,1,2,3 \tag{8.4}
\end{equation*}
$$

where each f_{i} is a holomorphic function with no zeros. Because of the
simple connectedness of $H \times C$, we may assume as in $\S 7$ that

$$
\begin{equation*}
\operatorname{det}\left(g_{j_{k}}\right)=1 \tag{8.5}
\end{equation*}
$$

Then the invariance condition (8.4) is equivalent to

$$
\begin{align*}
& \left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
g_{11}^{\sigma_{0}} & g_{12}^{\sigma_{0}} \\
g_{21}^{\sigma_{0}} & g_{20}^{\sigma_{0}}
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)=f_{0}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right), \\
& \left(\begin{array}{cc}
1 & b_{i} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
g_{11}^{\sigma_{i}} & g_{1}^{\sigma_{i}} \\
g_{21}^{\sigma_{i}} & g_{22}^{\sigma_{i}}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b_{i} & 1
\end{array}\right)=f_{i}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right), \tag{8.4}\\
& \left(\begin{array}{ll}
g_{11}^{\sigma_{3}} & g_{12}^{\sigma_{3}} \\
g_{21}^{\sigma_{3}} & g_{22}^{\sigma_{3}}
\end{array}\right)=f_{3}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right) .
\end{align*}
$$

From these and (8.5) it follows that

$$
\begin{equation*}
\alpha^{2}=f_{0}^{2}, \quad 1=f_{i}^{2}, \quad(i=1,2), \quad 1=f_{3}^{2} . \tag{8.6}
\end{equation*}
$$

We see now easily that $\left(g_{22} d z \wedge d w\right)^{2}$ is invariant by G and hence is a section of K^{2} on M. On the other hand, $H^{\circ}\left(M ; K^{2}\right)=0$ by Inoue [6]. Hence, $g_{22}=0$. Similarly, the function $\left(g_{12}\right)^{2}$ is invariant by G and hence is constant on M. From (8.4) ${ }^{\prime}$ it then follows that

$$
\alpha=f_{0}, \quad 1=f_{i}, \quad(i=1,2), \quad f_{3}=1
$$

From (8.4)' we obtain

$$
\begin{equation*}
\alpha g_{11}^{\sigma_{0}}=g_{11}, \quad g_{11}^{\sigma_{i}}+2 b_{i} g_{12}=g_{11}, \quad g_{11}^{\sigma_{3}}=g_{11} . \tag{8.7}
\end{equation*}
$$

Differentiating (8.7) with respect to w, we obtain

$$
\partial g_{11} / \partial w=\alpha \partial g_{11}^{\sigma_{i}} / \partial w, \quad \partial g_{11} / \partial w=\partial g_{11}^{\sigma_{i}} / \partial w, \quad \partial g_{11} / \partial w=\partial g_{11}^{\sigma_{i}} / \partial w
$$

Hence, $\left(\partial g_{11} / \partial w\right)(\partial / \partial z \wedge \partial / \partial w)$ is a globally defined holomorphic section of K^{-1}. But, according to Inoue [6], K^{-1} has no holomorphic sections. Hence, $\partial g_{11} / \partial w=0$, i.e., g_{11} is a function of z only. Now differentiating (8.7) with respect to z, we obtain

$$
\partial g_{11} / \partial z=\alpha^{2} \partial g_{11}^{o_{0}} / \partial z, \quad \partial g_{11} / \partial z=\partial g_{11}^{\sigma_{i}} / \partial z, \quad \partial g_{11} / \partial z=\partial g_{11}^{\sigma_{3}} / \partial z
$$

It follows that $\left(\partial g_{11} / \partial z\right)(\partial / \partial z \wedge \partial / \partial w)^{2}$ is a globally defined holomorphic section of K^{-2} and hence $\partial g_{11} / \partial z=0$. We have shown that g_{11} is constant. In particular, $g_{11}^{\sigma_{0}}=g_{11}$. From (8.7) and $\alpha>1$, we obtain $g_{11}=0$. Since $b_{i} \neq 0$ for $i=1$ or 2 , (8.7) implies $g_{12}=0$. This is a contradiction.
(c) Surfaces $S_{N, p, q, r}^{(-)}$. Let $N=\left(n_{j_{k}}\right) \in G L(2 ; \boldsymbol{Z})$ be a matrix with $\operatorname{det} N=-1$ having real eigenvalues $\alpha,-1 / \alpha$ such that $\alpha>1$. Choose real eigenvectors $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ of N corresponding to α and $-1 / \alpha$, respectively, and we fix integers $p, q, r(r \neq 0)$. Define $\left(c_{1}, c_{2}\right)$ to be
the solution of

$$
-\left(c_{1}, c_{2}\right)=\left(c_{1}, c_{2}\right)^{t} N+\left(e_{1}, e_{2}\right)(1 / r)\left(b_{1} a_{2}-b_{2} a_{1}\right)(p, q),
$$

where

$$
e_{i}=(1 / 2) n_{i 1}\left(n_{i 1}-1\right) a_{1} b_{1}+(1 / 2) n_{i 2}\left(n_{i 2}-1\right) a_{2} b_{2}+n_{i 1} n_{i 2} b_{1} a_{2} .
$$

Let $G=G_{N, p, q, r}^{(-)}$be the group of holomorphic transformations of $H \times C$ generated by

$$
\begin{aligned}
& \sigma_{0}:(z, w) \mapsto(\alpha z,-w), \\
& \sigma_{i}:(z, w) \mapsto\left(z+a_{i}, w+b_{i} z+c_{i}\right) \\
& \sigma_{3}:(z, w) \mapsto\left(z, w+(1 / r)\left(\left(b_{1} a_{2}-b_{2} a_{1}\right)\right) .\right.
\end{aligned}
$$

Define $M=S_{N, p, q, r}^{(-)}=(H \times C) / G$. Since $S_{N, p, q, r}^{(-)}$has $S_{N^{2}, p_{1}, q_{1}, r ; 0}^{()}$with suitable p_{1}, q_{1} as its unramified double covering [6] and since the latter has no $C O(2 ; C)$-structures, it follows that the former admits no holomorphic $\mathrm{CO}(2 ; \boldsymbol{C})$-structures.
9. Ruled surfaces. Since we are interested only in surfaces free from exceptional curves of the first kind, by a ruled surface of genus g, we mean a holomorphic fibre bundle over a non-singular algebraic curve Δ of genus g with fibre $P_{1} C$ and structure group $P G L(1 ; C)$. Then

$$
\begin{equation*}
q=g, \quad p_{g}=0, \quad c_{2}=4(1-g), \quad c_{1}^{2}=8(1-g) . \tag{9.1}
\end{equation*}
$$

Lemma (9.2). Let M be a ruled surface over a curve Δ of genus g. If $T M=L^{\prime} \oplus L^{\prime \prime}$ is a splitting such that L^{\prime} is in the fibre direction, then M comes from a representation ρ of $\pi_{1}(\Delta)$ into $P G L(1 ; C)$, i.e.,

$$
M=\tilde{\Delta} \times{ }_{\rho} P_{1} C
$$

where $\widetilde{\Delta}$ is the universal covering space of Δ, and $L^{\prime \prime}$ is the horizontal subspace of the natural flat connection in the bundle M.

Proof. Consider $L^{\prime \prime}$ as the horizontal subspace for a generalized connection in the bundle M; since $L^{\prime \prime}$ is transversal to fibres everywhere, we can define the notion of parallel displacement of a fibre along a curve on the base Δ. Since $L^{\prime \prime}$ is an integrable distribution, the parallel displacement depends only on the homotopy class of the curve and maps the initial fibre holomorphically onto the terminal fibre. Hence, we obtain the holonomy representation $\rho: \pi_{1}(4) \rightarrow P G L(1 ; C)$. The remainder of the proof is obvious.
q.e.d.

Lemma (9.3). Let D be a small disk in C and $p: D \times P_{1} C \rightarrow D$ be the canonical projection. Then for every splitting $T N=L^{\prime} \oplus L^{\prime \prime}$, either L^{\prime} or $L^{\prime \prime}$ is in the fibre direction of p, where we set $N=D \times P_{1} C$.

Proof. Let z be the natural coordinate in D so that $\alpha=d z$ is a holomorphic 1-form on N. For each tangent vector V of N, write $V=V^{\prime}+V^{\prime \prime}$, where $V^{\prime} \in L^{\prime}$ and $V^{\prime \prime} \in L^{\prime \prime}$. Define a new holomorphic 1-form α^{\prime} on N by setting $\alpha^{\prime}(V)=\alpha\left(V^{\prime}\right)$. Assume neither L^{\prime} nor $L^{\prime \prime}$ is vertical at some point $w \in N$. Let V be a nonzero vertical vector at w. Then $\alpha^{\prime}(V)=\alpha\left(V^{\prime}\right)=d z\left(p_{*} V^{\prime}\right) \neq 0$ since $p_{*} V^{\prime}$ is nonzero. Hence the restriction of α^{\prime} onto the fibre $p^{-1}(p(z))=P_{1} C$ is a nonzero holomorphic 1 -form. This is a contradiction.
q.e.d.

The ruled surfaces of genus 0 can be classified as follows. Let H and 1 denote, respectively, the hyperplane line bundle and the trivial line bundle over $P_{1} C$. For each nonnegative integer n, let $F_{n}=P\left(H^{n} \oplus 1\right)$ be the ruled surface associated to the vector bundle $H^{n} \oplus 1$ of rank 2.

Lemma (9.4). $\quad F_{0}=P_{1} C \times P_{1} C$ is the only ruled surface of genus 0 admitting a holomorphic $\operatorname{CO}(2 ; \boldsymbol{C})$-structure.

Proof. We represent a point of F_{n} by a pair (u_{0}, u_{1}), where $u_{0} \in H^{n}$ and $u_{1} \in 1$. The bundle F_{n} has two natural sections s_{0} and s_{∞} given by

$$
s_{0}=\left\{u_{1}=0\right\} \quad \text { and } \quad s_{\infty}=\left\{u_{0}=0\right\}
$$

Let the group $C^{*}=C-\{0\}$ act on F_{n} by $\lambda:\left(u_{0}, u_{1}\right) \mapsto\left(\lambda u_{0}, u_{1}\right)$ for $\lambda \in C^{*}$. Let V be the holomorphic vertical vector field induced by this action of C^{*}. Since C^{*} leaves the section s_{∞} fixed, V vanishes at s_{∞}.

Let $T F_{n}=L^{\prime} \oplus L^{\prime \prime}$ be a splitting. (Remark F_{n} is simply connected.) Assume that neither L^{\prime} nor $L^{\prime \prime}$ is in the fibre direction at some point of F_{n}. Decompose $V=V^{\prime}+V^{\prime \prime}$, where $V^{\prime} \in L^{\prime}$ and $V^{\prime \prime} \in L^{\prime \prime}$. Since V vanishes at s_{∞}, so do V^{\prime} and $V^{\prime \prime}$. On the other hand, as we have seen in the proof of (6.11), every holomorphic vector field on F_{n} projects to a holomorphic vector field on the base space. In particular, V^{\prime} and $V^{\prime \prime}$ project to holomorphic vector fields on the base space. Since they vanish at the section s_{∞}, their projections must be zero. In other words, V^{\prime} and $V^{\prime \prime}$ are vertical vector fields. This is a contradiction. Hence, either L^{\prime} or $L^{\prime \prime}$ is vertical. Now our assertion follows from (9.2). q.e.d.

Theorem (9.5). A ruled surface M over a curve Δ of genus $g \geqq 1$ admits a holomorphic $C O(2 ; C)$-structure if and only if $M=\tilde{\Delta} \times{ }_{\rho} P_{1} C$, where $\tilde{\Delta}$ is the universal covering space of Δ and $\rho: \pi_{1}(\Delta) \rightarrow P G L(1 ; C)$ is a representation, and the $\operatorname{CO}(2 ; C)$-structure is the natural one arising from the natural quadric structure on $\widetilde{\Delta} \times P_{1} C$. The quadric $P_{1} C \times P_{1} C$ is the only ruled surface of genus 0 admitting a holomorphic $\mathrm{CO}(2 ; \boldsymbol{C})$ structure.

Proof. Let $p: M \rightarrow \Delta$ be the fibration. Take a sufficiently fine covering $\Delta=\bigcup U_{\alpha}$ by small disks U_{α} so that $p^{-1}\left(U_{\alpha}\right)=D_{\alpha} \times P_{1} C$. By restricting the $C O(2 ; C)$-structure onto $P^{-1}\left(U_{\alpha}\right)$, we have the splitting $T(M) \mid P^{-1}\left(U_{\alpha}\right)=$ $L^{\prime} \oplus L^{\prime \prime}$. From Lemma (9.3) we may assume L^{\prime} is in the fibre direction. From this we see the $C O(2 ; C)$-structure on M gives rise to the splitting $T M=L^{\prime} \oplus L^{\prime \prime}$. Then our assertion follows from Lemma (9.2) and Lemma (9.4).
q.e.d.
10. Surfaces with holomorphic $C O(2 ; \boldsymbol{C})$-structures and quadric structures. Let M be an algebraic surface and $\Phi_{m K}$ the pluri-canonical map associated with the pluri-canonical system $|m K|$; it is a rational map of M into $P_{N} C$, where $N=\operatorname{dim}|m K|$. The Kodaira dimension $\kappa(M)$ of M is the maximum dimension of the image $\Phi_{m K}(M)$ for $m \geqq 1$. If $|m K|=\varnothing$, we set $\operatorname{dim} \Phi_{m_{K}}(M)=-\infty$. Then the classification theorem of Enriques may be stated as follows:

Theorem (10.1). (1) A minimal algebraic surface M with $\kappa(M)=$ $-\infty$ is either the projective plane $P_{2} C$ or a ruled surface;
(2) A minimal algebraic surface M with $\kappa(M)=0$ satisfies $4 K=0$ or $6 K=0$, and it is either a K3 surface (if $q=0$ and $p_{g}=1$), an Enriques surface (if $q=0$ and $p_{g}=0$), a bielliptic (or hyperelliptic) surface (if $q=1$), or an Abelian surface (if $q=2$);
(3) A minimal algebraic surface M with $\kappa(M)=1$ satisfies $c_{1}^{2}=0$ and is elliptic.

If $\kappa(M)=2$, then M is called a surface of general type.
By (3.21), the projective plane $P_{2} C$ admits no holomorphic $C O(2 ; C)$ structures. From (9.5) we conclude:

Theorem (10.2). An algebraic surface M with $\kappa(M)=-\infty$ admits a holomorphic $\mathrm{CO}(2 ; C)$-structure if and only if it is one of the following:
(1) A ruled surface over a curve Δ of genus $\geqq 1$ such that $M=\tilde{\Delta} \times{ }_{\rho} P_{1} C$, where $\tilde{\Delta}$ is the universal covering space of Δ and $\rho: \pi_{1}(\Delta) \rightarrow P G L(1 ; C)$ is a representation. (In this case, the CO(2;C)structure is the natural one coming from the natural quadric structure on $\widetilde{\Delta} \times P_{1} C$.
(2) The quadric $P_{1} C \times P_{1} C$.

Theorem (10.3). An algebraic surface M with $\kappa(M)=0$ admits a holomorphic $\mathrm{CO}(2 ; \boldsymbol{C})$-structure if and only if it is one of the following:
(1) A bielliptic (or hyperelliptic) surface.
(2) An Abelian surface.

In both cases, it admits a quadric structure.

Proof. In this case, $c_{1}=0$ in $H^{2}(M ; \boldsymbol{R})$. By (3.21) a necessary condition for the existence of a holomorphic $C O(2 ; C)$-structure is $c_{2}=0$. This eliminates the $K 3$ surfaces and the Enriques surfaces (which are doubly covered by $K 3$ surfaces).

A complex torus C^{2} / Γ admits a quadric structure coming from the natural quadric structure on C^{2} invariant under the translation.

It is known (see, for example, [19]) that a bielliptic surface can be expressed as the quotient of an Abelian surface A by the group generated by an automorphism g of A of the following form: $g\left(z^{1}, z^{2}\right)=\left(z^{1}+1 / m, \zeta z^{2}\right)$, where ζ is an m-th root of 1 and $m=2,3,4$, or 6 . It is clear that the natural quadric structure on A induces a quadric structure on the quotient bielliptic surface.
q.e.d.

Theorem (10.4). An algebraic surface M with $\kappa(M)=1$ admits a holomorphic $C O(2 ; \boldsymbol{C})$-structure if and only if $c_{1}^{2}=0$ (which is equivalent to minimality for an elliptic surface) and $c_{2}=0$. In this case, it admits a quadric structure.

Proof. The first part follows from (3.21), (5.11) and (6.8). The second half follows from (6.15). q.e.d.

Theorem (10.5). An algebraic surface M of general type admits a holomorphic $C O(2 ; \boldsymbol{C})$-structure if and only if its universal covering space is biholomorphic to the bidisk $D \times D$. In this case, it admits a quadric structure.

Proof. According to Kodaira [16], an algebraic surface of general type M has an ample canonical bundle if and only if it contains no nonsingular rational curve C with self-intersection $C \cdot C=-1$ or -2 . Our assertion now follows from (4.5) and (5.14).
q.e.d.

Kodaira [15] classified the compact complex surfaces without exceptional curves of the first kind into seven classes I_{0} to VII_{0}. We shall now examine his classification table to determine the surfaces which admit holomorphic $C O(2 ; C)$-structures and quadric structures.

Class I_{0}. This is the class of minimal algebraic surfaces with $p_{g}=0$. The algebraic case was dealt with in (10.2)-(10.5).

Class II_{0}. This is the class $K 3$ surfaces. Since $c_{1}^{2}=0$ and $c_{2}=24$ for a $K 3$ surface, there is no holomorphic $C O(2 ; C)$-structure on a $K 3$ surface by (3.21).

Class III_{0}. This is the class of complex tori. Clearly, every complex torus admits a natural quadric structure.

Class IV $_{0}$. This is the class of minimal elliptic surfaces with even

Betti number, $p_{g}>0$ and $c_{1}^{2}=0$ (but $c_{1} \neq 0$ in $H^{2}(M ; Z)$). By (6.10), a surface in this class admits a holomorphic $C O(2 ; C)$-structure. By (6.15) it actually admits a quadric structure.

Class V_{0}. This is the class of minimal algebraic surfaces with $p_{g}>0$ and $c_{1}^{2}>0$. The algebraic case was dealt with in (10.2)-(10.5).

Class VI_{0}. This is the class of minimal elliptic surfaces with odd first Betti number, $p_{g}>0$ and $c_{1}^{2}=0$. By (6.13) an elliptic surface with odd first Betti number, fibred over a curve of positive genus, admits no holomorphic $C O(2 ; C)$-structures. By (6.14), an elliptic surface over $P_{1} C$ with odd first Betti number cannot admit a holomorphic $C O(2 ; C)$-structure unless it is a Hopf surface (which is in Class VII $_{0}$). Hence, no surface of Class VI_{0} admits a holomorphic $C O(2 ; C)$-structure.

Class VII $_{0}$. This is the class of minimal surfaces with $p_{g}=0$ and $b_{1}=1$. In $\S 6, \S 7$ and $\S 8$, we have shown that a surface of Class VII_{0} admitting a holomorphric $C O(2 ; C)$-structure is either an Inoue surface S_{U} in the notation of $\S 8$ or a Hopf surface $\left(C^{2}-\{0\}\right) / \Gamma$, where Γ contains only elements of the form

$$
\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \text { or }\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right)
$$

and that such a surface actually admits a quadric structure.

Bibliography

[1] T. Aubin, Equations du type Monge-Ampère sur les variétés Kähleriénnes compactes, C.R. Acad. Sci. Paris 283 (1976), 119-121.
[2] A. Beauville, Surfaces algébriques complexes, Astériques 54 (1978).
[3] R. Bотt, A residue formula for holomorphic vector fields, J. Differential Geometry 1, (1967), 311-330.
[4] R. Gunning, On uniformization of complex manifolds; the role of connections, Math. Notes No. 22, Princeton University Press 1978.
[5] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Symp. Intern. Top. Alg. 1956, 129-144, Univ. de Mexico, 1958.
[6] M. Inoue, On surfaces of Class VII_{0}, Inventiones Math. 24 (1974), 269-310.
[7] M. Inoue, S. Kobayashi and T. Ochiai, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo 27 (1980), 247-264.
[8] S. Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. Math. 74 (1961), 570-574.
[9] S. Kobayashi, The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan, 32 (1980), 325-329.
[10] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Intersci. Tracts No. 15, New York, Wiley, 1969.
[11] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1972), 31-47.
[12] S. Kobayashi and T. Ochiai, Holomorphic projective structures on compact complex
surfaces, Math. Ann. 249 (1980), 75-94.
[13] S. Kobayashi and T. Ochiai, Holomorphic projective structures on compact complex surfaces II, Math. Ann. 255 (1981), 519-522.
[14] K. Kodaira, On compact complex analytic surfaces I, Ann. Math. 71 (1960), 111-152; II 77 (1963), 563-626; III 78 (1963), 1-40.
[15] K. Kodarra, On the structure of compact complex analytic surfaces I, Amer. J. Math. 86 (1964), 751-798; II 88 (1966), 682-721; III 90 (1968), 55-83.
[16] K. Kodaira, Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan 20 (1968), 170-192.
[17] A. Lascoux and M. Berger, Variétés Kähleriennes compactes, Lecture Notes in Math. No. 154, Springer-Verlag, 1970.
[18] K. Maehara, On elliptic surfaces whose first Betti numbers are odd, Proc. Intl. Symp. Algebraic Geometry, Kyoto 1977, 565-574.
[19] T. Suwa, On hyperelliptic surfaces, J. Fac. Sci. Univ. Tokyo, Sec. 1A, Math. 16 (1970), 469-476.
[20] S. T. Yau, On the Ricci curvature of a compact Kaehler manifolds and the complex Monge-Ampère equation I, Comm. Pure Appl. Math. 31 (1978), 339-411.
[21] Y. Miyaoka, Kähler metrics on elliptic surfaces, Proc. Japan Acad. 50 (1974), 533-536.
[22] S. Bungaard and J. Nielsen, On normal subgroups with finite index in F-groups, Mat. Tidsskr. B (1951), 56-58.
[23] W. Fenchel, Remarks on finite groups of mapping classes, Mat. Tidsskr. B (1950), 90-95.
[24] R. Fox, On Fenchel's conjecture about F-groups, Mat. Tidsskr. B (1952), 61-65.

Department of Mathematics	and
University of California	Institute of Mathematics
Berkeley, California 94720	University of Tokyo
U.S.a.	Tokyo 113
Japan	

[^0]: * Partially supported by NSF Grant MCS 79-02552.

